Step 2: Blinking LED with STM32CubeMX and HAL

Target description
This tutorial shows how to use STM32CubeMX tool to initialize the peripherals, build and generate your starting projects with initialization C code using HAL libraries.
After this tutorial, you should be able to:
- create and configure STM32CubeMX project and generate initialization code.
- program and use HAL functions to blink a LED on the NUCLEO-L476RG board

Prerequisites
- Previous Tutorial:
- Step1: Tools Installation and First test.

Hardware
The hardware requirements to start the application are the following:
- Standard-A -to- Mini-B USB cable

Literature
- STM32L476xx Datasheet
- UM1724 User manual STM32 Nucleo-64 boards
- UM1884 Description of STM32L4/L4+ HAL and low-layer drivers
- UM1718 User manual STM32CubeMX for STM32 configuration and initialization C code generation
- Video: How to build a “Blink LED” project from STM32CubeMX for ST/Atollic TrueSTUDIO® for STM32

Stages
- 1: Create New Project using STM32CubeMX (page 2)
- 2: Pinout Configuration (page 3)
- 3: Clock Configuration (page 5)
- 4: GPIO Configuration (page 6)
- 5: Configure project and Generate Source Code (page 8)
- 6: Edit main.c to Toggle the LED (page 9)
- 7: Build the Project (page 11)
- 8: Debug the Project (page 11)
Blinking LED with STM32CubeMx and HAL

In this tutorial, we will explain step-by-step how to blink a LED on the NUCLEO-L476RG board, using STM32CubeMX tool, HAL, and TrueSTUDIO IDE. Steps to follow:

1: CREATE NEW PROJECT USING STM32CUBEMX

- Run STM32CubeMX tool.
- Click New Project or Menu -> File -> New Project.
- From Board Selector, filter to select and use NUCLEO-L476RG board:
 - Check Nucleo64 type.
 - Check STM32L4 on MCU Series.
 - Select NUCLEO-L476RG board using Board selector.
 - Click Start Project to continue.
 - Answer Yes "Initialize all peripherals with their default Mode ?" popup.
Verify in “Pinout” tab, under SYS peripheral, that Serial Wire is selected as Debug interface.

The corresponding pins PA13, PA14 are assigned and configured automatically. When a board is selected, STM32CubeMX allows automatically the pinout setting for the board with the pin assignments for the communication interfaces, LEDs, and other functions.

(To configure LED pins, check in the STM32 Nucleo-64 boards User Manual and STM32L476xx Datasheet which LED pins to use).

TIPS & TRICKS
To see alternate pins for a signal, drag and drop the signal to a pin while keeping the Ctrl key pressed.
This example shows the use of the green LED pin LD2 present on the NUCLEO-L476RG board as GPIO_Output.

To verify that LD2 is set to GPIO_Output mode:
Type “LED” in the Find field and check that LD2(green Led) is enabled to PA5 pin as GPIO_Output. When found, the pin that matches the search criteria blinks on the Chip view. Click on Chip view to stop the blinking. Signals can be set directly from the pinout view.

TIPS & TRICKS

Pinout search field allows the user to search for a pin name, signal name, or signal label in the Pinout view. When found, the pin or set of pins that matches the search criteria blinks on the Chip view. Click the Chip view, for it to stop blinking.
In the Clock Configuration tab, check that STM32CubeMX automatically configures the internal oscillator in the clock system with PLL @80MHz and proposes the PLL configuration as follows:

1. HSI selected in PLL Source Mux (HSI – High Speed Internal clock)
2. PLLCLK selected in the System Clock Mux
3. HCLK set to 80
To configure the GPIOs, click the GPIO button in the **Configuration** Tab to open the GPIO Configuration window.
In the **GPIO** Tab, select Pin Name column **PA5** to display the corresponding GPIO parameters and configuration to drive the NUCLEO-L476RG LED:

- **GPIO Output level**: it is set to **Low** by default and can be changed to **High**.
- **GPIO mode** automatically configures the pins with the relevant alternate function and GPIOs into **Output Push Pull** mode.
- **GPIO Pull-up/Pull-down** set to **No pull-up and no pull-down** by default can be configured when other choices are allowed.
- GPIO Maximum output speed set to **Low** by default for power consumption optimization can be changed to a higher frequency to fit application requirements.
- User Label is a name assigned to a GPIO. The GPIO can be found under this name via the **Find** menu. Click **Apply** then **OK** to close the window.
To configure the project, click on **Settings** in the menu.

In the **Code Generator** tab, ensure that the following options are checked:

- In **STM32Cube Firmware Library Package** section:

 Copy all used libraries into the project folder.

 This option is checked by default, for STM32CubeMX to copy driver (HAL, CMSIS) and middleware libraries to the user project folder, as relevant to the user configuration such as FatFS or USB.

- In **Generated files** section:

 Keep user code when regenerating the C code option, which only applies to user sections within STM32CubeMX generated files.

Switch to the **Project** tab and fill **Project Name** and **Project Location** fields, then generate C initialization code for **TrueSTUDIO** toolchain:

- Open Menu > Project > Settings (Alt + P)
- Under **Project** tab, set the **Project Name** and the **Project Location**.

Set Toolchain/IDE to **TrueSTUDIO**.

- Click on **OK**.
- Click on **Project > Generate Code** (Ctrl + Shift + G) or on the 📦 icon
- Click on **Open Project** to open the project with TrueSTUDIO.
In TrueSTUDIO, from the Project Explorer tab, open the main.c file, in Src folder and add the adequate functions for LED blinking, using HAL functions with STM32CubeL4 firmware package.

To get an idea about the usage of HAL functions, refer to the UM1884 "Description of STM32L4/L4+ HAL and low-layer drivers" user manual, the common and generic functions to use.
User code can be added in the `main.c` file, inside the `while (1)` loop between `/* USER CODE BEGIN 3 */` and `/* USER CODE END 3 */` section (this will preserve your code after regeneration).

For LED toggling, use these functions:

```c
HAL_GPIO_TogglePin (GPIOA, GPIO_PIN_5);
HAL_Delay (100);  /* Insert delay 100 ms */
```
7: BUILD THE PROJECT

To power the NUCLEO-L476RG, use its CN1 connector to connect in with a computer through a Standard-A-to-Mini-B USB cable. Click on the project from the project explorer, then right click and select Build Project, to compile the project (or click on Build button on the toolbar).

8: DEBUG THE PROJECT

Click on the Debug toolbar icon to start the debug session (or in the menu, select Run > Debug). Click on Resume icon to continue the execution. Now watch the green LED (LD2) toggling on the Nucleo-L476RG board.

Now you are able to:
- create a new project using STM32CubeMX.
- configure project in STM32CubeMx and Generate initialization code.
- update project code in TrueSTUDIO IDE using HAL functions.
- execute a project in debug mode.
- make a LED blink.