

Power Semiconductors for New Energies

September 2019

Alfredo Arno

Power Semiconductors for New Energies

New Energies World Scenario

Potential Saving

• Energy saving via improvements in conversion efficiency is the best way to reduce power consumption and, consequently, minimize energy waste.

Power Discrete in HEV EV

Key Elements in Electric Vehicle

Automotive Discrete Products

Diodes, Thyristors & TVS MOSFETs & IGBTs

Filters & Protection

New: SiC, FERD, Flat Packages & Modules

Safety

- Airbag
- Camera
- RADAR

Body & Convenience

- BCM & gateways
- Dashboard
- HVAC
- LED
- Roof & Seat Control

Powertrain for HEV

- Bidirectional Aux Power Converter
- Electric Traction
- AC/DC (On Board Charger)
- Main Inverter
- Start-stop

Door Zone

Doors

Mirror

Infotainment & Telematics

- Infotainment
- Sound system
- **Telematics**
- **Vehicle-to Everything (V2X)**

Chassis

- ABS and ESC
- Active suspension
- Electric power steering
- Electric park and brake

Powertrain for ICE

- CNG/LPG engine control
- Direct Injection
- Transmission

→ Discrete Products 20% content of Auto Electronics (60% of Auto Power Electronics)

ACEPACK™ Modules

Adaptable, Compact and Easier PACKage

ACEPACK

1 & 2

SMIT

DRIVE

Key features

- 100% controlled by ST for silicon (SiC. MOSFET, IGBT and Diodes)
- Compact design and cost-effective system approach for a plug & play system solution
- Configuration flexibility
- 2500Vrms electrical isolation

Configurations

- CIB
- Six-pack
- Three level Boost

- SMD assembly
- Top side cooling
- Low thermal resistance
- Reduced parasitic inductance and capacitance
- 2500Vrms electrical isolation

- Bridge rectifier
- Half Bridge
- **Boost**

Target Applications

- Optimized for 200 kW inverters
- 1200V SiC MOSFET based switch
- Improved light load power losses for extended EV driving ranges
- Extreme low conduction losses
- Short circuit ruggedness
- Direct Cooled Cu Base Plate with pin fins

ACEPACK 2

ACEPACKTM 1 & 2

Features and Benefits

Adaptable

Press FIT and solder pins options, configuration flexibility

Up to 1200V breakdown voltage

Integrated screw clamps

All power switches in a module including NTC

Several current ratings available

Several configurations (CIB, 6pack ..) available and low stray inductance

High reliability and robustness, miniaturized power side board occupation

Simplified and stable screwing

Compact design and cost-effective system approach

Very high power density

ACEPACK™ SMIT

Features and Benefits

ACEPACK™ Drive

Compact Solution for Traction Inverter

Very High Power Density with Direct Cooling for EV and HEV

Main Features & Benefits

- Large output power range >200 kW
- 750V 1200V SiC MOSFET based switch
- Improved light load power losses for extended EV driving ranges
- Extremely low conduction losses
- Direct Cooled Copper Base Plate with pin fins

ACEPACKTM Drive Evaluation Kit

Very High Power Density with Direct Cooling for EV and HEV

Intelligent Power Module Portfolio

Assures package compactness and thermal performance

Wide Current Range Scalability

IPMs – SLLIMMTM Family

Small Low Loss Intelligent Molded Module

SLLIMM nano series

600V IGBT 500V MOSFET 1 up to 3A

NDIP (TH) NSDIP (SMD) 12.45 x 29.15 x 3.10 mm SLLIMM nano 2nd series

600V IGBT 600V **SJ-MOSFET** 3 up to 8A

N2DIP (TH) 12.45 x 32.15 x 4.10 mm SLLIMM 2nd series

600V IGBT 600V **SJ-MOSFET** 8 up to 35A

SDIP2F-26L SDIP2B-26L 24 x 38 x 3.5 mm

20W 100W 500W 3000W

SLLIMMTM 2nd Series

Product

Switch type	IGBT		SJ MOSFET
Voltage rating	600V		
Current capability	8A, 10A, 15A	12A, 15A, 20A, 25A, 35A	10A,15A
Package	SDIP2F-26L	SDIP2B-26L	

Features

- TFS IGBT and SJ MOSFET based technologies
- High current scalability
- Full molded and DBC package
- Thermal sensor and NTC thermistor option
- Comparator, UVLO, Shutdown function

