Wireless Charging in Consumer Applications

Paolo Battezzato
Applications Engineering Manager

Agenda 2

- Wireless power transfer principles
- Main existing standards and key differences
- Introduction to Magnetic Induction power transfer
- ST solutions for Wireless Power Transmitters
- ST solutions for Wireless Power Receivers

Wireless Power at a Glance 3

Similar technology **Different Implementation**

Inductive Power Transfer Depends on close proximity and significant portion of the primary coil B

fields intersecting the secondary coil

Magnetic induction

Advantages simple, efficient, safe, power scalable, mature Key technology challenges shield. coil alignment, good coupling Disadvantages limited x/v/z space, difficult for multiple device operation simultaneously

Magnetic resonance

Resonant Power Transfer Depends only on secondary coils intersecting a reasonable amount of primary coil flux lines

Advantages spatial freedom, multiple devices support, larger charging area Key technology challenges power scalable, environment safety, TX and RX design **Disadvantages**

increased EMI, efficiency

is a member of Qi and AirFuel (former A4WP + PMA)

Different Standards

*Qi – by Wireless Power Consortium * PMA – by Power Matter Alliance A4WP – by Alliance for Wireless Power Note: A4WP and PMA merged in June 2015

- Baseline Power Profile: 5W (rel 1.2.4)
- Extended Power Profile: 15W (rel 1.2.4)
- Medium Power Working Group up to 200W
- kitchen appliances Working Group up 2.4kW
- Resonant (Under Consideration)

- PRU Category 1-7. PTU Class 1-6
- P_{RX} Out Max from 3.5W to 50W (Cat. 1 TBD)
- P_{TX} Input Max from 2W to 70W

Magnetic Induction Power Transfer

WPC Qi/AirFuel Inductive (Was PMA)

- Operating Frequency is 110-205kHz
- One Base Station typically powers one Mobile Device
- In-band digital link is used for identification of compatible devices and control
 of power levels (operates through the same coils used for power transfer)

Magnetic Resonance Power Transfer

AirFuel Resonant

- Operating Frequency is 6.78MHz
- Multiple PRUs can be can be powered from a single PTU
- A Bluetooth Low Energy (BLE) link is used for identification of compatible devices and control of power levels

Introduction to WPC Qi Battery Charging

(Magnetic Induction)

Power Transfer Principles _____

- Tightly coupled wireless charging technology uses magnetic induction to transfer power from a transmitter (TX) to a receiver (RX)
- The magnetic field is generated by a **coil on the TX side**. The field is captured by a **coil on** the RX side. The field works through air, no magnetic circuit links the coils
- The received electrical signal is **rectified**, **filtered**, **and regulated** before supplying the load

Magnetic Field Control

by Adjusting Power

- To control the field, various solutions can be used (and combined):
 - Use the LC tank properties, changing the oscillator **frequency**.
 - Change the oscillator duty cycle (using a square wave oscillator)
 - Change the oscillator voltage.
 - Apply phase shift to a full bridge oscillator.

 Voltage

 Duty cycle

 Phase shift

 Phase shift

Communication • 9

- Because there are too many variables (RX/TX coupling, RX & TX coils, load, ...), the TX cannot set the regulation point by itself. The RX will have to pass data to the TX about the regulation set point.
- This communication channel can also be used for auxiliary purposes and extended to bi-directional communication
- Qi 1.2.3 (latest public release) defines two communications methods:
 - Unidirectional: RX to TX only, ASK, for BPP (Baseline Power Profile). Same as in Qi 1.1
 - Bidirectional: RX to TX, ASK and TX to RX, FSK, for EPP (Extended Power Profile). Did not exist in Qi 1.1

RX Presence Detection and FOD 10

- Receiver Presence Detection
 - The transmitter generates a magnetic field at regular intervals and check if a load is present and consumes power.
- FOD (Foreign Object Detection)
 - Qi 1.2.3 defines two methods. Qi 1.1 only had one, Power Balance:
 - **Power Balance:** If the TX transmits more power than what the RX reports (including losses), a foreign object is present
 - Q-factor: Compares Q measured on TX side with reference value stored in RX NVM

