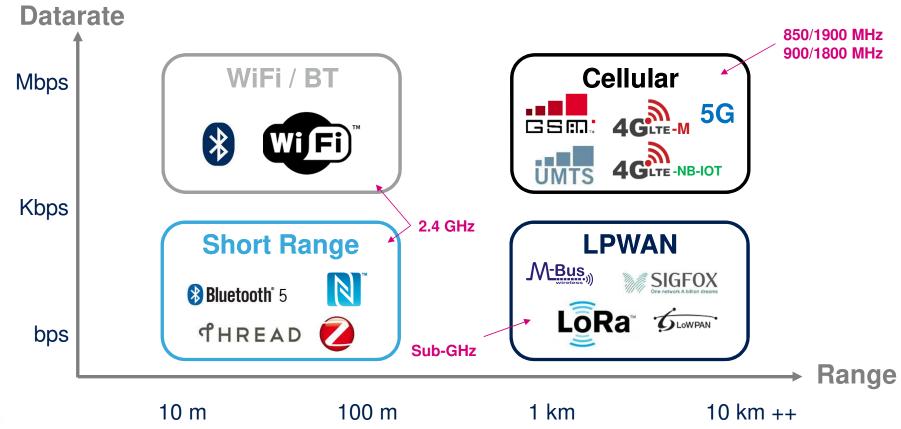

STM32WB Wireless MCUs

BLE 5 and IEEE 802.15.4

Joe Tijerina Field Applications Engineer



Communication Technologies

Low-data rate apps

Insulin Pump

Hearing aid

Watches

Alarm

Heating/Cooling

ling Door lock

Glasses

Tag locator

Fitness

White goods

Smoke detectors

Lighting

Bluetooth LE

Point-to-point communication with smartphones and other wireless devices

BLE Mesh / 802.15.4

Home automation with Mesh network need

Your Smartphone is your GUI!

BLE & 802.15.4

BLE4.1

BlueNRG-MS

ARM Cortex-M0 Core

RX: 7.3mA TX: 8.2mA Sensitivity: -88dBm

NETWORK PROCESSOR

BLE4.2

BlueNRG-1 / 2

ARM Cortex-M0 Core

160KB / 256KB Flash 24KB RAM I2C, SPI, UART, ADC RX: 7.3mA TX: 8.2mA Sensitivity: -88dBm **BLE5.0**

BlueNRG-LP

ARM Cortex-M0+ Core

256KB Flash 48KB RAM I2C, SPI, UART, ADC RX: 3.8mA TX: 5.5mA Sensitivity: -96dBm BLE5.0 IEEE 802.15.4

STM32WB

ARM Cortex-M4F Core

1MB Flash 256KB RAM I2C, SPI, UART, QSPI, USB, ADC, LCD

ARM Cortex-M0+ Core

RX: 3.8mA TX: 5.5mA Sensitivity: -96dBm

SINGLE-CORE

DUAL-CORE

APPLICATIONS PROCESSOR

STM32WB Key Takeaways

Multiprotocol

Open

OpenMAC

Dual-Core

Mono-core

CPU-x

Application Firmware

Peripherals

eripnerais

Radio stack

Drawbacks

- Time sharing
- Companion MCU?