Application

- Washing machines
- Refrigerators
- Air conditioners
- Sewing machines
- Pumps
- Compressor
- Servo motors
- Any inverter system up to 3kW

Benefits

- Improved thermal performances
- Best R_{th} value in the market
- Temperature monitoring
- Protection embedded inside the power module
- High efficiency at low load applications

1.1 °C/W

SLLIMMTM Nano Series

Product

Switch type	MOSFET	IGBT	MOSFET	IGBT
Voltage rating	500 V	600 V	500 V	600 V
Current capability	1A, 2A	3A	1A, 2A	ЗА
Package	NDIP (12.45x29.15)		NSDIP (12	.45x29.15)

Features

- IGBT and MOSFET based technologies
- Optimized voltage drop in conduction
- Through-hole (TH) and SMD packages
- In line or zig-zag leads
- NTC thermistor option
- Comparator, UVLO, Interlocking function

Application

- Small fans
- Roller shutters
- Dish washer
- Compressor
- Pumps
- Refrigerators

Benefits

- High flexibility and robustness
- Improved efficiency and reliability
- Package compactness
- Temperature monitoring
- Protection embedded inside the power module

SLLIMMTM Nano 2nd series

Product

Switch type	SJ-MOSFET	IGBT(planar, TFS)
Voltage rating	600 V	
Current capability	3A, 5A	3A, 5A, 8A
Package	N2DIP (12.45x29.15)	

Features

- TFS IGBT and SJ-MOSFET
- based technologies
- Optimized voltage drop in conduction
- In line or zig-zag leads w/wo stand-off option
- Slots for heatsink screw
- NTC thermistor option
- Comparator, UVLO, Interlocking function

Application

- Small fans
- Roller shutters
- Dish washer
- Compressor
- Pumps
- Refrigerators
- Washing machines

Benefits

- High flexibility, robustness and improved efficiency
- Improved isolation voltage up to 1.5 kVrms/min
- Package compactness and thermal performances
- Temperature monitoring
- Protection embedded inside the power module
- High efficiency at low load applications

Power Semiconductors for New Energies

life.auamented

High-Voltage Power MOSFET

Superjunction Technology

| Superjunction Technology | Superjunction Techn

Focus Applications

Flyback,
PFC/LLC
resonant
converter –
Charger
adapters Led
lighting

Flyback,
PFC/LLC high
efficiency
resonant
converter Charger
adapters

Half/full bridge topologies, ZVS, LLC Solar, Server, Telecom SMPS Half/full bridge
ZVS, LLC
high
efficiency
topologies
Solar, Server,
Telecom SMPS

Hi-end-power PFC and hard switching topologies Solar, Server, Telecom SMPS

Half/full bridge topologies, ZVS, LLC High power level Solar, Server, Telecom SMPS Half/full bridge ZVS, LLC high efficiency topologies High power level Solar, Server, Telecom SMPS

Flyback topology LED driver, LED lighting, auxiliary SMPS

High-Voltage MOSFET

Series

MDmeshTM Technology Overview

High-Voltage MOSFETs

MDmeshTM **M5** (550V \div 650V)

Permits reduction of switching losses and targets higher power density

Enabler for High-Power PFC

MDmesh™ M2/DM2 (600∨ ÷ 700∨)

Optimized switching characteristics with very low turn-off switching losses, suitable for most highfrequency converters

Enabler for FlyBack

MDmesh™K5 (800V ÷ 1700V)

Allows operation over very-high voltage range

Enablers for High Efficiency

MDmesh™ M6/DM6 (600V ÷ 700V)

Allows higher levels of efficiency (Platinum, Titanium)

Due to its ideal performance – Saves Energy to
achieve climate goals

Enablers for Converters

MDmeshTM M6:

New Super-Junction MOSFET Family

600V - 650V - 700V MDmeshTM M6: Advance in high-efficiency topologies

The ideal switch to boost efficiency

- Latest HV MOSFET (600V 650V 700V) series
- Targeted for ZVS & LLC Bridge topologies
- Improved Efficiency at light load conditions

Telecom Power

Solar

MDmeshTM M6:

Technology Features for Resonant Converters

- New diffusion process and the optimization of MDmeshTM M2
- Thermal SPICE model also available on web
- Optimized diffusion process to enhance resonant converter performance

