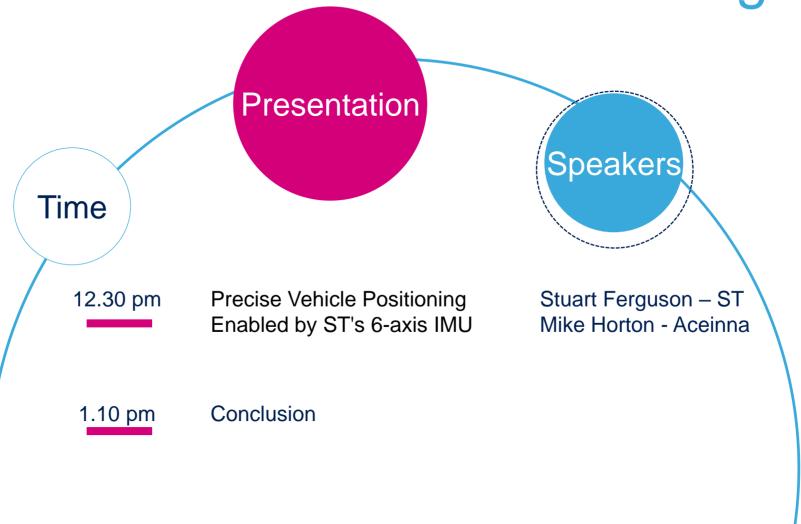
Precise Positioning Enabled by ST IMU and GNSS Receiver

Stuart Ferguson
Automotive MEMS and Sensors
STMicroelectronics

Mike Horton CTO Aceinna



Agenda 2

Topics 3

- STMicroelectronics (Stuart Ferguson)
 - MEMS and Sensors Portfolio
 - Introducing: New, High Accuracy IMU ASM330LHH
 - Teseo GNSS Evolution: ST Positioning Roadmap
- Aceinna (Mike Horton)
 - Intro to Aceinna
 - Building on the ASM330LHH to create High Performance Modules
 - OpenRTK330 INERTIAL NAVIGATION SYSTEM