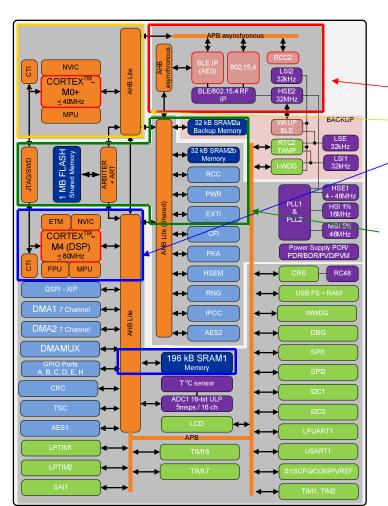
STM32WB

Arm Cortex-M4

Application Firmware + Peripherals

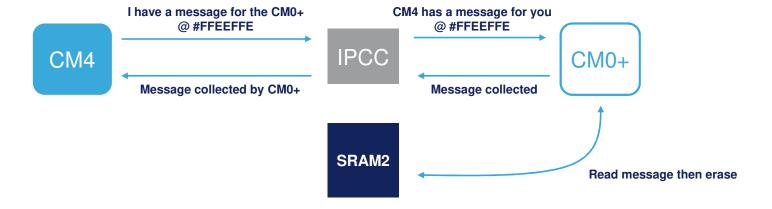
Arm Cortex-M0+

Radio Stack


Benefits

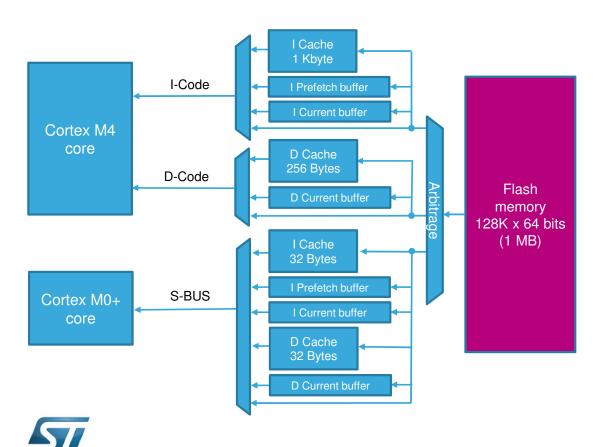
- Single-die SoC solution
- Lower power
- Cost
- Time-to-market

Architecture


- 3 autonomous sub-systems
 - Radio sub-system
 - Cortex-M0+ (CPU2)
 - Cortex-M4 (CPU1)
- Common run domain
 - Flash, SRAM2, RCC, PWR, EXTI

Dual core – How does that work?

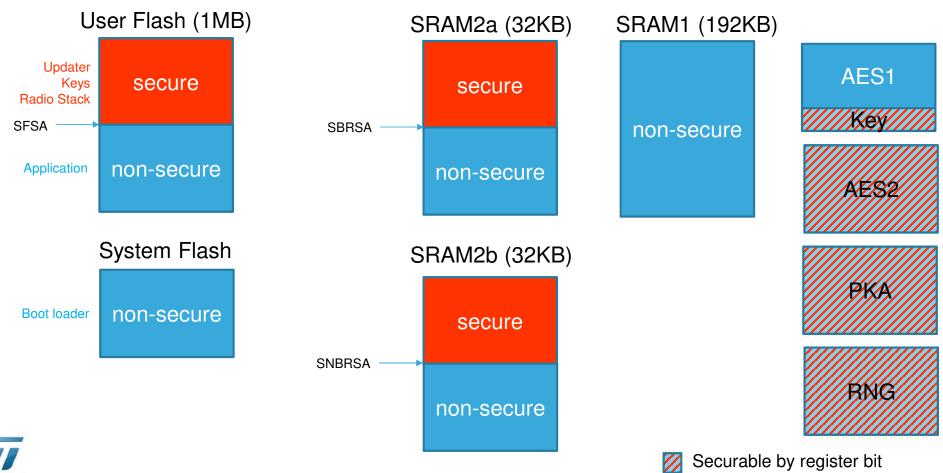
- HSEM: Hardware Semaphore prevent shared resource access conflicts
- IPCC: Inter Processor Communication Controller