Optimized threshold voltage

Optimized Coss

Low gate charge

Reduced switching losses

Increase Power Efficiency at light load

High-frequency operation

MDmeshTM M6:

Advantages in Resonant Topologies

	STF24N60M6	C1
Parameters		
* BV _{dss} min (V)	600	600
* R _{DS} (on)max (mΩ)	190	180
*V _{GS} (th) typ (V)	4	3.5

* Datasheet values

life gugmented

600 to 700V MDmeshTM M6

High-voltage, SJ MOSFETs To boost the efficiency

MDmesh[™] M6 technology offers improved PFC and LLC efficiency especially at light load conditions for increased power density

MDmesh™ M6

Promotion

MDMESH™ M6 SERIES

600V - 650V - 700V BVdss rated

ST's latest super-junction technology optimized for resonant topologies. With a breakdown voltage ranging from 600 to 700 V, MDmesh™ M6 MOSFETs are available in a wide range of package options including a TO-Leadless (TOLL) package solution, allowing efficient thermal management.

To explore the complete MDmesh™ M6 product portfolio, visit www.st.com or use our ST-MOSFET-Finder mobile app for Android and iOS

600V & 650V IGBTs Series

UPS, charger

and dryers)

in Trench Gate Field Stop

Higher performances in home appliances as well as high frequency converter

- Max junction temperature of 175°C
- ✓ Tail-less switching off waveforms
- ✓ Very fast freewheeling diode for very low E_{on}

Air-Con

≥1200V IGBTs Series

in Trench Gate Field Stop

For rugged, efficient and reliable industrial power drives and more

- Best trade-off Static-Dynamic Characteristics
- ✓ Max junction temperature (T_i max) of 175°C
- From 2 up to 100 kHz
- Very fast freewheeling diode option

charger

STripFET™ F7

40-100V Power MOSFET Technology

Key Characteristics

- Among the best RDS(on) in the market
- Minimal RDS(on) x Qg (FoM)
- Low input capacitances
- Optimized Crss/Ciss capacitance ratio
- High avalanche ruggedness
- Low intrinsic diode recovery charge

Application

- Power Tools
- Fork Lifts
- Electric Light Transportation
- TELECOM and SERVER
- SMPS

- Adapter/Battery Charger
- UPS
- Solar Inverter
- Lighting/Display

Features

- Extremely Low Rds(on)
- Optimized body diode (low Qrr)
- Intrinsic capacitances (Optimal capacitance Crss/Ciss ratio)
- ST provides several package solutions, including PowerFLAT 5x6 and H²PAK

Benefits

- Low conduction losses
- Excellent switching performance (higher efficiency)
- No EMI issue
- A more complete solution provided to the customer

STripFET™ F8

Applications

30-150V Power MOSFET for High End > 500KHz

- Power Tools
- Fork Lifts
- Electric Light Transportation
- Telecom and Servers

- SMPS
- Adapter/Battery Charger
- UPS
- Solar Inverter
- Lighting/Display

Features

- Lower R_{DS}(on) x Area (-40% Vs. F7)
- Extremely Low Qg/Qgd
- Qrr & Soft switching F7 like
- Extremely low thermal resistance

Benefits

- Reduced conduction power losses
- Reduced switching losses and passive sizes
- Reduced noise immunity
- Improved current capability and power dissipation
- Low EMI & turn on losses
- Extended package offer to enhance silicon performance

650V-1200V G2 SiC Rectifiers for EV

SiC 650V G2 and 1200V Technology: using JBS (Junction-Barrier Schottky)

650V-1200V G2 SiC

Superior performances vs competition

SUPERIOR FORWARD SURGE CAPABILITY

More efficient clamping effect vs. best Competitor

SMALLER TEMPERATURE SWING

Better clamping effect and lower V_F reduces the $T_{junction}$ during transient phases in the application.