Qi Power-Transmitter Design Overview 11

Design	Description	Family	Voltage	Control
A1	Single Primary Coil with magnet alignment	#1	19 V	Frequency & Duty cycle
A2	Single movable Primary Coil	#1	12 V	Voltage
A3	Single movable Primary Coil	#2	12 V	Voltage & Frequency
A4	Two oblong Primary Coils	#4	11 V	Voltage & Frequency
A5	Single Primary Coil with magnet alignment	#1	5 V	Frequency & Duty cycle
A6	Linear array of Primary Coils	#5	12 V	Frequency & Duty cycle
A7	Single movable Primary Coil	#2	12 V	Voltage & Frequency
A8	Single oblong Primary Coil	#4	11 V	Voltage & Frequency
A9	Single Primary Coil with magnet alignment	#1	15 V	Voltage & Frequency
A10	Single Primary Coil without magnet	#1	19 V	Frequency & Duty cycle
A11	Single Primary Coil without magnet	#1	5 V	Frequency & Duty cycle
A12	Single oblong Primary Coil	#4	5 V	Frequency & Duty cycle
A13	Linear array of Primary Coils	#5	12 V	Voltage & Frequency
A14	Two oblong Primary Coils	#4	12 V	Frequency & Duty cycle
A15	Single Primary Coil, user assisted alignment	#2	12 V	Voltage & Frequency
A16	Single triangular Primary Coil	#6	5 V	Frequency & Duty cycle
A17	Single Primary Coil	#1	15 V	Voltage & Frequency
A18	Single Primary Coil, user assisted alignment	#2	12 V	Voltage & Frequency
A19	Dual Primary Coils	#5	12 V	Frequency & Duty cycle
A20	Single oblong Primary Coil	#4	12 V	Voltage & Frequency
A21	Linear array of Primary Coils	#5	12 V	Frequency & Duty cycle
A22	Single oblong Primary Coil	#4	12 V	Voltage & Frequency
A23	Single oblong Primary Coil	#4	12 V	Voltage, Frequency & Duty Cycle
A24	Single Primary Coil	#1	5 V	Frequency & Duty cycle
A25	Single oblong Primary Coil	#4	5 V	Frequency & Duty cycle
A26	Single triangular Primary Coil	#6	5 V	Frequency & Duty cycle
A27	Single Primary Coil	#8	12 V	Phase
A28	Linear array of Primary Coils	#5	5 V	Frequency & Duty cycle
A29	Single Primary Coil	#1	12 V	Voltage control
A30	Single oblong Primary Coil	#4	12 V	Frequency & Duty cycle
A31	Single oblong Primary Coil	#4	12 V	Frequency & Duty cycle

Design	Description	Family	Voltage	Control
B1	2D array of Primary Coils (Litz-wire based)	#3	20 V	Voltage
B2	2D array of Primary Coils (PCB based)	#3	20 V	Voltage
В3	2D array of Primary Coils (Litz/PCB hybrid)	#3	12 V	Phase
B4	Linear array of Primary Coils	#7	12 V	Phase
B5	Linear array of Primary Coils	#7	12 V	Phase
В6	Linear array of Primary Coils	#9	5 V	Phase

Family	Primary Coil Shape	Primary Coil Size	
#1	Circular	Ø4043 mm	
#2	Circular	Ø3339 mm	
#2	Circular/hexagonal	Ø2832 mm	
#4	Oblong	65×5770×60 mm ²	
#5	Rectangular	46.5×37.553×45 mm ²	
#6	Triangular	52×4659×52 mm ²	
#7	Square	45×45 mm ²	
#8	Circular	Ø60 mm	
#9	Oblong	45×34 mm ²	

Source: WPC Qi specifications, Version 1.2

STWBC

Qi Wireless Battery Charging Transmitter IC

STWBC - Transmitter 13

Flexible, efficient, compliant with leading standards

5V IC supply voltage

Two Firmware options

- Turn/kev solution for quick design
- APIs available for customization.