IPCC works in both directions

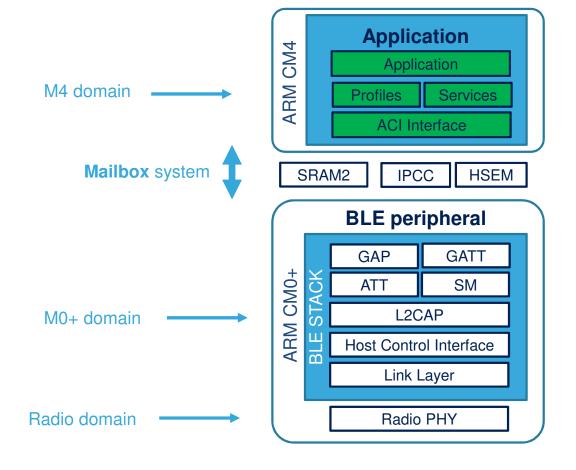
ART Accelerator™

Cortex-M4


- Instruction cache = 32 lines of 4x64 bits
- Data cache = 8 lines of 4x64 bits
- Pre-fetch buffer

Cortex-M0+

- **Instruction cache** = 4 lines of 1x64 bits
- Data cache = 4 lines of 1x64 bits
- Pre-fetch buffer



Security

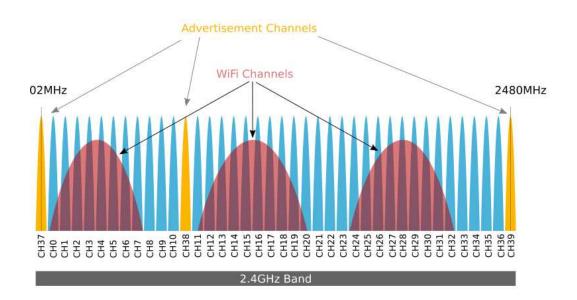
Protocol Stack layers

Classic vs Low Energy

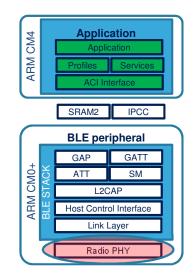
100X lower power ——

Longer range •

Fast connection (only 3 advertising channels to scan) —

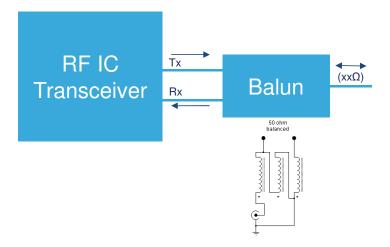

Relaxed RF requirements -

	Classic (BR/EDR)	Low Energy (LE)		
Application	Cell phones, headsets, stereo/audio streaming, automotive (handsfree), PCs, etc.	Smartwatches, sport & fitness, home electronics, automation, industry, healthcare, smartphones, etc.		
Voice	Yes	No		
RF band ISM	2.4 GHz	2.4 GHz		
Energy consumption	Reference	0.50.01 times Classic as reference		
Coverage	10 m	≥ 10 m		
Power	3 classes (max.):	max. + 20 dBm four informative classes		
Connection	Inquiry Yes, always hopping	Advertising Connection only if necessary, then hopping		
Connection setup	100 ms	6 ms		
RF channels	79 with 1 MHz spacing	40 with 2 MHz spacing 3 advertising 37 data (+ secondary advertising)		
Modulation	GFSK • BT = 0.5 • Deviation = 160 kHz • Mod index = 0.280.35 π/4-DQPSK 8DPSK	GFSK BT = 0.5 Deviation = 250 kHz or 500 kHz Mod index = 0.450.55 Stab Mod index = 0.4950.505		
Gross data rate	13 Mbit/s	12 Mbit/s		
Application data rate	0.72.1 Mbit/s	0.20.6 Mbit/s		


Strategically placed advertising channels

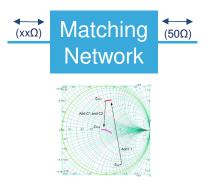
Remaining 37 channels are data channels

	BLE	Classic	
	BLE	BR	EDR
Modulation	GFSK 0.45 to 0.55	GFSK 0.28 to 0.35	DQPSK / 8DSPK
Data Rate	1Mbit/s	1 Mbit/s	2 and 3 Mbit/s
Channels	40	79	79
Spacing	2MHz	1MHz	-

