Hello, and welcome to this presentation of the STM32 Flash memory interface. It covers all the new features of the STM32H7 Flash memory.
STM32H7 devices embed high-speed embedded memories with a dual-bank Flash memory up to 2 Mbytes that can be used for storing programs and data. The Flash memory is organized as 266-bit Flash words that can be used for storing both code and data constants. Each word consists of:
One Flash word (8 words, 32 bytes or 256 bits)
10 ECC bits
The STM32H7 series has a Flash memory with Dual-bank organization supporting simultaneous operations: two read/program/erase operations can be executed in parallel on the two banks.
The Flash memory supports Enhanced Security features which can be configured using the option bytes: the Readout protection (RDP), the Sector write protection and 2 PCROP protection area (1 per bank) (execute-only memory).

- 2 secure areas in user Flash memory (1 per bank)
- Bank swapping: the address mapping of the user Flash memory of each bank can be swapped
- Option bytes

The Flash interface allows swapping Bank 1 and Bank 2 memory mapping. This feature can be used after a firmware upgrade to restart the device on the new firmware after a system reset.

The Flash interface allows also setting a “secure” area in each Flash bank. The data and program stored in this area cannot be accessed unless the secure mode is set. The secure area helps isolating secure user code from non-secure application code.

Please refer to the specific training about System protections for more details about these protection options.
This figure shows the Flash memory high-level block diagram. The Flash interface implements a dual AXI bus interface for code/data accesses and an AHB interface to configure the Flash memory interface. The AXI interface can request a read/program operation at the same time.
The Flash memory is organized as 266-bit words that can be used for storing both code and data constants. Each word consists of:
- One Flash word (8 words, 32 bytes or 256 bits)
- 10 ECC bits

The Flash memory is divided into two independent banks. Each bank has:
- A 1-Mbyte user Flash memory block divided into 128 Kbytes sectors (8x sectors)
- 128 Kbytes of System Flash memory
- 2 Kbytes (64 Flash words) of user option bytes for user configuration
 - Available only in Bank 1
 - Accessed only through the Flash register interface (It is not memory mapped)

The Flash interface can drive different operations in parallel on each bank, but only one read or write operation at a time on a given bank.
against spurious program/erase operations. For further details, please refer to application note AN2606 “STM32 microcontroller System Flash memory boot mode” available from http://www.st.com.

• 2 Kbytes (64 Flash words) of user option bytes for user configuration: This area is available only in Bank 1. Unlike user Flash memory and System Flash memory, it is not mapped to any memory address and can be accessed only through the Flash register interface.
This table describes the Flash memory organization that is divided into 2 banks each having a main memory block containing 8 sectors of 128 Kbytes each.

Each main memory block has a System Flash block that contains the system memory which is reserved for use by STMicroelectronics and contains the bootloader. When selected, the device boots in System memory to execute the bootloader.

2 Kbytes (64 Flash words) of user option bytes for user configuration available only in Bank 1.
Flash read operations

- Flash interface support the following access types:
 - Double-word (64 bits)
 - Single-word (32 bits)
 - Half-word (16 bits)
 - Byte (8 bits)

- The Flash interface implements:
 - A dual AXI bus interface for code/data accesses
 - An AHB interface for Flash interface configuration

- To ensure correct Flash interface read operations, the number of wait states (LATENCY) must be correctly configured in the FLASH_ACR register according to the Flash memory interface frequency.

The Flash interface can be accessed by Double-word (64 bits), by Single-word (32 bits), by Half-word (16 bits) or by Byte (8 bits).

The Flash interface clock must be enabled and running when reading information from Flash memory. To ensure correct Flash interface read operation, the number of wait states (LATENCY) must be correctly configured in the FLASH_ACR register according to the Flash memory interface frequency.

The Flash interface implements a dual AXI bus interface for code/data accesses and an AHB interface for Flash interface configuration. The AXI interfaces can request a read/program operation at the same time.
This table shows the correspondence between the number of wait states, the bus clock frequency and VCORE range. After power-on, the clock used is the HSI (64 MHz) and 7 wait-states are configured by default in the FLASH_ACR register.
The read mechanism is the following:

• The read command buffer depth is fixed to 3 requests. When it is full (3 read requests queued in the buffer), any new read request will stall the bus interface and consequently the master.