20 Years of MEMS at ST

4

Accelerometer

Inertial module

Pressure sensor

 \bigcirc

Micro-mirror actuators

Piezo actuators

Water Proof Pressure sensor

Fluidic Micro-actuators 2000

Gyroscope

2005

Magnetometer

2010

Microphone

Humidity sensor

 \bigcirc

2015

GAS & VOC

2017

2018

Smart Things

Smart Home & City

Smart Industry

 $\overline{\bigcirc}$

Smart Driving

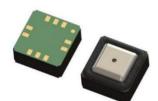
ST Addresses Four End Markets 5

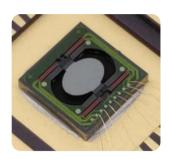
Automotive

Industrial

Personal Electronics

Communications Equipment, Computers & Peripherals




MEMS Sensors & Actuators

Technology and Products

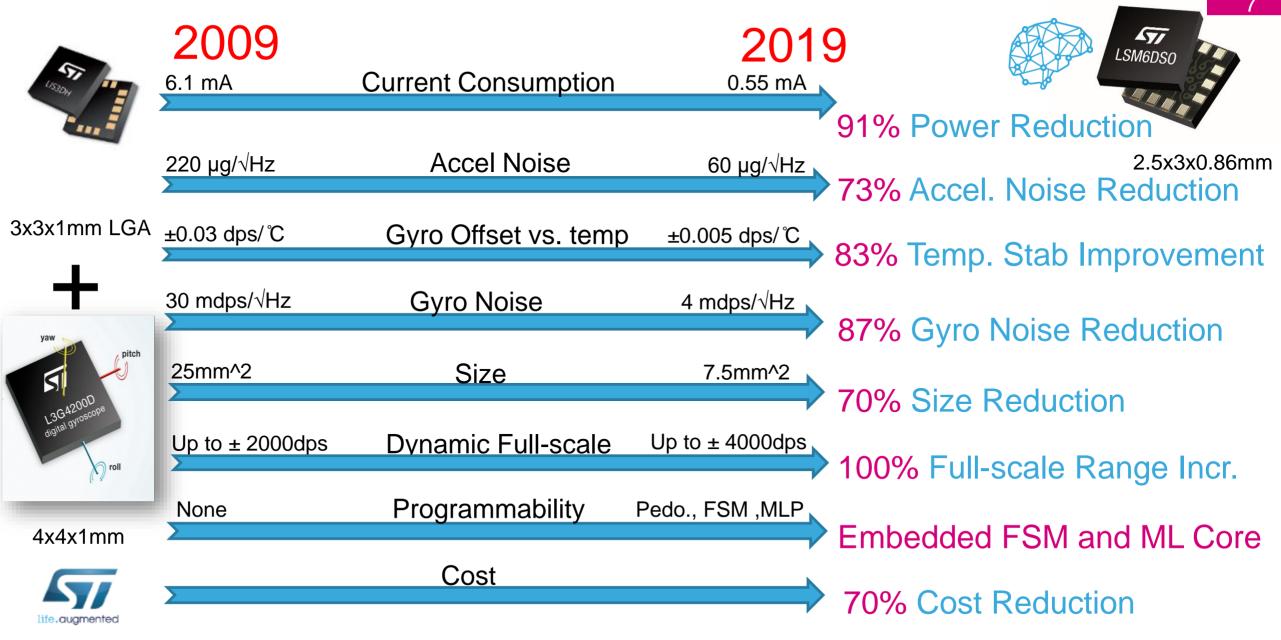
Next Generation ThELMA*

- Higher accuracy
- · Ultra-low power
- · Embedded Machine Learning Core

Motion sensors for Personal Electronics, Automotive & Industrial

- Higher accuracy
- Size reduction
- Waterproofing

Environmental sensors for Personal Electronics & Industrial



- Innovative piezoelectric materials
- Higher efficiency
- Lower cost

Microactuators for Ink Jet printing, Speakers & Infrared Scanners

Ten Years Continuous Advances in Sensors

Smart Driving 8

Making driving safer, greener and more connected

Motion MEMS for dead reckoning Micro-mirrors projection for LiDAR and adaptive headlights

Sensors for Smart Driving

NON-SAFETY Applications

- Navigational assistance
- Anti-theft systems
- Telematics (eCall, ...)
- Infotainment

AIS328DQ accelerometer
A3G4250D gyroscope
AIS3624DQ accelerometer

ASM330LHH 6-axis combo AIS2DW12 Ultra Low-Power accelerometer

New

PASSIVE SAFETY Applications

- Airbag peripheral sensors
- Airbag on-board sensors

AIS1200PS accelerometer
AIS1120SX accelerometer
AIS2120SX accelerometer

ACTIVE SAFETY Applications

- Vehicle dynamics
- Electronic stability
- Active suspensions
- Hill-start assist
- Roll stability control

Under Development (ASIL - ISO26262)

ST Combo family (from 3DOF to 5DOF* sensors)

AUTONOMOUS DRIVING

- ADAS
- Assisted / autonomous driving (bring the car to safety in case of emergency)

Under development (ASIL - ISO26262)

Highly Automated Driving* (HAD)