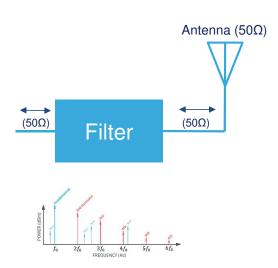

Balun – Combine TX and RX signals

Matching Network - 50 Ω impedance transformation

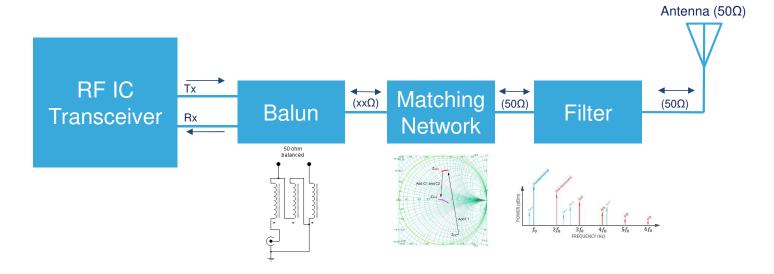
Balun – Combine TX and RX signals


Matching Network – 50 Ω impedance transformation

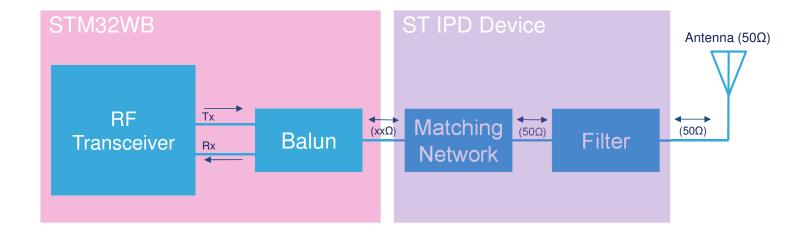
Balun – Combine TX and RX signals

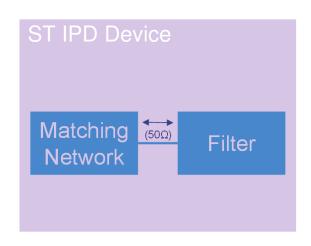

Matching Network - 50 Ω impedance transformation

Balun – Combine TX and RX signals

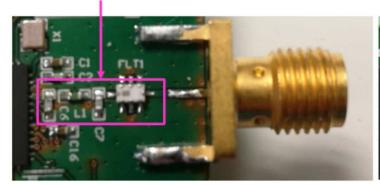

Matching Network - 50 Ω impedance transformation

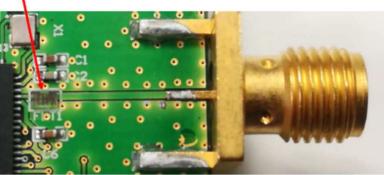
Balun – Combine TX and RX signals


Matching Network – 50 Ω impedance transformation


Balun – Combine TX and RX signals

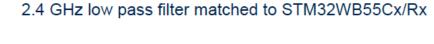
Matching Network - 50 Ω impedance transformation



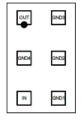

Matching Network + Harmonic Filter

Discrete network & filter in STM32WB ref design

IPD Filter



Datasheet


Production in March

Sampling NOW

Top view (pads down)

Features

- Integrated impedance matching to STM32WB55Cx and STM32WB55Rx
- LGA footprint compatible
- 50 Ω nominal impedance on antenna side
- Deep rejection harmonics filter
- Low insertion loss
- Small footprint
- Low thickness ≤ 450 µm
- · High RF performance
- RF BOM and area reduction
- ECOPACK[®]2 compliant

Applications

- · Bluetooth 5
- OpenThread
- Zigbee®
- IEEE 802.15.4
- Optimized for STM32WB55Cx and STM32WB55Rx

