
Hello, and welcome to this presentation of the STM32
OctoSPI interface that will present the features of this
interface, which is widely used to connect external memories
to the microcontroller.

1

The OctoSPI interface integrated inside STM32 products
provides a communication interface allowing the
microcontroller to communicate with external single, dual,
quad or octal SPI memories. This interface is fully
configurable, allowing easy connection of any existing serial
memories available today on the market. The external
device is memory mapped which allows any system master
to access it like any other memory of the system for read
and write operations.
Applications will benefit from the easy connection of serial
external memory, with only a few pins required. Thanks to
the memory mapping feature, external memory could be
simply accommodated in the existing project when more
memory is needed whether it be Flash or RAM.

2

The OctoSPI interface offers high flexibility for frame format
configuration to address any serial Flash from single data
lane up to 8 data lines. As with regular QuadSPI, the user
can enable or disable each of the phases, configure the
length of each phase and configure the number of lines used
for each phase from 1 to 8. A new signal RWDS acts as
either a write strobe during write operations or a read
qualifier during read operations.

3

The OctoSPI supports the new “Hyperbus” mode which
combines the command and the addresses in a single initial
phase. As with the regular frame format, Hyperbus mode
also uses a read qualifier and a write strobe during the data
operations. The OctoSPI supports variable or fixed external
memory latency as defined by the Hyperbus protocol
specification.

4

The OctoSPI integrated inside STM32 products offers three
operating modes which will be later explained in this
presentation. Communication with external memories
supports single or dual data rate operation.

5

The OctoSPI supports three different modes of operation :
- Indirect mode, where it behaves as a classical SPI

interface and all operations are performed through
registers,

- Status polling mode, where the Flash status registers are
read periodically with interrupt generation

- Memory mapped mode, where external memory is seen
as if it is internal memory for read operations.

6

In indirect operating mode, the OctoSPI behaves like a
classical SPI interface. Transferred data goes through the
data register via FIFO. Data exchange is driven by software
or by the DMA, using related interrupt flags in the OctoSPI
status registers.
Each command is launched by the writing of an instruction,
address or data depending on the instruction context.

7

A specific mode as been implemented in the OctoSPI
interface to autonomously poll status registers in the external
Flash. The OctoSPI interface can be configured to
periodically read a register in the external Flash. The
returned data can be masked to select the bits to be
evaluated. The selected bits are compared with their
required values stored in the match register. The result of the
comparison can be treated in two ways:
• In ANDed mode, if all the selected bits are matching, an

interrupt is generated.
• In Ored mode, if one of the selected bits is matching, an

interrupt is generated.
When a match occurs, the OctoSPI interface can stop
automatically.

8

The OctoSPI also provides a memory mapped mode. The
main application benefit introduced by this mode is the
simple integration of an external memory extension with no
difference between read or write accesses of internal or
externally connected memory, except the number of wait
states.

This mode is suitable for both read and write operations and
external memories, whether it be RAM or Flash they are
seen as internal memory with wait states included to
compensate for lower speed of external memory. The
maximum size supported by this mode is limited to 256 MB.
A prefetch buffer supports the local execution, therefore the
code could be executed directly from the external memory
without the need to download it into the internal RAM.
This mode supports also SIOO mode which is supported by
some Flash memories, which allows the controller to send
instructions once only and remove the instruction phase for

9

the following accesses.

9

The OctoSPI has 5 interrupt sources: Timeout, Status match
when the masked received data matches the corresponding
bits in the match register in automatic polling mode, FIFO
Threshold, Transfer complete and Transfer error.
DMA requests can be generated in indirect mode when the
FIFO threshold has been reached.

The OctoSPI is active in Run, Sleep, Low-power run and
Low-power sleep mode. An OctoSPI interrupt can cause the
device to exit Sleep or Low-power sleep mode. In Stop1 or
Stop2 mode, the OctoSPI is frozen, and its registers content
is maintained. In Standby or Shutdown mode, the OctoSPI
is powered-down and it must be reinitialized afterward.

The Octo-SPI is a specialized communication interface
targeting single, dual, quad and octal communication.
Most of the external serial memories are supported.
In multiplexed mode, the same bus can be shared
between two external Octo-SPI memories.
Be aware that the chip select (CS) of the OctoSPI2,
required for the multiplexed mode, is not available for all
packages.

12

Multiplexed mode is a major feature supported in the
STM32H7A3/B3 series.
This mode enables the communication with two external
memories sharing a single Octal-SPI bus (Port1 on the
right-hand picture) , simplifying PCB footprint and design.
Note that the two memories do not need to follow the
same protocol : For example one memory can work in
Hyperbus mode and the second one in “standard” octal
bus mode.
To enable such configuration, only an extra Chip Select
pin is needed to select the second memory on the bus.
This also allows the release of the unused port pins for
other functions.
In this mode, an internal hardware arbiter located in the
IO Manager block (white block in the picture) selects
alternatively the OCTOSPI1 or OCTOSPI2 depending on
their transfer requests.

13

This arbiter embeds time counters to limit the maximum
transaction duration for each OctoSPI. This tuning of the
sharing of the Octal-SPI bus bandwidth avoids the
starvation of one of the OctoSPI ports.
Once the initial set-up of the time counters is done, the
arbiter operation does not require any software
management.

13

Wearable applications are requiring low-power management
together with high quality HMI. This can be achieved using
the STM32H7A3/B3 OctalSPI interface to store in an
external Flash all the graphical content needed like
background images, high resolution icons, or fonts to
support multiple languages. Additional audio data for
ringtone can also benefit from the large space offered by the
external Flash. The low pin count needed to drive such
devices allows a very optimized system integration.

14

You can refer to peripheral training slides related to RCC,
interrupts, DMA and GPIO for additional information.

15

For more details, please have a look into the application note
AN5050 about the Octal SPI interface.

16