New

Smart Driving

Focus Applications

Navigation

6DOF IMU: GNSS assistant for Inertial Navigation System

TBOX

Insurance Boxes

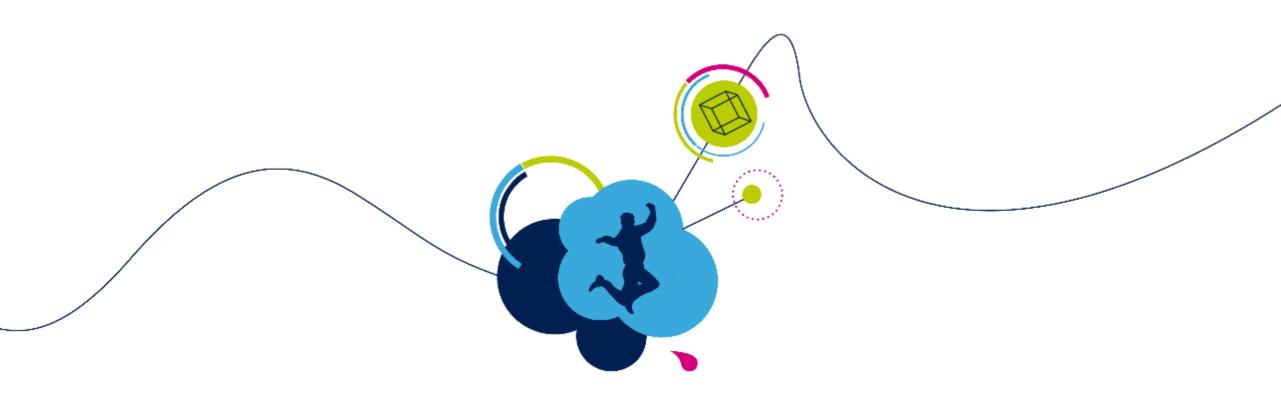
Anti-theft

eCall

PKE

Low power Accelerometer for Passive Key entry

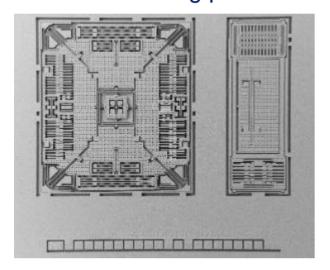
Accelerometer


User Interaction
Detect walking type

Battery saving
Detect no move

SECURITY
Detect no move

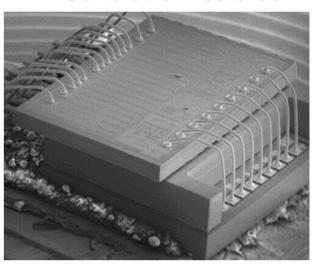
ASM330LHH High Accuracy IMU



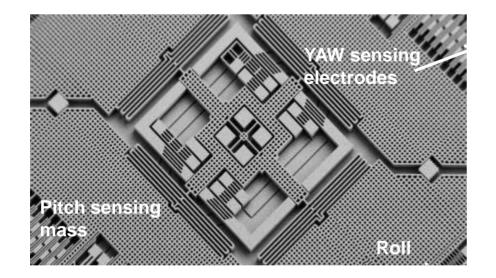
Motion Sensors

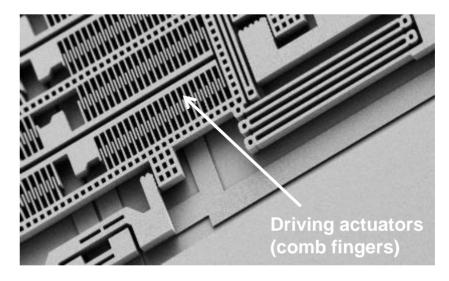
Fully Vertically Integrated

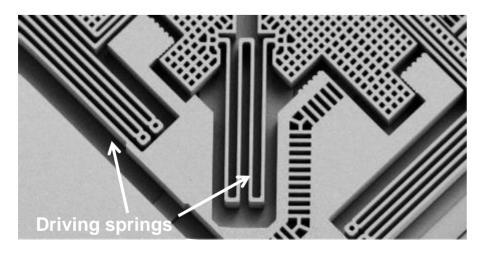
Motion MEMS - Three key elements

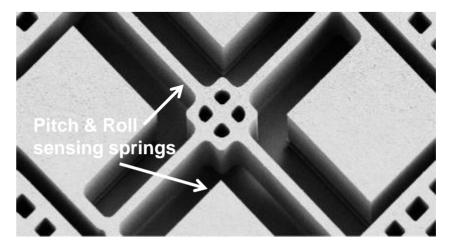

Micron-sized **Transducer**using specific
Micro-Machining process

Dedicated **ASIC** with embedded smart functionality


Dedicated **Package** and **Calibration** features



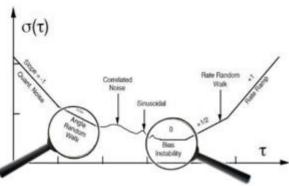


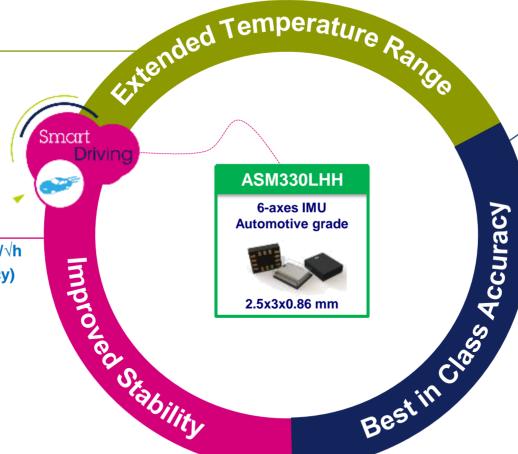


Gyroscope Reference Images

ASM330LHH for Accurate Navigation

Extended Temp. Range: up to +105°C


High Resolution: 256 LSB/°C


Stability Features

Typ. Angular Random Walk (ARW): 0.21 deg/√h

Typ. Bias Instability (BI): 3°/hr (High accuracy)

Stability: Over time & Temperature

#axes 6 (3 XL + 3 GYR)Accelerometer range 2/4/8/16 gGyroscope range 2/4/8/16 g125 dps to 4000 dps

Accelerometer noise density $60 \text{ ug}/\sqrt{\text{Hz}}$ Gyroscope noise density $5 \text{ mdps}/\sqrt{\text{Hz}}$

New: Advantages of ASM330LHH 15

Qualification:

- AEC-Q100 Grade 2
 - Operation from -40°C to +105°C

FE Golden Flow:

- Dedicated defectiveness control plan & specific parametric test associated to reliability performance
- EWS Test based on Automotive standards including temp test
- Final Test to guarantee automotive DPPM level:
 - Temperature verification at extremes of operation
 - **Extended Quality Control**
 - Reliability monitoring on assembly lot basis

Continuity and stability of supply

AEC - Q100 - REV-H September 11, 2014

Automotive Electronics Council

Component Technical Committee

In addition, not shown in the flow charts, the expected end of life failure rate may be an important

criterion. Regarding failure rates, the following points should be considered: □ No fails in 231 devices (77 devices from 3 lots) are applied as pass criteria for the major