BOTTOM VIEW (pads up) SIDE VIEW

1mm x 1.6mm CSP

Table 4. Bumpless CSP package mechanical data

Parameter	Description	Min.	Тур.	Max.	Unit
×	X dimension of the die	975	1000	1025	μm
Υ	Y dimension of the die	1575	1600	1625	μm
Α	X pitch		500		μm
В	Y pitch		587		μm

PCB recommendations included in datasheet

Figure 13. PCB land pattern recommendations

IPD Filter

MLPF-WB55-01E3

2.4 GHz low pass filter matched to STM32WB55Cx/Rx

CUT SHEET

SMEA N DOOR

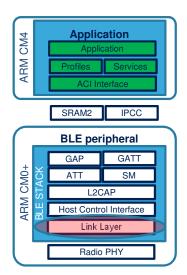
Integrated impedance matching to STM32WB55Cx and STM32WB55Rx LGA footprint compatible $50~\Omega~nominal~impedance~on~antenna~side$

Deep rejection harmonics filter Low insertion loss

Small footprint

Low thickness ≤ 450 µm High RF performance RF BOM and area reduction

Applications


Bluetooth 5
 OpenThread
 Zigbee®
 IEEE 802.15.4

Optimized for STM32WB55Cx and STM32WB55Rx

Link Layer State Machine

- Standby state: Sleep, Stop, Standby
- Advertising is the key to initiating all BLE communications!
- As an Initiator and Advertiser negotiate a Connection, the Initiator becomes a "Master" and Advertiser becomes a "Slave"
- In a Connection
 - The Link-Layer *Master* is also the GAP **Central**
 - The Link-Layer Slave is also the GAP Peripheral

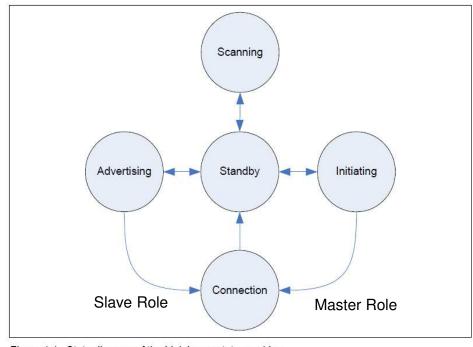
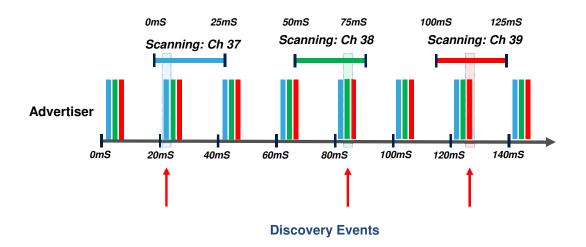
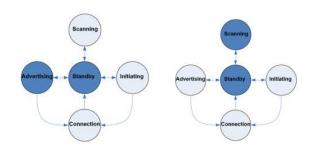




Figure 1.1: State diagram of the Link Layer state machine

Discovery: Advertising & Scanning

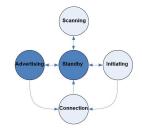
Advertising on Ch 37:
Advertising on Ch 38:
Advertising on Ch 39:

Advertiser Settings:

Advertising Interval: 20mS

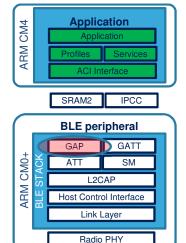
Scanner Settings:

Scan Interval: 50mSScan Window: 25mS


GAP (Generic Access Profile)

- Roles and Modes
 - Advertising Mode
 - Connected Mode

Broadcaster


Sends advertising events
Can include characteristics and service data
Doesn't need receiver
Can be discoverable if it does have receiver

Observer

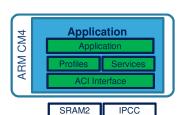
Receives advertising events
Listens for characteristics and service data
Doesn't need transmitter
Can discover devices if it does have transmitter

