
Hello, and welcome to this presentation of the STM32 I²C
interface. It covers the main features of this communication
interface, which is widely used to connect devices such as
microcontrollers, sensors, and serial interface memories.

1

The I²C interface is compliant with the NXP I²C-bus
specification and user manual, Revision 5; the SMBus
System Management Bus Specification, Revision 3; and the
PMBus Power System Management Protocol Specification,
Revision 1.3.
This peripheral provides an easy-to-use interface, with very
simple software programming, and full timing flexibility.
Additionally, the I²C peripheral is functional in low-power stop
modes.

2

The I²C peripheral supports multi-master and slave modes.
The I²C IO pins must be configured in open-drain mode. The
logic high level is driven by an external pull-up. The IO pins
support the 20 mA output drive required for Fast mode Plus.
The peripheral controls all I²C bus-specific sequencing,
protocol, arbitration and timing values.
7- and 10-bit addressing modes are supported, and multiple
7-bit addresses can be supported in the same application.
The peripheral in master mode supports slave clock
stretching and clock stretching from slave side. In slave
mode configuration of the peripheral, the clock stretching
can be disabled by software.

3

The Setup and Hold times are programmable by software.
Analog and digital glitch filters on the data and clock lines
can be configured by software.
The peripheral can wake up the MCU from Stop mode when
an address match is detected.
The peripheral has an independent clock domain, which
allows a communication baud rate independent from the
system clock.

4

Here is the I²C block diagram. The registers are accessed
through the APB bus, and the peripheral is clocked with the
I²C clock, which is independent from the APB clock. The I²C
clock can be selected from among the system clock
(SYSCLK), the high speed internal 16 MHz RC oscillator
clock (HSI16) and the APB1 clock (PCLK1).
Analog and digital noise filters are present on the SCL and
SDA lines. A 20 mA driving capability is enabled using the
control bits in the System configuration registers.
In addition, an SMBus Alert pin is available in SMBus mode.

5

The I²C setup and hold times can be configured by software
through the I²C Timing register.
The SDADEL and SCLDEL counters are used during
transmission, in order to guarantee the minimum Data Hold
and Data Setup times.
The I²C peripheral waits for the programmed Data Hold time
after detecting a falling edge on the clock line before sending
the data. After the data is sent, the clock line is stretched low
during the programmed Data Setup time.

The total Data Hold time is greater than the programmed
SDADEL counter. This is due to the fact that SDADEL delay
is only added once the SCL falling edge is internally
detected. The time (tSYNC1) needed for this internal detection
depends on the SCL falling edge, the input delay due to the
filters, and the delay due to the internal SCL synchronization
with the I²C clock . However, the setup time is not impacted
by these internal delays.

6

The I²C master clock’s low- and high-level durations are
configured by software in the I²C Timings register.
The SCL low- and high-level counters start after the detection of
the edge of the SCL line. This implementation allows the
peripheral to support the master clock synchronization
mechanism in a multi-master environment as well as the slave
clock stretching feature.
Therefore, the total SCL period is greater than the sum of the
counters. This is linked to the added delays due to the internal
detection of the SCL line edge. These delays, tSYNC1 and tSYNC2,
depend on the SCL falling or rising edge, the input delay due to
the filters, and the delay due to the internal SCL synchronization
with the I²C clock.

The rising edge depends on pull-up resistor and SCL line
capacitance. The falling edge depends on the I/O port
parameters defined in the datasheet. In order to properly
configure clock speed, these edges can be either measured or
calculated. They are needed in order to properly configure I2C
peripheral in the STM32CubeMX tool, then the settings of the
Timing Register can be automatically calculated by this tool.

7

The I²C slave can acknowledge several slave addresses.
The slave addresses are programmed into two registers.
Own Address Register 1 can be programmed with a 7- or a
10-bit address. Own Address Register 2 can be programmed
with a 7-bit address, but the Least Significant Bits of this
address can be masked through the OA2MSK register, in
order to acknowledge multiple slave addresses. The two
Own Address Registers can be enabled simultaneously.

The I²C peripheral supports Wakeup from Stop mode on
address matches. To do this, the I²C peripheral clock must
be set to the HSI16 oscillator. Only the analog noise filter is
supported when the Wakeup from Stop feature is enabled.
All addressing modes are supported.
When the device is in Stop mode, the high-speed internal
oscillator is switched off. When a Start condition is detected,
the I²C peripheral enables the high-speed internal oscillator,
which is used to receive the address on the bus.
After an address is received in Stop mode, a wakeup
interrupt is generated if the address matches the
programmed slave address.
If the address does not match, the high-speed internal
oscillator is switched off, no interrupt is generated, and the
device remains in Stop mode.
Clock stretching must be enabled because the I²C peripheral
stretches the clock line low after the Start condition, until the
high-speed internal oscillator is started. After having received

an address that matches the programmed slave address, the
I²C peripheral also stretches the clock line low until the
STM32G4 device is awaken.

9

Master mode software management is very simple. Only one
write action is needed to handle a master transfer with a
payload smaller than 255 bytes. The full protocol is managed
by the hardware.
In order to start a transfer in Master mode, I²C Control
Register 2 must be written with the Start condition request,
the slave address, the transfer direction, the number of bytes
to be transferred, and the End of Transfer mode. End of
Transfer mode is configured by the AUTOEND bit. If it is set,
the Stop condition is automatically sent after the
programmed number of bytes is transferred.
If the AUTOEND bit is not set, the end of transfer is
managed by software. After the programmed number of
bytes is transferred, the Transfer Complete (TC) flag is set
and an interrupt is generated, if enabled. Then a Repeated
Start or a Stop condition can be requested by software.
The data transfer can be managed by interrupts or by the
DMA.