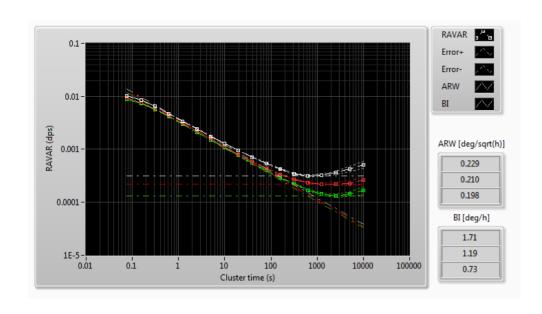
environmental stress tests. This represents an LTPD (Lot Tolerance Percent Defective) = 1, meaning a maximum of 1% failures at 90% confidence level.

☐ This sample size is sufficient to identify intrinsic design, construction. and/or material

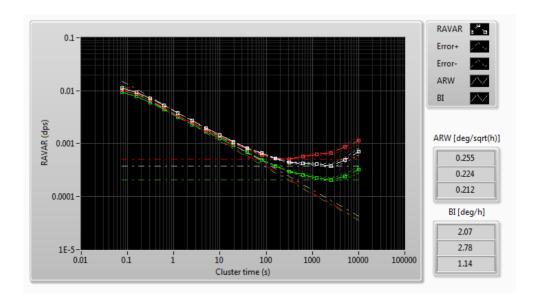
issues affecting performance.

☐ This sample size is NOT sufficient or intended for process control or PPM

Manufacturing variation failures (low ppm issues) are achieved through proper process

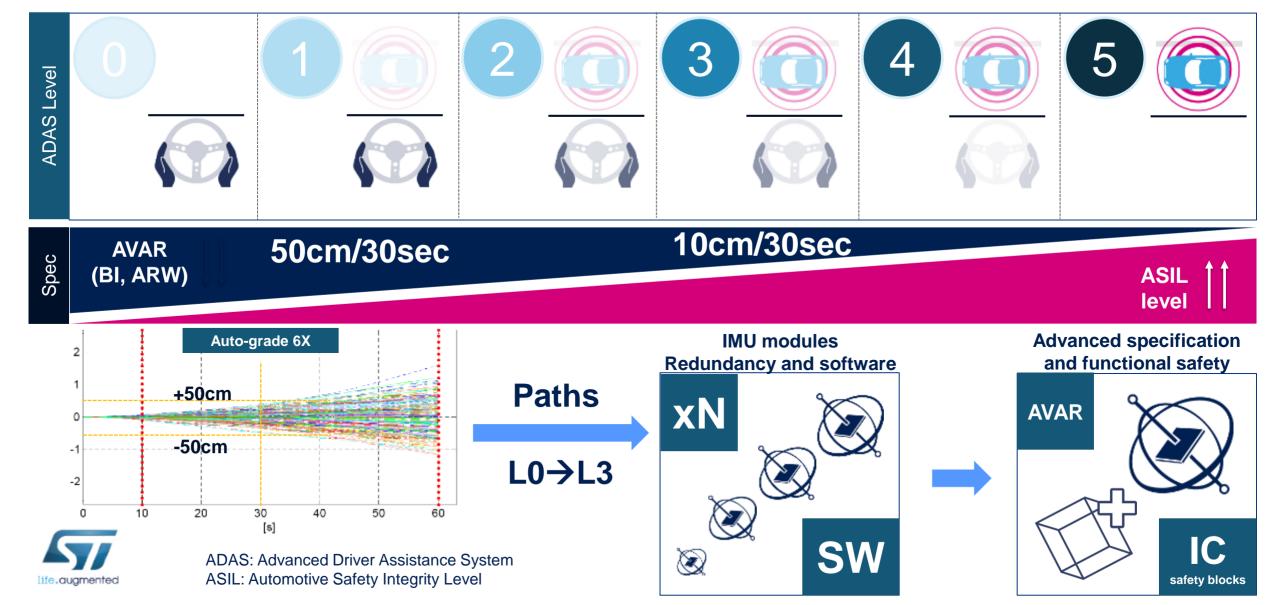

controls and/or screens such as described in AEC-Q001 and AEC-Q002.

