
STM32U0 – Safety 
support

Hello, and welcome to this presentation of the STM32 safety 

support. 
It covers the requirements for compliance with safety 

standards and how STMicroelectronics helps customers 
targeting safety for their projects.

1



• A wide range of electronic applications must comply 
with basic safety requirements to prevent serious 
hazards including:

• Human or animal death or injury

• Environmental damage

• Process destruction or devaluation

• Secondary factors

• Electronic device reliability or malfunction

• Customer dissatisfaction

• Safety standards

• Development – legislative & executive

national and international bodies

• Appliances – globally-recognized testing labs

Overview 

2

• Accelerate user software development 
and certification processes

• Ensure compliance with safety 
standards

Application benefits

Safety requirements for electronic devices increase 

permanently as the use of electronic control systems expands 
into the huge range of human activities. 

The massive expansion of these devices requires their 
compliance with specific safety standards. 

The primary goal is to prevent human death or injury as well 
as environmental damage, but there are many other important 
factors at a lower level such as the devaluation of an industrial 
process including the loss of important data, connections, 

power or control and many others. 
The process for developing harmonized standards at both 
national and international levels is rather complex; sometimes 

involving completely opposite efforts (like local market 
protection vs. its globalization). 
In any case, the main influencing factors come from field 

experience, market requirements, insurance issues, and the 
globalization of trade and business. 

2



The standards are produced by specific legislative and 
executive bodies while specific worldwide recognized testing 
houses inspect and verify all the required appliances to ensure 
their compliance. 
Applications targeting safety can benefit from the acceleration 
of software development. 
Efficient and early diagnostics using specific hardware features 
together with the application of proper hardware and software 
methods decrease the probability of hazardous events due to 
possible component malfunctions. 
Applying certain hardware design and manufacturing methods 
can even increase component reliability. 

2



• STM32 MCUs and MPUs support:

• Safety of household appliances – IEC 60730 & IEC 60335 (Class B level)

• Industrial safety – IEC 61508 (SIL – up to SIL3 solutions)

• Systematic failures integrity (hardware/software lifecycle maintenance)

• Set up correct internal processes & procedures

• Common rules collected in ST quality manuals, Standard Operating Procedures (SOPs), specific tools & 

analysis (Manufacturing, operational procedures, design, materials, production testing, quality 

management, software development, documentation, field feedback, issue tracking, etc.)

• Correct application of all the rules and procedures and their compliance with standards 

• Confirmed by regular audits & certifications

• Integrity against random failures (hardware)

• Specific hardware and software methods of dealing with unpredictable failures

• Standard diagnostic software library offer

• Safety-related documentation (e.g. STM32U0 Safety Manual)

ST focus

3

ST supports two basic general safety standards – a specific 

one targeting household appliances known as a “Class B” or 
“Class C” standard and a more common industrial standard 

targeting safety integrity levels called ”SIL”. 
The latter is a generic standard which produces a large 

number of derivative standards dedicated to different fields of 
application.
ST, in compliance with these standards, cares about both 
systematic and random failures. 

Systematic failures are predictable, and their avoidance and 
monitoring are based on practical experience gained in the 
industry. 

Systematic failures can be avoided mainly by applying correct 
internal processes throughout a product’s lifecycle. 
These requirements are defined in specific internal quality 

documentation. 
Regular inspections and audits ensure that these internal rules 

3



are applied and comply with the recognized standards.
To ensure integrity against random failures, specific software 
methods and hardware design techniques must be applied as 
described in the following slides. 

3



Safety concepts

The next slides will give you an overview of the main safety 

concepts to be taken into account when working with 
microcontrollers.

4



• Identification of random failures 

• Safe & Dangerous 

• Detected & Undetected

• Types of random failures

• Permanent- component is permanently damaged

• Transient - recovery can be possible 

• Soft-errors – identifiable by SW or HW tests or diagnostics

• Transient - identifiable by fast HW tests or diagnostics exclusively

• Cross-product failure criteria

• Single-point failures (SPF) – immediate effect

• Latent failures (LF) – dormant, can aggregate with another fault

• Common causes of failure (CCF) – immediate effect, several components affected; possible destruction 

of complex safety structures (power, clock, temperature, timing) 

Random failures methodology (1)

5

Failure ratio pie graph

Safe detected

Safe undetected

Dangerous
detected
Dangerous
undetected

Not all random failures result in a hazardous event, and they 

may even be considered as safe from a safety point of view. 
Basically, safety standards require monitoring to detect 

dangerous failures that may be directly or indirectly related to 
safety and have the potential to cause a dangerous situation. 