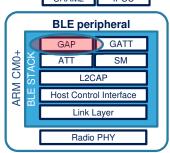
GAP (Generic Access Profile)

- Roles and Modes
 - Advertising Mode
 - Connected Mode

Peripheral

Has transmitter and receiver Always slave Connectable advertising

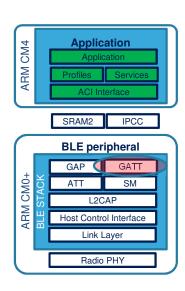




Central

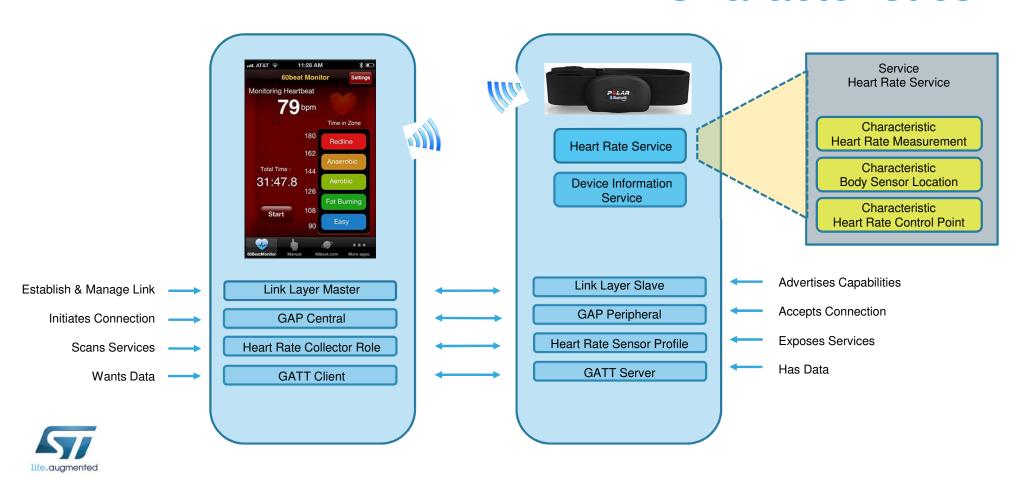
Has transmitter and receiver Always master Never advertises



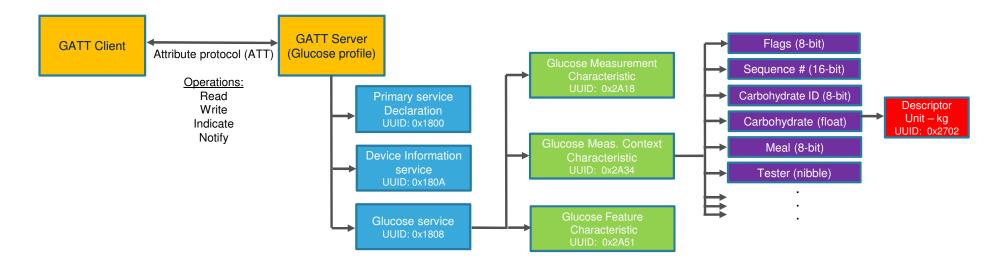

GATT (Generic Attribute Profile)

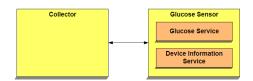
GAP Central is also a "GATT Client" GAP Peripheral" is also a "GATT Server"

- · Central queries the Services available
 - Peripheral Services and Characteristics are exposed via its' GATT database



GATT: Profiles, Services and Characteristics


Bluetooth SIG



GATT Glucose Profile

GLP Profile defines two roles: Collector & Glucose Sensor

Bluetooth MESH

- MESH is application on top of BLE stack
 - "Managed-flood-based" mesh network
- Mesh vs BLE
 - Mesh offers unlimited end-points vs 8 with standard BLE
- Apps:
 - Building automation: Lighting, HVAC, Security
 - Asset tracking
 - Smart waste management

2 Mesh system architecture

This section provides an overview of the mesh network operation and layered system architecture

2.1 Lavered architecture


tecture as shown in Figure 2.1.