Best Competitor

650V SiC Diode Portfolio

Extend Package Portfolio with Flat Package

AG Thyristors for EV Charging

In-rush current limiting SCR for OBC

Design Value

- AEC-Q101 PPAP Available on request
- High switching life expectancy
- Enable systems to resist 6kV surge
- High speed power up / line drop recovery

Features	TN5050H	TN3050H	
V _{DRM} / V _{RRM}	1,200V over T _J range		
Max T _J	-40°C to +150°C		
V _{DSM} / V _{RSM}	1300V	1400V	
I _{TRMS} (T _C =125°C)	80A	30A	
I _{TSM} (10ms,25°C)	580A	300A	
V _{TO} (150°C)	0.88V	0.88V	
R _D (150°C)	$6~\text{m}\Omega$	14 mΩ	
I _{GT} (25°C)	10 to 50 mA	10 to 50 mA	
dV/dt (800V-150°C)	1 kV/μs		

A smart way to turn on your system

ST Fast Rectifier for EV Charging

ST Rectifiers for Input Bridge & Output Resonant

STBR: Lower V_F / Lower drop

STRQ: Q_{RR} better by factor of 2 and Soft switching

Existing Isolation Technologies

Isolation technologies

Polymeric/Ceramic Isolation Thick Oxide Isolation Isolation: film of polymer (or other dielectric such as DAF, glass). Isolation: Silicon Oxide grown on top of active silicon area (standard Custom assembly process required. silicon IC technologies) **RF Couplers Optocouplers** capacitive coupling magnetic coupling Good parametric stability over time Good parametric stability over time · Good parametric stability over time Dielectric ageing: parametric instability over time Good CMTI immunity Limited CMTI immunity Very good CMTI immunity · Limited CMTI immunity Limited communication speed Sensitive to electric fields Good immunity to magnetic and electric fields · Assembly complexity

gapDRIVETM: Galvanically Isolated Gate Driver

Galvanically Isolated Gate Driver technology

- Automotive (Hybrid\Electric Vehicles)
 - Motor Control
 - DC/DC Converters
 - Battery Chargers
- Industrial
 - 600/1200V Inverters
 - Automation, Motion Control
 - Welding
- Power Conversion
 - Solar Inverters
 - UPS Systems
 - AC/DC, DC/DC Converters
 - Windmills
- Home/Consumer
 - Induction Cooking
 - White goods

- CONTROL: A SPI interface to enable, disable and configure several features
 → Optimize your driving conditions.
- PROTECTION: Several features to mange anomalous conditions (OCP, DESAT, 2LTO, VCE_Clamp) and to prevent them (UVLO, OVLO, ASC, MillerCLAMP)
- DIAGNOSTIC: The SPI interface allows access to registers containing information about the status of the device.

STGAP1S – Main Features

Galvanically Isolated Gate Driver technology

AEC-Q100 grade 1

Wide operating range (-40°C -125°C)

SPI Interface

Parameters programming and diagnostics Daisy chaining possibility

Advanced features

5A Active Miller clamp, Desaturation, 2-level turn-off, VCEClamp, ASC

Short propagation delay

(100 ns typ.; 130 ns max over temperature) 5A sink/source current

Fully protected – System safety

UVLO, OVLO, Over-Current, INFilter, Thermal Warning and Shut-Down

High Voltage Rail up to 1.5 kV

Positive drive voltage up to 36V Negative Gate drive ability (-10V)

STGAP1S Isolation Characteristics

Conforms with IEC60664-1, IEC60747-5-2 and UL1577 standards

Parameter	Symbol	Test Conditions	Characteristic	Unit
Maximum Working isolation Voltage	V_{IORM}		1500	V_{PEAK}
Input to Output test voltage	V _{PR}	Method a, Type and sample test $V_{PR} = V_{IORM} \times 1.6$, $t_m = 10 \text{ s}$ Partial discharge < 5 pC	2400	V_{PEAK}
		Method b, 100% Production test $V_{PR} = V_{IORM} \times 1.875$, $t_m = 1 \text{ s}$ Partial discharge < 5 pC	2815	V_{PEAK}
Transient Overvoltage	V_{IOTM}	Type test; $t_{ini} = 60 \text{ s}$	4000	V_{PEAK}
Maximum Surge isolation Voltage	V_{IOSM}	Type test;	4000	V_{PEAK}
Isolation Resistance	R _{IO}	$V_{IO} = 500V$ at T_{S}	> 10 ⁹	Ω
Isolation Withstand Voltage	V_{ISO}	1 min. (type test)	2500\3536	$V_{\text{rms} \setminus \text{PEAK}}$
Isolation Test Voltage	$V_{\rm ISO,test}$	1 sec. (100% production)	3000\4242	$V_{\text{rms} \setminus \text{PEAK}}$