Both safe and dangerous errors can either be detected or stay 
hidden and undetected by the system. 
The more often dangerous errors are discovered and 
prevented in time, the more the probability of a failure 

propagating into a hazardous event decreases. 
The time needed to detect dangerous errors and prevent 
hazardous events must fit into the overall Process Safety Time 

(PST) available which includes all the possible delays and 
reaction times for the system (e.g. on sensors or actuators). 
For quantification purposes, safety standards recognize a Safe 

Failure Fraction and Diagnostic Coverage. 
The Safe Failure Fraction, or SFF, is the ratio of the rate of 

5



safe failures, including the rate of detected dangerous failures, 
to the total failure rate (safe failures as well as detected and 
undetected dangerous failures). 
The Diagnostic Coverage, or DC, is the ratio of the probability 
of detected dangerous failures to the probability of all the 
dangerous failures. 
Random failures can cause permanent or recoverable errors. 
Hard failures cause permanent physical damage to the 
component and the system is no longer able to operate 
normally. 
If no compensation is possible, the system has to be put into a 
safe state (e.g. cutting power to actuators) until it is repaired.
Random transient or soft errors can be correctable and some 
kind of recovery process can be applicable. 

In addition to being detected, these failures can also be 

compensated in certain cases. 
Soft-error failures can be managed by both hardware and 
software while transient failures need fast hardware methods 

exclusively. 

Software tests can never compensate for these temporary and 
short-lived errors efficiently as they are considerably slower and 
limited by their execution time.

From a cross-product point of view, using ISO 26262 
terminology, we can recognize single-point, latent or common 

types of failure causes. 
Common causes of failure require a special focus especially as 
they can potentially destroy even quite complex safety 

structures.

5



• Random failure control techniques

• Detection 

• Diagnostics recognize an error

• System is no longer able to continue normal operations

• It has to fall into fail safe state or be recovered

• Compensation (Hard Fault Tolerance (HFT) > 0)

• Diagnostics is able to detect and identify the bad part 

• Next correct one is still available

• System can still continue at normal operation

• Essential principle – REDUNDANCY

• Diagnostics, comparison, identification, and voting

Random failures methodology (2)

6

SYSTEMIN OUT

DIAGNOSTIC

IN OUT

SYSTEM

DIAGNOSTIC

SYSTEM

DIAGNOSTIC

When random failures are detected and cannot be 

compensated for, especially after a dangerous error is 
detected, the system has to be stopped and placed into a safe 

state or go through a recovery process like reset, roll back or a 
specific check function. 

Compensation methods usually allow the system to continue 
operating normally while using error-correction, passivation or 
masking functions. 
Generally, a sure voting process is used to identify the 

damaged part or incorrect data which is then replaced by the 
correct one. 
Standards recognize Hard Fault Tolerance (HFT), or the 

maximum number of errors which a system can absorb while it 
still can continue at normal operation. 
In addition to specific functional testing, redundancy is the 

essential diagnostic principle here. 
Both detection and compensation techniques always require a 

6



sure level of redundancy to be efficient. Compensation is 
considerably more demanding than detection, as not only 
discrepancies but the correct state has to be identified as well. 
To do so, specific comparison and voting mechanisms have to 
be additionally applied.

6



• Redundancy techniques

• Structural

• Parallel identical structures like dual registers, memories, CPU, or MCUs with hardware comparators 

and voters

• Functional 

• Parallel asymmetrical hardware structures or different software methods are applied for a single task and 

their outputs are compared

• Temporal 

• The same method is implemented several times using the same hardware or software at different time 

slots and results are compared

• Informational

• Added information is implemented at data level and evaluated for compliancy by hardware or software 

(parity, ECC, CRC, data protocols, or copies)

Random failures methodology (3)

7

The required level of redundancy can be achieved using a 

wide range of different software or hardware methods and 
techniques. 

Some of them are listed here and others will be highlighted 
later in this presentation. 

The techniques can be usually achieved either by hardware or 
software, or a combination of both. 

7



• The vendor’s focus: generic parts of the component

• A component is considered “out of context” when the concrete safety task is unknown in advance

• Diagnostic coverage of local components

• Increase possible ratio of detected dangerous errors (DC)

• Crucial, commonly used and area heavy parts (CPU, clock system, RAM, Flash memory)

• With the biggest significance and influence on the overall safety budget

• The user’s focus: application-specific parts

• Component integrated at target application is identified with concrete safety task

• Identification of microcontroller-specific parts involved in the task

• Input & outputs, converters, interfaces, interrupts, and communication peripherals

• Appliance of redundancy and other diagnostic methods just on these specific parts

• Redundancy (multiple channels, data & communication handling - protocols, CRC, ECC, parity)

• Logical checks (valid ranges, trends, response, combinations, timing, process flow order)