When the payload is greater than 255 bytes, the RELOAD
bit must be set in I²C Control Register 2. In this case, the
Transfer Complete Reload (TCR) flag is set after the
programmed number of bytes has been transferred. The
additional number of bytes to be transferred is programmed
when the TCR bit is set, and then, the data transfer will
resume. The I²C clock is stretched low as long as the TCR
bit is set. The RELOAD bit is used in Master mode when the
payload is greater than 255 bytes, and in Slave mode when
Slave Byte Control is enabled.
When the RELOAD bit is set, the AUTOEND bit has no
effect.

By default, the I²C slave uses clock stretching. The clock
stretching feature can be disabled by software.
In Receive mode, the slave acknowledge on received byte
behavior can be configured when Slave Byte Control mode
is selected, together with the RELOAD bit being set. When
the SBC bit is set, the number of bytes counter is enabled in
Slave mode. Clock stretching must be enabled when Slave
Byte Control is enabled.
In Receive mode, when Slave Byte Control is enabled with
the RELOAD bit set and the number of bytes to be
transferred is 1, the Transfer Complete Reload flag is set
after each received byte and the SCL line is stretched. This
is done after data reception and before the acknowledge
pulse. The Receive Buffer Not Empty flag is also set, so the
data can be read. In the TCR subroutine, an Acknowledge or
NOT Acknowledge can be programmed to be sent after the
byte is received.
It is recommended to clear the SBC bit in transmission, as

there is no use for the byte counter in I²C Slave Transmitter
mode.
In SMBus mode, Slave Byte Control mode is used in
transmission for sending the PEC (packet error code) byte.

12

The I²C peripheral provides hardware support for the
SMBus. The SMBus Address resolution protocol is
supported through the device default address and arbitration
in Slave mode.
The Host Notify protocol is supported with host address
support.
The Alert protocol is supported through the SMBus Alert pin
and Alert Response address.
The SMBus clock low timeout and Cumulative clock low
extend times can be detected, with a programmable
duration. The Bus Idle condition can be detected with a
programmable duration.
Command and data acknowledge control is supported
through Slave Byte Control mode.
The Packet Error Code (PEC) byte is calculated by
hardware.

The Packet Error Code (PEC) byte is automatically sent in
transmission, and checked in reception.
The data transfer counter, initialized with the NBYTES value,
is used to automatically check the PEC byte in reception,
after NBYTES minus one byte are received. If the received
PEC byte does not match the calculation, a Not
Acknowledge is automatically sent after the PEC byte. In
transmission, the internally calculated PEC byte is
automatically sent after NBYTES minus one byte. Slave Byte
Control mode must be enabled in Slave mode in order to
enable the NBYTES counter and allow automatic PEC
reception or transmission.

Several events can trigger an interrupt:
The Receive Buffer Not Empty flag is set when the receive
buffer contains received data and is ready to be read. The
Transmit Buffer interrupt status is set when the transmit
buffer is empty and is ready to be written. The Stop
Detection flag is set when a Stop condition is detected on
the bus.
The Transfer Complete Reload flag is set when the RELOAD
bit is set and NBYTES bytes of data have been transferred.
The Transfer Complete flag is set when the RELOAD and
AUTOEND bits are cleared and NBYTES bytes of data have
been transferred.
The Address Match flag is set when the received slave
address matches one of the enabled slave addresses.
The NACK reception flag is set when a Not Acknowledge is
received after a byte transmission.
DMA requests can be generated when the Receive Buffer
Not Empty or Transmit Buffer Empty flag is set.

Several errors flags can be generated.
A Bus Error Detection flag is set when a misplaced Start or
Stop condition is detected. The Arbitration Loss flag is set in
the event of an arbitration loss. An Overrun or Underrun
Error flag is set in Slave mode with clock stretching disabled,
when an overrun or an underrun error is detected.
In SMBus mode, a PEC Error flag is set when the received
PEC does not match the calculated PEC register content. A
Timeout Error flag is set when a timeout or extended clock
timeout is detected. An Alert pin detection flag is set in the
SMBus Host configuration, when Alert is enabled and a
falling edge is detected on the SMBA pin.

The I²C peripheral is active in Run and Sleep modes. In Stop
modes, the registers’ content is kept. If wakeup from Stop is
supported and enabled, and if the I2C is clocked by HSI16:
the address recognition is functional. The I2C address match
condition causes the device to exit Stop mode. In Standby
and Shutdown modes, the peripheral is powered down and
must be reinitialized after exiting from these modes.

For each I²C peripheral, a bit is available for debugging
purposes in the MCU Debug Component that can be used to
stop the SMBUS timeout counter when the core is halted.

18

Here is an example of a sensor hub application that requires
several I²C peripherals.
One or several I²C masters are used to interface with
external sensors. An I²C slave is used to communicate with
the application processor.

STM32G4 microcontrollers embed four I²C peripherals, all
with the same set of features.

For more information related to this peripheral, you can also
refer to these trainings:
• System configuration controller
• Reset and Clock controller
• Power controller
• Interrupts controller
• Direct memory access controller

21

For more details, please refer to the I²C-bus specification
and user manual from the NXP web site.
The SMBus specification can be found in the Smart Battery
System implementers forum.
The PMBus Power System Management Protocol
specification can be found in the Power Management Bus
implementers forum.

22