API: Available Peripherals

- ADC with 10 bit precision and 1MΩ input impedance
- UART
- I²C master fast-slow speed rate
- GPIOs
- Program memory: 32* kbyte EEPROM (*available size for API depends on selected FW)

General application features:

- Low cost 2-layer PCBs
- Active object detection
- Graphical user interface for application monitoring
- Evaluation board

STWBC - Transmitter 14

Flexible, efficient, compliant with leading standards

STWBC OPERATIONAL BLOCKS AND OI 1.1.2 A11 CONFIGURATION

STWBC Transmitter

Qi Reference Designs and Boards

Qi-based 2.5W Wearable TX Configuration

STWBC-WA

- System, bridge control and Qi protocol are handled by the STWBC-WA
- The transmitter is based on a Full-Bridge topology
- The inverter bridge is supplied by 5V input voltage
- Support up 2.5W with 20mm coil
- Scalable down to 1W with even smaller coil (15mm)

Qi-based Wearable TX Reference Board

STWBC-WA - 2.5W STEVAL-ISB045V1

2-Layer PCB and single-side placement

5W BPP Transmitter Configuration

STWBC A-11

- 5W Qi, 1-Coil, 5V supply
- Frequency and Duty-Cycle control:
 - Operating frequency range 110kHz – 205kHz
 - Duty cycle 50%-10% @ 205kHz

Transmitter Reference Board STWBC 5W A11 – STEVAL-ISB027V1

2-Layer PCB and single-side placement

Standby

- 3mW consumption
- Ping active
- FOD active

15W EPP Transmitter Configuration

STWBC-EP MP-A10

- Qi 1.2.3 EPP (Extended Power Profile) up to 15W
- Half-Bridge topology
- Support Basic Power Profile as well, up to 5W
- Wide supply voltage range,
 5 to 13V
- Voltage and Frequency control

Transmitter Reference Board STWBC-EP 15W MP-A10 STEVAL-ISB044V1

2-Layer PCB and single-side placement

StandBy

- 16mW consumption
- Ping active
- FOD active

15W EPP Transmitter Configuration

Fixed Frequency STWBC-EP MP-A15

- Qi 1.2.4 EPP (Extended Power Profile) up to 15W
- Half-Bridge topology
- Support Basic Power Profile as well, up to 5W
- 127.7 kHz fixed frequency
- Fast Charge support
- Wide supply voltage range,
 5 to 20V, with Quick
 Charge

Transmitter Reference Board

STWBC-EP 15W MP-A15 EVALSTWBC-EP

2-Layer PCB and single-side placement

StandBy

- 17mW consumption
- Ping active
- FOD active

- LED, SWIM and USB/UART debug connectors
- 2. Voltage, current and phase demodulation circuits
- 3 STWBC-FP
- 4. Quick charge circuit
- 5. Power supply connection and input filtering
- 6. LDC
- 7. Sepic: coil and power ircuit
- 8. Half bridge: gate driver, bridge mosfets, tank capacitor and coil

EVALSTWBC-EP evaluation board functional blocks

3-coil 15W EPP Transmitter Configuration

Fixed Frequency STWBC-MC MP-A15

- Qi 1.2.4 EPP (Extended Power Profile) up to 15W and BPP up to 5W
- 127.7 kHz fixed frequency
- Fast Charge support
- Wide supply voltage range,
 5 to 20V
- USB-C/PD with support for legacy 5V USB

3- coil Transmitter Reference Board

STWBC-MC 15W MP-A15 STEVAL-ISB047V1

2-Layer PCB and single-side placement

- 1. Test point for debugging only (may be removed)
- 2. LED, SWIM and USB/UART debug connectors
- 3. Sensing detection circuits
- 4 Coil selection and detection
- 5. STWBC-MC
- 6. USB PD/QC IO charger
- 7. Voltage/current demodulation circuits
- 8. Half bridge driver and LC Tank circuit
- 9. Jack power supply connections and input filtering
- 10. Sepic circuit
- 11. LDO

Standby

- 17mW consumption
- Ping active
- FOD active

STWBC-EP 5W or 15W Use Cases 26

STWBC-EP supplied at 5V

STWBC-EP supplied at 12V

Wireless Battery Charger TX – up to 5W 27

STWBC-WA - STEVAL-ISB045V1

TX for Wearable (2.5W)

- IC: STWBC-WA
- 20 mm Coil
- 2.5W delivery at RX side
- Scalable to 1W with 15mm coil
- 5V Supply
- Only 1.6mW stand-by power
- 70% typical efficiency with 2.5W RX Pout
- Compatible with STEVAL-ISB043V1 RX
- · GUI for evaluation and testing

Available

STWBC - STEVAL-ISB027V1

Certified Wireless Charger (5W)