Diagnostic responsibilities

8

From a safety point of view, a microcontroller is a relatively 

complex programmable electronic component which has to 
comply with specific requirements determined by the 

applicable standards. 
In regards to support safety for a microcontroller, a vendor 

considers the product as a component “out of context” as its 
final application purpose and safety tasks are not known in 
advance. 
This is why we can speak about component “ready” or 

“suitable” for a determined common level of safety tasks. 
The effort is always to cover the component‘s overall reliability 
and fulfill the overall budget of diagnostic coverage defined by 

the standard for the given safety integrity level required by the 
final application. 
A complex component like a microcontroller can be considered 

as a set of partial components involved in various safety tasks, 
each with a different diagnostic coverage and weight in the 

8



overall component safety budget. 
An effective way to ensure the required overall safety budget 
has to be focused on crucial and generic parts of the 
microcontroller especially those commonly used by most 
applications. 
Any small improvement in the safety of these fundamental and 
significant parts of the design always brings the biggest gain in 
the overall safety budget of the component, which is beneficial 
for each application.
Once a microcontroller is included in an application design and 
the safety task is specified, then the safety support can be 
deployed much more efficiently and cover just the very specific 
parts of the microcontroller involved in the required safety case. 
Many efficient methods can then be applied based on detailed 

knowledge of the application requirements, its design, the 

process and the equipment under control. 
Redundancy and knowledge of the system behavior are crucial 
principles applied either separately or together. 

Inputs and outputs can be multiplied or checked by feedback, 

tested for logical state, value or expected response in trends or 
time intervals. 

The processes can be monitored for correct timing and flow 

order. Correct decisions can be made based on the 

comparison of results coming from redundant and 

independent flows, analysis, calculations or data.

8



STM32U0 Safety features

The following slides are devoted to features present in 

STM32U0 dedicated for safety support.

9



• Specific hardware features for detecting random failures

Hardware safety features (1)

10

Standard ARM Cortex®-M0+ core system exceptions

Capture unpredictable software or system behavior or malfunctionGoal

Handling system interrupts (hardfault, memmanage, busfault, usagefault, NMI)Method

Standard ARM Cortex®-M0+ Memory Protection Unit (MPU)

Capture unpredictable software behavior or malfunction due to software bugsGoal

Programming MPU zones to:

 Enforce privilege rules

 Separate software processes

 Enforce access rules to memory-mapped resources

Method

Independent and Window watchdogs

Monitoring correct software timings and flowsGoal

Apply correct techniques for handling watchdogs timeouts

 See our specific application notes

Method

STM32U0 microcontrollers feature specific hardware for 

efficient diagnostic testing and to quickly react to failures with 
the potential to cover a wide range of lower level safety 

applications. 
The hardware tests are autonomous with minimal or no 

software control. 
This is especially helpful in detecting transient errors and 
consumes the least amount of time of the overall process 
safety time.

Please note that the overall contribution to MCU mitigation by 
the diagnostics reported above is marginal, since the 
STM32U0 is not explicitly designed for specific use in safety 

applications.

10



• Specific hardware features for detecting integrity failures

Hardware safety features (2)

11

ECC

Correct single errors and detect double errors by 8 bits added for each 64-bit word in flashGoal

Implementation of SECDED schemes and interrupt generation on errors detectionMethod

Parity

Detect single errors on SRAMGoal

Implementation of parity schemes on SRAM (1 bit each 8), interrupt generation on errors detectionMethod

Memory integrity failure could lead to unpredictable 

results. The Error Correcting Code (ECC) is the most common 
technique used to detect data corruption on memory devices.

The ECC calculation is performed by hardware. It applies 8 
additional redundant bits to each 64-bit word making so called 

Hamming distance between valid values of the stored word 
data. This basic commonly used distance, known as 
SECDED, enables Single Error Correction or Double Error 
Detection upon each data value. In this case, the corrections 

are done automatically, and interrupt is generated on errors 
detection.
Parity only enables Single Error Detection (SED).

Both ECC and parity aim to detect bit flips that may occur 
while data is stored in memory.

11



Hardware safety features (3)

12

Hardware CRC computation module

Fast calculation of CRC checksum on given set of data (support of software methods)Goal

Built up additional redundancy above a set of data (communication, memories)Method

Clock Security System (CSS) for external clocks

Detect malfunction of external clockGoal

Automatic switch to internal clock, raise NMI interrupt

 Separated CSS blocks are available for HSE and LSE

Method

Clock cross-reference measurement, monitoring of differences between two frequencies

Detect malfunction of clock system (support of software methods)Goal

Reference frequency input is captured by another one at dedicated timerMethod

This slide lists additional safety features dedicated to 

Checksum Redundancy Code (CRC) computation and clock 
control.

Note that the STM32U0 features two Clock Security System 
units:

- One, called CSS, monitors the High-Speed External (HSE 
)oscillator

- The other, called LSECSS, monitors the Low-Speed 
External (LSE) oscillator.