Model Layer
Foundation Model Layer
Access Layer
Upper Transport Layer
Lower Transport Layer
Network Layer
Bearer Layer

Thread

Thread

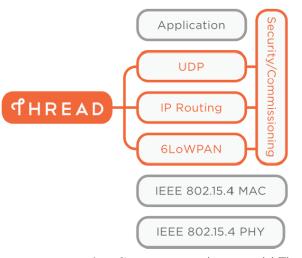
THREAD What it delivers

A secure wireless mesh network for your home and its connected products

Built on well-proven, existing technologies

Uses 6LoWPAN and carries IPv6 natively

Runs on existing 802.15.4 silicon


New security architecture to make it simple and secure to add / remove products

250+ products per network

Designed for very low power operation

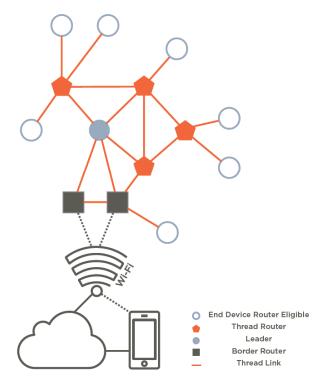
Reliable for critical infrastructure

Can support many popular application layer protocols and platforms

A software upgrade can add Thread to currently shipping 802.15.4 products

Thread

THREAD Direct Addressability of devices


All devices have IPv6 addresses plus short address on HAN

DHCPv6 used for router address assignment

Home Network can directly address devices through Border Routers

Cloud Services can address devices from the Internet

Devices can address local devices on HAN or off network devices using normal IP addressing

COAP based

Push Button

COAP request (LED on)

Msg Type: { CON/NON/ACK/RST}

Msg Code: {GET/PUT/POST/ACK}

Dest Addr:

o Port

UriPath:

kCoapTypeNonConfirmable

kCoapRequestPut

FF03::1

5683

"light"

BLE / Thread Concurrent modes

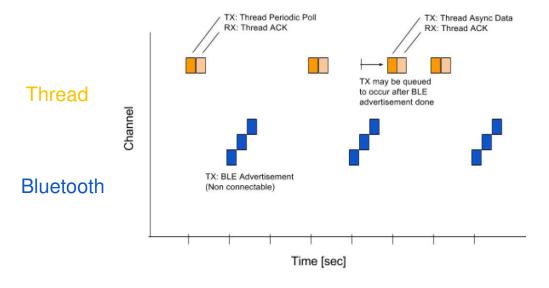
Static Concurrent Mode

→ Switching from BLE to Thread as two **exclusive** modes

Dynamic Concurrent Mode

→ Switching from BLE mode to Thread mode within **polling loop**

BLE / Thread Concurrent modes


Static Concurrent Mode

→ Switching from BLE to Thread as two **exclusive** modes

Dynamic Concurrent Mode

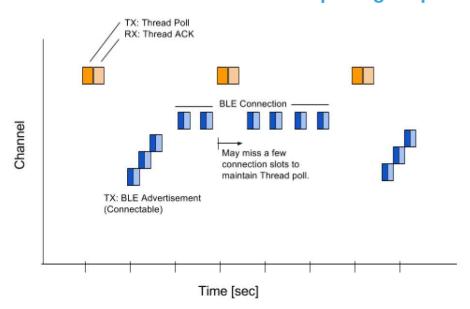
→ Switching from BLE mode to Thread mode within **polling loop**