• Any system read request for data that belongs to the same Flash data word (256 bits) does not trigger additional Flash read operations, data is directly read from the current data read buffer.

• Any system read request for data that is not available in the read buffer triggers a Flash read operation.

• Read commands to each bank are associated with a read data buffer of 256 bits.
The read command queue buffer is free as soon as the last data of the current read transaction is transferred from the Flash memory to the read data buffer inside the Flash memory interface.
Data in Flash memory are 266-bit words: 10 ECC bits are added per Flash word of 256 bits.
The ECC mechanism is based on the SECDED algorithm. It supports:
- Single error correction
- Double error detection

When an ECC error is detected:
- Address of the failing Flash word is saved in the FLASH_ECC_FA1/2R register.
- In case of successive error detections, only the address corresponding to the first error will be saved.

When an error is detected and corrected:
- The SNECCERR1/2 flag is set in the FLASH_SR1/2 register.
- An interrupt is generated if the SNECCERRIE bit is set in the FLASH_CR1/2 register.
When two errors are detected, the DBECCERR1/2 flag is set in the FLASH_SR1/2 register and a bus error is generated. In this case, the received data is not corrected. An interrupt is generated if the DBECCERRIE1/2 bit is set in the FLASH_CR1/2 register.
The Flash interface embeds a cyclic redundancy check (CRC) hardware module. This module allows checking the integrity of a Flash area content. This area can be defined either by sectors or by start/end addresses. Only one CRC check operation on Bank 1 or 2 can be launched at a time. The CRC operation cannot be concurrent with any option byte change operation. This means that if a CRC operation is requested while an option byte change is ongoing, the option byte change operation must be completed before serving the CRC operation, and vice-versa.
The Flash interface issues 4, 16, 64 or 256 consecutive Flash-word read accesses. These transactions are queued into the read command buffer together with other AXI read requests, thus avoiding to deny AXI read commands. The queue command buffer can contain only one CRC command.
The recommended sequence to configure a CRC operation in Bank 1/2 is the following:
1. Enable the CRC feature by setting the CRC_EN bit in the FLASH_CR1/2 register.
2. Program the desired data size in the CRC_BURST field of the FLASH_CRCCCR1/2 register.
3. Define the Flash area on which the CRC has to be computed (sector or address).
4. Start the CRC operation setting the START_CRC bit.
5. Wait until the CRC_BUSY flag is reset.
6. Retrieve the CRC result in the FLASH_CRCDATAR register.

- The CRC can be computed for an entire bank by setting the ALL_BANK bit in the FLASH_CRCCCR1/2 register.
- Running a CRC on PCROP- or secure-protected user Flash area may alter the expected CRC value.
6. Retrieve the CRC result in the FLASH_CRCDATAR register.
The CRC can be computed for a whole bank by setting the ALL_BANK bit in the FLASH_CRCCR1/2 register.
The Flash memory interface supports multiple program operations:
 * Write to user sectors
 * Erase user sectors
 * Erase Bank 1, Bank 2 or both banks
 * Change user option bytes

The Flash interface write queue buffer can contain 2 requests:
 * Write accesses are accepted until the write queue buffer becomes full.
 * When it is full, the Flash interface stalls the AXI bus.
 * The write operations are executed in the order in which they have been received by the Flash interface.

The Flash memory interface supports multiple program operations:
 * Write to user sectors
 * Erase user sectors
 * Erase Bank 1, Bank 2 or both banks
 * Change user option bytes

The write accesses issued through the AXI interface can be considered as bufferable and not cacheable except that it is not possible to read back the write buffer inside the Flash interface.

The embedded Flash memory can be programmed using in-circuit programming or in-application programming.
A program or erase operation can be executed on Bank 1 while another program or erase operation is executed on Bank 2.

- An exception for option byte change when a level regression is required: in this case, the availability of both banks.

- Parallelism must be set up for any program or erase operation.

- The parallelism is the maximum number of bits that can be written to '0' in one shot during a write operation. The programming parallelism is also used during sector and bank erase operations.

A program or erase operation can be executed on Bank 1 while another program or erase operation is executed on Bank 2.