In case of failure, an automatic switching to the clock provided 
by an internal oscillator, respectively HSI and LSI, is achieved.

12



Hardware safety features (4)

13

Power supply supervisor (Power-On Reset, Power-Down Reset and Programmable Voltage Detector)

Safe thresholds to ensure correct function of all parts of the systemGoal

Interrupt to call emergency shutdown task or keeping the device under resetMethod

Locking mechanism of configuration registers

Preventing any accidental change of critical configurations (peripherals, system)Goal

Control locking registers and bits, configuration under specific conditions onlyMethod

Handling protocols at communication peripherals

Fast hardware calculation and verification of CRC checksum on given set of dataGoal

Built up additional redundancy above communicated dataMethod

Break input for timers collecting selected system errors

Fast control of timer outputs generating timing signalsGoal

Put all timer outputs into predefined stateMethod

Nevertheless, all the tests dedicated to the detection of 

failures listed here are not sufficient to achieve higher safety 
levels.

This is why additional functional software self tests, 
additional checks and techniques must be added to comply the 

safety standards requirements. User must ensure that each 
software testing loop must be fully completed within process 
safety time.

13



• Software checks improving the capability to detect random failures

• Multiple software solutions are available on st.com website to address safety related 
projects by leveraging on standard, ST verified software checks:

• X-CUBE-STL : software solution to achieve IEC61508 compatibility up to SIL3

• X-CUBE-CLASSB : software solutions to achieve IEC60730-1/IEC60335-1 Class B certification

End user must check the availability of the software solutions for the specific STM32 series/part number by visiting 

st.com website or by contacting local ST representative

Firmware safety accessory checks

14

This slide lists the software checks included in the ST self-test 

firmware solution with a brief summary of why they are 
applicable. 

Generally, the firmware focuses on generic parts of the 
microcontroller based on in-depth knowledge of the design 

while packages dedicated to achieve SIL standards use more 
extensive testing methods proved by specific methodology for 
their efficiency. 
The packages could be not available for free download. Users 

should ask their local ST representative for the firmware. 

14



• Four basic firmware blocks:

• Startup self-test
Optional, initial single run overall test

• Run time self-test repeated periodically

• Time-base interrupts to synchronization and 

clock measurement

• Fail-safe procedure called at fault detection

Firmware integration example

15

RESET

Application startup

Main loop

Task 1

Task 2

Task 3

Startup self-test

Fail Safe routine

ISR1

ISR2

Timebase ISR

SysTick_Handler()

Run time self-test

In principle, startup self-test procedures are performed once 

the system is initialized prior the application entry to main 
loop.

Runtime self-test is then scheduled periodically within main 
task loop together with the other application tasks.

The watchdog timeout is usually refreshed upon each 
completion of the run time test if everything goes correctly.
ST firmware provides certified testing modules for testing the 
CPU, memories and the clock system. The other testing 

modules must be implemented by end user in accordance with 
the application design and its safety task.
The startup test should check the system overall including all 

the memory areas within a single run while run time test can 
perform the tests per part at partial steps. Both tests are 
synchronized by time-base ticks derived from timer 

interrupts. 
The interval required to complete the test depends mainly on 

15



configurable size of the memory areas under test. At run time, it 
depends on frequency of the task calls, and sizes of blocks 
tested in a single step.
Whenever a malfunction or discrepancy is found during these 
tests, the fail-safe routine is called. 
It should put the application into safe state and determine the 
next recovery possibilities. 

15



• Refer to these trainings linked to Safety topics

• Reset and clock control (RCC)

• ARM Cortex®-M0+ (Core)

• Power control (PWR)

• Flash memory (FLASH)

• Cyclic Redundancy Check (CRC)

• Independent Watchdog (IWDG)

• System Window Watchdog (WWDG)

Related peripherals

16

Safety is spread over the full STM32U0 product range. You will 

find a detailed description of the aforementioned features in 
the different peripherals chapters.

16



• For more details, please refer to following sources and other presentations 
related to the peripherals focusing on safety:

• UM3261 Safety Manual for STM32U0 microcontrollers series, including instructions about 
STM32U0 use in the framework of IEC 61508 and other safety standards

• Class B FW is described at specific STM32U0 associated user guide

References

17

(*) Associated firmware and documentation is under certification process

For more details, please refer to the dedicated documentation 

and contact your local ST representatives for the availability, 
status and possible delivery of the firmware and associated 

documentation.

17



© STMicroelectronics - All rights reserved.
ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. 
For additional information about ST trademarks, please refer to www.st.com/trademarks. 
All other product or service names are the property of their respective owners.

Thank you

Thanks for attending this presentation.

18