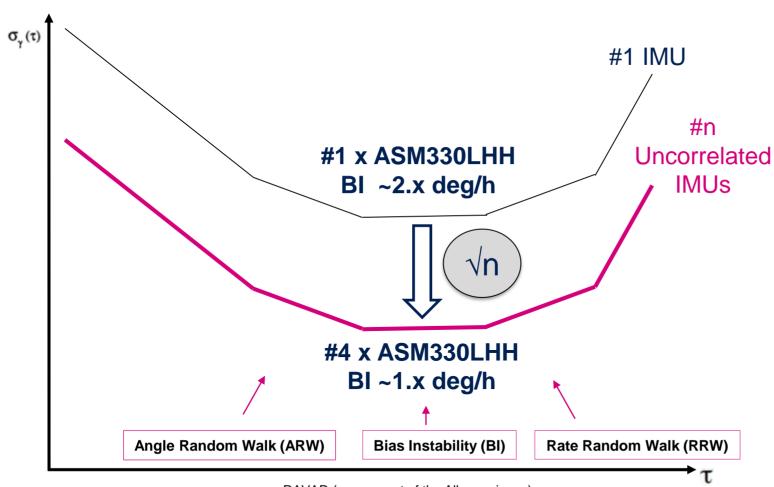
- ☐ Three lots are used as a minimal assurance of some process variation between lots. A monitoring process has to be installed to keep process variations under control.
- □ Sample sizes are limited by part and test facility costs, qualification test duration and limitations in batch size per test.



ASM330LHH AVAR

Key Parameters for Navigation


Addressing the most demanding applications



ARW	Angular random walk	T = 25 °C	0.21	deg/√h
BI	Bias instability ⁽⁷⁾	T = 25 °C	3	deg/h

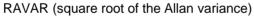
Vehicle Positioning Accuracy 17

Using Multiple IMUs to Increase Accuracy

Variance

$$\operatorname{Var}(z) = E[z^2] = \sigma^2$$

Averaged Variance

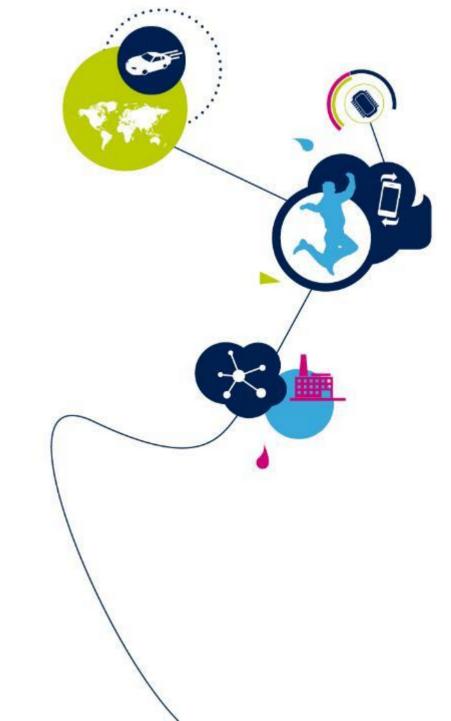

$$\operatorname{Var}\left(rac{1}{n}\sum_{i=1}^{n}z_{i}
ight)=rac{1}{n^{2}}\operatorname{Var}\left(\sum_{i=1}^{n}z_{i}
ight)=rac{1}{n^{2}}\sum_{i=1}^{n}\operatorname{Var}\left(z_{i}
ight).$$

...since noise variance is constant

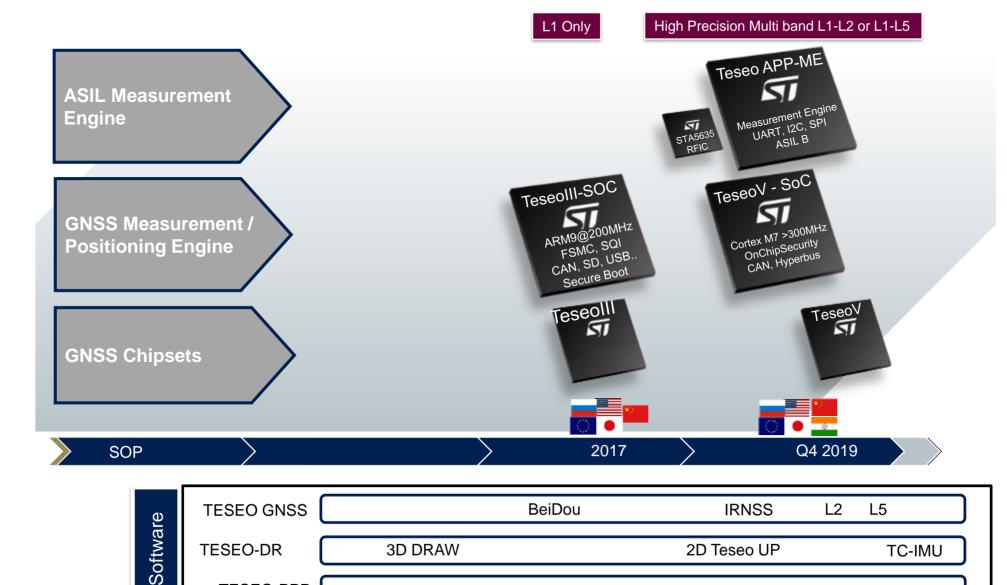
$$\operatorname{Var}(N_{ ext{avg}}) = \operatorname{Var}\left(rac{1}{n}\sum_{i=1}^n z_i
ight) = rac{1}{n^2}n\sigma^2 = rac{1}{n}\sigma^2$$