Note that the programming parallelism is a parameter that must be configured prior to performing a program or erase operation.
The user application must configure the programming parameters prior to performing a program/erase operation.
Two write operation mode are possible. The simple write sequence (recommended) for which the steps are:
1. Set the PG1/2 bit in the FLASH_CR1/2 register of the targeted bank (Bank 1/2).
2. Check the protection of the target memory area.
3. Write one Flash word corresponding to 32-byte data starting at 32-byte aligned address.
4. Check that the QW1/2 flag has been raised and wait until it is reset.

This sequence can be used to program a block in Flash memory:
1. Set the PG1/2 bit in the FLASH_CR1/2 register of the corresponding bank (Bank1/2).
2. Check the protection of the target memory area.
3. Write successively 32 data bytes (Flash words) until the whole block is transferred.

<table>
<thead>
<tr>
<th>Simple write sequence</th>
<th>Optimal block write sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set the PG1/2 bit in the FLASH_CR1/2 register of the targeted bank (Bank 1/2)</td>
<td>Write successively 32 data bytes (Flash words) until the entire block is transferred.</td>
</tr>
<tr>
<td>Check the protection of the target memory area</td>
<td>Each Flash word must start at an 32-byte aligned address.</td>
</tr>
<tr>
<td>Write one Flash word corresponding to 32-byte data starting at 32-byte aligned address</td>
<td></td>
</tr>
<tr>
<td>Check that the QW1/2 flag has been raised and wait until it is reset</td>
<td></td>
</tr>
</tbody>
</table>
Each Flash word must start at a 32-byte aligned address.
Write status busy flags

Three different status flags located in the FLASH_SR1/2 registers are available for each bank. They indicate the ongoing write operation status:

- **BSYx**: This flag indicates that an effective write, erase or option byte change operation is ongoing to the Flash memory.
- **QWx**: This flag indicates that a program, erase or option byte change operation is pending. This bit remains high until the write operation is complete. It supersedes the BSYx status bit.
- **WBNEx**: This flag indicates that the write buffer is not empty. It is reset as soon as the write command is queued.

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSYx</td>
<td>This flag indicates that an effective write, erase or option byte change operation is ongoing to the Flash memory.</td>
</tr>
<tr>
<td>QWx</td>
<td>This flag indicates that a program, erase or option byte change operation is pending. This bit remains high until the write operation is complete. It supersedes the BSYx status bit.</td>
</tr>
<tr>
<td>WBNEx</td>
<td>This flag indicates that the write buffer is not empty. It is reset as soon as the write command is queued.</td>
</tr>
</tbody>
</table>
If one of the busy flags is active, the MCU cannot switch the D1 domain to Stop or Standby mode.

To release the Flash interface, the BSYx and QWx busy bits must be cleared by:

- Completing the write buffer with missing data.
- Forcing the write without filling the missing data by setting the FWx bit in the FLASH_CRx register.
- Terminating the write by resetting the PGx bit in the FLASH_CRx register; this leads to the loss of data in the write buffer.

If one of the busy flags is active, the MCU cannot switch the D1 domain to Stop or Standby mode.
To release the Flash interface, the BSYx and QWx busy bits must be cleared.
The user option byte change operation can be used to modify the configuration and the protection settings saved in the Flash memory option byte area.

To increase the robustness of option byte storage in the Flash interface, each option byte data is associated to an error code correction (ECC) inside the Flash memory.

The Flash interface features two sets of option byte registers:

- **FLASH Xxx CUR**: All “_CUR” registers are read-only. Their values are automatically loaded after power-on or after an option byte change operation.
- **FLASH Xxx PRG**: All “_PRG” registers are in read/write mode. Setting this register allows modifying the option bytes.

The user option byte change operation can be used to modify the configuration and the protection settings saved as the Flash memory option byte area.
The Flash interface features two sets of option byte registers:

- The first register set contains the current values of the option bytes. Their names has the _CUR extension. All “_CUR” registers are read-only. Their values are automatically loaded after power-on or after an option byte change operation.
- The second register set allows modifying the option bytes. Their names contains the _PRG extension. All “_PRG” registers can be accessed in read/write mode.
Four interrupts can be generated by the Flash memory. The end-of-operation interrupt is triggered when one or more Flash program or erase operations is completed successfully. The programming error interrupt is triggered when a Flash memory program or erase operation failed. The write protection error interrupt is triggered when a write access is attempted to a write-protected area of the Flash memory. The operation error interrupt is triggered when an error is detected during a write or erase operation.