- IC: STWBC
- Qi A11 design, 1.1.2 Certified (1.2 BPP Ready)
- Foreign Object Detection (FOD)
- Active presence detection
- 5V supply
- Turn Key or API customization
- Stand-by efficiency:
- 3mW consumption
- FOD active in standby
- GUI for evaluation and testing

Available

Wireless Battery Charger TX – up to 15W

STWBC-FP - STEVAL -ISB044V1

Certified Wireless Charger (15W)

- IC: STWBC-FP
- MP-A10 Design, Qi 1.2.3 Certified
- BPP and EPP (5W/15W)
- Foreign Object Detection (FOD)
- 5-13V input voltage range
- Half-Bridge topology
- Voltage/Frequency Control
- GUI for evaluation and testing

Available

STWBC-EP - EVALSTWBC-EP

Certified Wireless Charger (15W)

- IC: STWBC-FP
- MP-A15 Design, Qi 1.2.4 Certified
- BPP and EPP (5W/15W)
- Fast Charge Support
- Foreign Object Detection (FOD)
- 5-20V input voltage range with QC
- Half-Bridge topology
- 127.7kHz Fixed Frequency
- GUI for evaluation and testing

Available

STWBC-MC - STEVAL-ISB047V1

Certified Wireless Charger (15W)

- IC: STWBC-MC
- 3-coil for improved positioning freedom
- Automatic selection of best coupling coil
- Qi 1.2.4 Certified
- BPP and EPP (5W/15W)
- Fast Charge Support
- Foreign Object Detection (FOD)
- 5-20V Vin with USB-C/PD
- Half-Bridge topology
- 127.7kHz Fixed Frequency
- GUI for evaluation and testing

Available

STWLC

Qi/AirFuel Inductive Wireless Battery Charger Receiver IC

STWLCxx Simplified Application Diagram

Wearable Solution 31

Wireless power TX - RX kit - 2.5 Watt wireless delivery

Full Bridge 2.5W Transmitter based on STWBC-WA

5V 1A USB input power

Smart standby Automatic receiver recognition Patented demodulation

> Wurth 760308101104 20 mm diameter coil

2-layer PCB with optimized BOM Possible remote coil with dedicated tuning

Turnkey solution customization via GUI

Available Now

STEVAL-ISB045V1

2.5W Receiver based on STWLC30

5V output voltage

Space saving solution: 6x10mm 1mm total thickness (PCB + BOM) Coil Rx -Wurth 760308101309

Max. Z @ 2.5 W: 4 mm

~70% total system efficiency with 1mm gap

Flip Chip **2.68mm x 4.026mm**

STEVAL-ISB043V1

Available Q1 '20

Qi-based Wearable RX Reference Board

STWLC30 - 2.5W STEVAL-ISB043V1

- 3-Layer PCB and single-side placement
- Application area 10x6mm

26mm Coil

2.5-15W Wireless Battery Charger RX STWLCxx

STWLC30 - STEVAL-ISB043V1

2.5 Watts

Qi-based Wireless Receiver for Wearables

- Up to 2.5W output power
- 26mm Coil
- Scalable to 1W with 11mm coil
- Application area 10x6mm
- Total system efficiency 70% (2.5W)
- Optimized for 5V output operation
- Foreign Object Detection (FOD)
- I²C interface
- CSP 2.68x4.026mm, 400 µm pitch 52 balls

Available Q1 '20

STWLC68

5/15/20 Watts

Qi Certified Wireless Receiver with Transmit capability

- Up to **20W** RX output power, with support for 5W BPP and 15W EPP modes
- Qi 1.2.4 certified (upgradable by OTP patch if needed)
- Up to 5W output power in Transmit Mode, coil dependent
- LDO output 5V-20V programmable in 25mV steps
- True 10 bit ADC
- · I2C 400kbit/s and SPI 8Mbps for NFC
- 7 GPIO
- 40kB ROM, 8kB RAM
- OVP, OTP, OCP Protections
- High efficiency, 50-300kHz built-in Synchronous Rectifier
- Qi In-Band FSK/ASK or Out-Of-Band NFC communication
- 32bit 64Mhz Cortex M0+ embedded MCU

Available Q1 '20

Wireless Charging

ST Strengths

- Member of WPC and AirFuel Alliance
- System knowledge of both TX and RX sides
- BCD Technology well matches voltages present in these architectures
- IP availability and integration capability
- TX and RX Silicon BOM fully covered by ST

Transmitter

Receiver

Thank You!