Parameter	Symbol	Value	Unit	Conditions
Creepage (Minimum External Tracking)	CPG	8	mm	Measured from input terminals to output terminals, shortest distance path along body
Comparative Tracking Index (Tracking Resistance)	CTI	≥ 400		DIN IEC 112/VDE 0303 Part 1
Isolation group		II		Material Group (DIN VDE 0110, 1/89, Table1)

650V &1200V SiC MOSFETs

The real boost for efficient designs

Lower Losses, High Efficiency, Reduced Footprint: Breakthrough in High-Voltage Converters

- Leading to new technology platform with awesome Figure Of Merit
- Very low on-state resistance
- 200°C Max junction temperature
- Very fast and robust intrinsic body diode
- Industrial and Automotive Grade qualified
- Outstanding system efficiency and reduced cooling requirements

Applications

- Traction inverters
- On board chargers
- DC-DC converters
- **SMPS**

- Auxiliary power supplies
- **UPS**
- Solar
- Welding

MOSFET R_{DS(on)} Figure of Merit at T_J=150°C

R_{DS(on)} Variation with Temperature 1200V SiC MOSFET

ST is the only supplier to guarantee max Tj as high as 200°C in plastic package

Why Silicon Carbide?

It's all about the Bandgap

Silicon Carbide allows Power Devices to go beyond the limits of Silicon...

...and makes high-voltage power-applications smarter

Challenges for Silicon Carbide

Technical

Defectivity

Reliability

Manufacturing

Line defectivity monitoring

Metal sputtering

Capacity

ST Silicon Carbide

20-Year History

May 2012

May 2002 Schottky Diode Demonstrator (CNR line)

3rd Gen 3 Diode **Start Production**

1996

Collaboration with

June 1996

Physics Dept.

(Prof. G. Foti)

1998

2002

2004

2006

2012

2014

2000

2008

2010

2016...

June 2003 2" ST line

...to mass production

Pioneers...

SiC MOSFET Facts at Glance

Front-end Evolution

x4 shrink

Planar Sampling 2019 Production 2020 Continuous Shrinkage [R_{on} x cm2]

Package offer - Discrete - Mini-module - Modules

Discrete Packages

Bare Dice Strategic offer for Key Players

SiC Module focus for Largest Market

SiC adoption faster than expected

650 V to 1200 V MOSFETs and DIODEs

Advantages of SiC in Traction Inverters

Drive Train Electrification: Enabled by SiC Technology

1200V

Si IGBT vs. SiC MOSFET - 1200V

Silicon Solution: IGBT+ Diode

4x100 mm² + 4x50 mm²

SiC MOSFET gen 3

Solution:6x20 mm²

Vbus = 750V, 200kW peak !!

DC-link voltage: 750V_{dc}, Switching frequency: 10 kHz, T_{fluid} = 65°C, mi=0-5

From 3.5 to 10% higher efficiency

Si IGBT

SIC MOSFET

Higher efficiency for extra mileage

Lower temperature for higher reliability

SiC MOSFET System Benefits – 1200V

Reducing PCU size

- 200A_{rms} continuous
- DC-link voltage: 750V_{dc}
- Switching frequency: 10 kHz
- $T_{fluid} = 65^{\circ}C$

Up to 70% smaller PCU

Advantages of SiC in Traction Inverters

Drive Train Electrification: Enabled by SiC Technology

Si IGBT vs. SiC MOSFET - 750V

Silicon Solution: IGBT+ Diode

 $3x100 \text{ mm}^2 + 3x50 \text{ mm}^2$

~4x smaller semiconductor area

SiC MOSFET gen 3

Solution:6x20 mm2

Vbus = 400V 160kW peak !!

DC-link voltage: 400V_{dc}, Switching frequency: 10 kHz, T_{fluid} = 65°C, mi=0-5

From 2 to 4% higher efficiency

Si IGBT

SIC MOSFET

Higher efficiency for extra mileage

Lower temperature for higher reliability

SiC MOSFET System Benefits - 750V

Reducing PCU size

- 300A_{rms} continuous
- DC-link voltage: 400V_{dc}
- Switching frequency: 10 kHz
- $T_{fluid} = 65^{\circ}C$