Stdev

$$Stdev(N_{avg}) = \frac{\sigma}{\sqrt{n}}$$



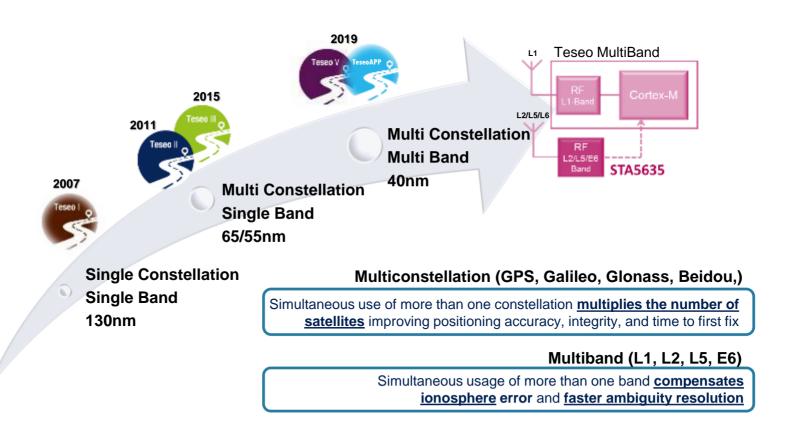
Teseo GNSS Solution & Roadmap



ST Positioning Roadmap

RTK

RTPPP


L1 Carrier Phase

TESEO-PPP

Teseo Evolution

Towards reliable precise positioning

- Teseol II III Mass Production:
 - 100% first cut functional silicon
 - TeseoV designed with same LPRFCMOS technology and libraries

Precise Navigation Made Easy

Simple, Safe, Reliable

Mike Horton, CTO

ACEINNA Corporate Overview

Company Profile:

- Founded 1999 (MEMSIC, Inc), HQ in Andover MA
- First pure MEMS IPO (2007)
- Formation of ACEINNA Inc (2017)
- R&D Facilities in San Jose CA, Andover MA, and Chicago IL
- Manufacturing facility in Wuxi, China

<u>Technology Leadership (Field Proven):</u>

- Invented and brought to market unique thermal MEMS accelerometers
 - > 30Mu shipped into Automotive ESC and Rollover Applications (Ford, GM, Land Rover, Volvo, Jaguar, Hyundai, Nissan, etc)
- First to offer MEMS-based FAA-certified AHRS
 - Inertial modules qualified in > 600 different aircraft types
 - Leading Supplier of IMU's to Heavy Equipment Market
- Shipped 1 billionth sensor in 2016

Automotive and Inertial Expertise

- Over 50 man-years of Inertial experience in Aeronautical and US defense industry
- Over 10 years experience in automotive system development and manufacturing

Quick Summary

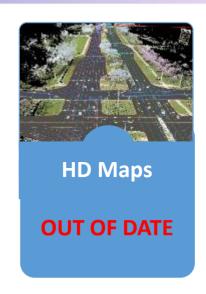
- ACEINNA is building out a complete portfolio of Precise Positioning Solutions for the automotive market
 - IMU's High Precision, Redundancy, Cost Effective
 - RTK/INS— High Accuracy, High Redundancy
 - CloudRTK Robust correction network

 ACEINNA offers an Innovative and Easy-to-Use Open Navigation Platform to reduce development time and complexity

 $\mathbf{B} \cdot \mathbf{d\ell} = \mu_0 \int_{\mathcal{C}} (\vec{J} + \epsilon_0 \frac{\partial E}{\partial t}) \cdot d\mathbf{S}$

 Developing for Automotive Market to meet Quality and Reliability requirements **ISO 26262**

Road Vehicles - Fuctional Safety


Why Inertial Sensor Fusion?

IMU Key Benefits:

- No External Dependence or Surface
- No Jamming, Weather Invariant
- Up a few minutes of Gap Coverage during GNSS outages
- High-Performance & Inexpensive

2019 Design News Golden Mousetrap Award Winner

ACEINNA's OpenIMU Development Platform is a 2019 Gold Winner for Automation & Motion Control!!