Up to 50% smaller PCU

Case Study 11kW, 3-Phase OBC

SiC Advantages in On-Board Battery Chargers

STPAKTM: Multi-Sintering Package

Ideal for Electric Vehicle applications

High Power Density for Traction Inverter

Main Features & Benefits

- Multi sintering solution for better performance and higher reliability
- AEC-Q101 qualified, Tj (max) =175°C
- 650V / 1200V Voltage rated
- Suitable for silicon IGBT and SiC Power MOSFET technologies
- Compact and modular design approach
- High power density
- Improved thermal performance due to direct sintering to the bottom of the heatsink
- Sense pin for enhanced control

ST Silicon Carbide Manufacturing Evolution

Catania 6" wafer size capacity

2003 - 2" 2006 - 3" line startup

2011 – 4" line startup 2016 – 6" line startup

SiC-Substrate Supply-Management Strategy

Current Suppliers

- 4 Suppliers already qualified and in full production
 - LTA already finalized with a key supplier:

Cree and STMicroelectronics Announce Multi-Year Silicon Carbide Wafer Supply Agreement

Agreement to boost commercial expansion of SiC in automotive and industrial applications

DURHAM, N.C. and GENEVA /07 Jan 2019

Cree, Inc. (Nasdaq: CREE) announces that it signed a multi-year agreement to produce and supply its Wolfspeed® silicon carbide (SiC) wafers to STMicroelectronics (NYSE: STM), a global semiconductor leader serving customers across the spectrum of electronics applications. The agreement governs the supply of a quarter billion dollars of Cree's advanced 150mm silicon carbide bare and epitaxial wafers to STMicroelectronics during this period of extraordinary growth and demand for silicon carbid e power devices.

"ST is the only semiconductor company with automotive-grade silicon carbide in mass production today, and we want to press forward to grow our SiC business both in terms of volume and breadth of applications served, targeting leadership in a market estimated at more than \$3B in 2025," said Jean-Marc Chery, president and CEO of STMicroelectronics. "This agreement with Cree will improve our flexibility, sustain our ambition and plans, and contribute to boosting the pervasion of SiC in automotive and industrial applications

Long term Plan (Toward a full Vertically Integration)

A strategic partnership with a new Supplier has just been closed (beg 2019):
 STMicroelectronics to Acquire Majority Stake in Silicon Carbide Wafer Manufacturer Norstel AB

Acquisition will extend ST's silicon carbide ecosystem and strengthen ST's flexibility to serve fast growing automotive and industrial applications Geneva. Switzerland / 06 Feb 2019

STMicroelectronics (NYSE: STM), a global semiconductor leader serving customers across the spectrum of electronics applications, today announced it has signed an agreement to acquire a majority stake in Swedish silicon carbide (SiC) wafer manufacturer **Norstel AB** ("**Norstel**"). After closing, ST will control the entire supply chain for a portion of its SiC devices at a time of constrained global capacity and positions itself for a significant growth opportunity. ST will acquire 55% of Norstel's share capital, with an option to acquire the remaining 45% subject to certain conditions, which, if exercised, will result in total consideration of \$137.5 million, funded with available cash.

6" wafer production and EPI process step in-house in ST

Automotive Grade

MOSFET and Diode products available and significantly growing for 1200V and 650V

Bare Die, Discrete Package and Module offer

Standard product offer and customized solutions

SiC Technology Summary

- Battery Electric Vehicles are disrupting the automotive market
- SiC Technology enables an optimized total cost of ownership model, for both automotive (traction Inverters on-board chargers) as well as Industrial (Solar, UPS, energy storage) domains
- **Introducing** the new material in **Automotive** is challenging but our experience shows it's manageable
- Ramp up of SiC Technology in STMicroelectronics is much faster than market expectation

Gallium Nitride (GaN): a new member of

ST's Wide Band-Gap family

Enables increased power density, higher frequency operation and improved efficiency

First product under development: SGT120R65ALD*

Product Features RDS(on) = $120 \text{ m}\Omega$ @10 A

BVdss > 650 V

PowerFLATTM 8x8

Kelvin pin for optimized Gate Driving

Package section

Top Side Cooling

Key Benefits

- Main breakthrough for High-Voltage Power conversion
- Compact Design
- Smaller form factor and increased Power density

Conventional adaptor based on Silicon switch*

Adaptor based on GaN switch

ST App finder

MOSFET

Brand new finders, to allow an easier and faster recollect of the most important information about any power transistor in ST's portfolio.

www.st.com/stpower