- ACEINNA OpenIMU Development Platform
 - OpenIMU enables advanced, easy-to-deploy localization and navigation algorithm solutions for a fraction of the time and cost of traditional methods. OpenIMU's combination of open-source software and low-cost hardware enables rapid development of advanced solutions for drones, robotics, and autonomous applications.
 - https://www.aceinna.com/openimu

Open Navigation Platform: What is it? () () () () ()

ACEINNA Navigation StudioTM

Open
Navigation
Platform

Simulation
Data Logging
Charting
Mapping
App Marketplace
Community

Major Benefits:

Cutting Edge HW & Algorithms

Minimize Time-to-Market

Reduce NRE and Development Costs

Learn, Grow & Follow a trusted partner

- OpenIMU: <u>www.aceinna.com/openimu</u>
- Navigation Studio: https://developers.aceinna.com

IMU Technology Roadmap

Gen 1

• Bias: 6°/hr (1σ), ARW: 0.3°/√h

Gen 2

- Bias: 2-5°/hr (1σ), ARW: 0.2°/√h
- Open IMU Platform
- Enhanced Synch & Improved Cal

Gen 3

- Bias: 1°/hr (1σ), ARW: 0.1°/√h
- High- Reliability
- High-Precision

BGA Pkg

OpenIMU330BI

- 6-axis. 3x Redundant Arch.
- Open IMU Dev Platform
- SPI/UART Interface

In Production
In Development

IMU381ZA

- 9-axis IMU
- Embedded FW
- SPI/UART Interface

AL Case Pkg

OpenIMU300ZA

- 9-axis IMU
- Open IMU Dev Platform
- SPI/UART Interface

OpenIMU400

- 6-axis, Highly-Redundant
- OpenIMU Dev Platform
- SPI/UART Interface

MTLT305D

- 6-axis Tilt Sensor
- Embedded FW
- CAN Interface

Rugged Plastic Pkg

OpenIMU300RI

- 9-axis IMU Sensor
- OpenIMU Dev Platform
- CAN Interface

OpenIMU330- High Performance and Low Cost

Ready-to Use Algorithms	Outputs			
IMU	Calibrated Accel, Gyro			
VG-AHRS	Dynamic Roll, Pitch Heading			
INS	Position, Velocity, Attitude			
Angular Rate	MIN	TYP2	MAX	
Range (°/s)	-400		400	
Bias Instability (°/hr)1		2		
Bias Stability over Temp (°/s)		0.3		
Scale Factor Accuracy (%)		0.01		
Cross-Axis Error (%FSR)		0.02		
Angle Random Walk (°/√hr)¹		0.2		
Configurable Bandwidth (Hz)	5		50	
Acceleration	MIN	TYP ²	MAX	
Range (g)	-8		+8	
Bias Instability (μg) ¹		15		
Bias Stability over Temp (mg)		3		
Scale Factor Accuracy (%FSR)		0.03	P	
Cross-Axis Error (%FSR)		0.03		
VRW (m/s/√hr)¹		0.05		
Configurable Bandwidth (Hz)	5		50	
Electrical	MIN	TYP	MAX	
Input Voltage (V)	3.0		5.5	
Current Consumption (mA)		20		
Interface	SPI or UART			
Output Data Rate - SPI (Hz)			200	
Output Data Rate – UART (Hz)			100	

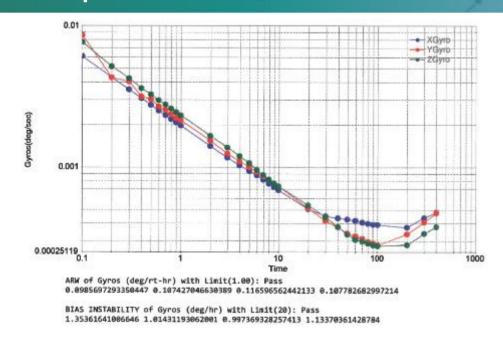
Embedded Version:

- Triple Redundant Sensor Array
 - Better Performance & Better Quality
- Each Sensor has 3-axis Gyro, 3-axis Accel
- OpenIMU Development Platform
- ASIL B

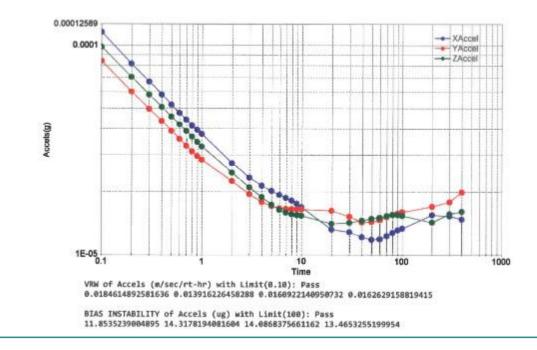
High Performance:

- Bias Instability: 2°/hr & 15μg (gyro/XL)
- ARW/VRW: $0.2^{\circ}/\sqrt{hr} \& 0.03 \text{m/s}/\sqrt{hr}$
- Calibrated over -40C to +85C

Low Cost, Small Packaging:


- 11mm x 15mm x3 mm
- 44 ball, BGA

OpenIMU330- Measured Results



Accel Results:

- Measured Accel Bias Instability: 11.85 14.3 ug
 - Spec is 15ug typical
- Measured Accel VRW: $0.014 0.018 \text{ m/s/}\sqrt{\text{hr}}$
 - Spec is 0.05 m/s/√hr typical

Gyro Results:

- Measured Gyro Bias Instability: 0.997 1.35 °/hr
 - Spec is 2 °/hr typical
- Measured Gyro ARW: 0.098 0.117 °/ $\sqrt{\text{hr}}$
 - Spec is 0.2 °/√hr typical

RTK/INS Solutions

Gen 1

- Position Accuracy: 2 cm (RTK)
- Heading Accuracy: 0.1°, Attitude Accuracy: 0.05°
- Velocity Accuracy (horiz, vert): 0.01 m/s, 0.02 m/s

Gen 2

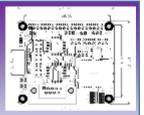
- Position Accuracy: <10 cm (RTK)
- Enhanced Synch & Improved Cal
- 30cm error after 10s drive test

INS1000

- RTK Inertial Navigation Systems
- Dual-band GPS/GLO/GAL/BDS
- Dual Antenna
- USB/Ethernet/CAN and RS-232

OpenRTK330

- Dual-band (L1/L2 or L1/L5)
- GPS/QZSS/GLO/GAL/BDS
- Teseo V, 3x-Redundant IMU
- RTK/Embedded FW
- SPI/Serial/CAN/Ethernet Interface
- LGA64, 30mm x 30mm pkg



INS1000 Dev Kit

- Rover, Base station
- 3 Antenna
- Cabling

Pi3 Hat Eval Board

- Teseo V Chipset
- 3x-Redundant IMU
- Convenient Network Connectivity
- Flexible for data logging, algorithm development

OpenRTK330

ST TESEO V GNSS Receiver

- Dual Band: L1/L2 with L1/L5 Option
- Global Constellations
 - GPS (L1 C/A, L2C and L5)
 - BeiDou (B1I, B2I)
 - Galileo (E1, E5a, E5b, E6)
 - GLONASS (L10F, L20F)
 - NAVIC
- 80 tracking channels

Integrated Triple-Redundant IMU

- Precise IMU performance
- High Reliability reject faulty sensors
- ASIL B redundant sensors

Accuracy

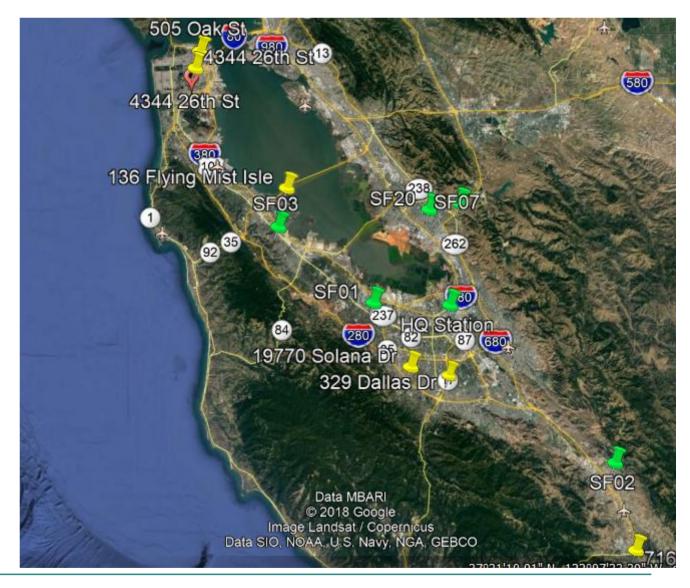
- Horizontal Position Accuracy (RMS)
 - RTK 2cm
 - 10s GNSS Outage 30cm
- Heading Accuracy (RMS) 0.5°
- Attitude Accuracy Roll/Pitch, RMS) 0.1

- Interface
 - CAN, Ethernet, SPI and UART
- OpenRTK
 - RTK/PPP Lite Embedded FW
 - RTK/PPP Correction Solution
 - Open Sensor GNSS/INS Fusion Algorithm
- 3.3V to 5V DC Supply
- 50-pin, 31mm x 33.5mm LGA Package

OpenRTK330 Dynamic Test

- ACEINNA OpenRTK330 vs Competitor
 - Car Mounted
 - Parking Lot with Trees
 - Same Antennae
 - RTK Service
 - Aceinn'a's Silicon Valley RTK Network
- ACEINNA RTK Engine
 - 98.3% Fix Rate

Delta (cm)	68%	95%	99%
Horizontal	2.5	5.2	6.0
Vertical	2.1	4.5	5.1



Free Dense RTK Network in Silicon Valley

- FREE
- All Constellations
 - GPS, BeiDou, Galileo, Glonass
 - All Channels (L1, L2, L5...)
- Deploying Beta Network in SF Bay Area
- Dense: Stations every 20km
- Cellular correction delivery

Conclusion 35

- ST is a leader in both Sensor and GNSS solutions.
- In partnership with Aceinna
 - A range of highly precise IMU modules with industry leading performance and price
 - Industry leading INS/RTK solution based on ST IMU and GNSS