Thread + BLE Beacon

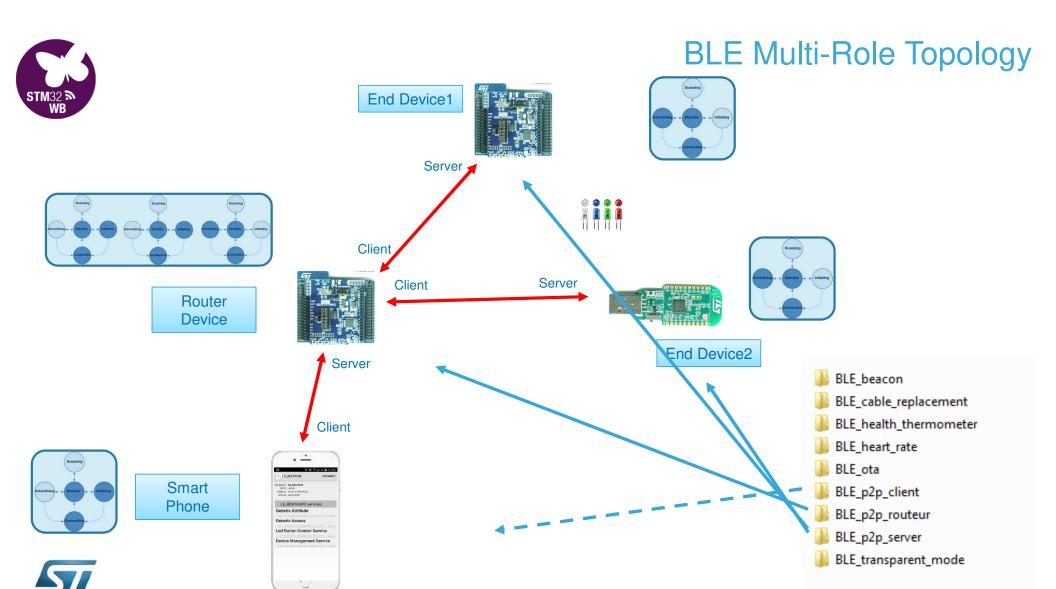
BLE / Thread Concurrent modes

Static Concurrent Mode

→ Switching from BLE to Thread as two exclusive modes

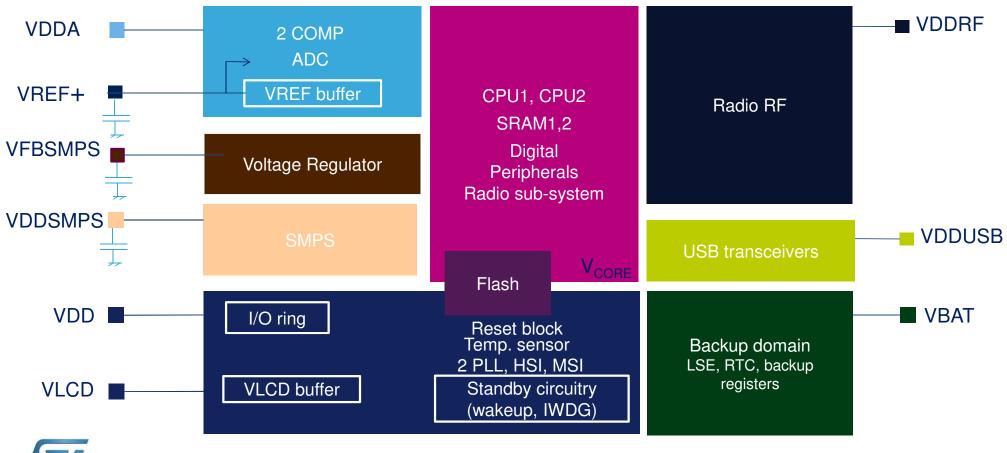

Dynamic Concurrent Mode

→ Switching from BLE mode to Thread mode within polling loop



Thread

Bluetooth



life.augmented

life.augmented

Power schemes

Wake-up time

9 cycles

9 cycles

1.7 μs

4 μs (19 μs)

5 μs (20 μs)

14 μs (25 μs)

14 μs (25 μs)

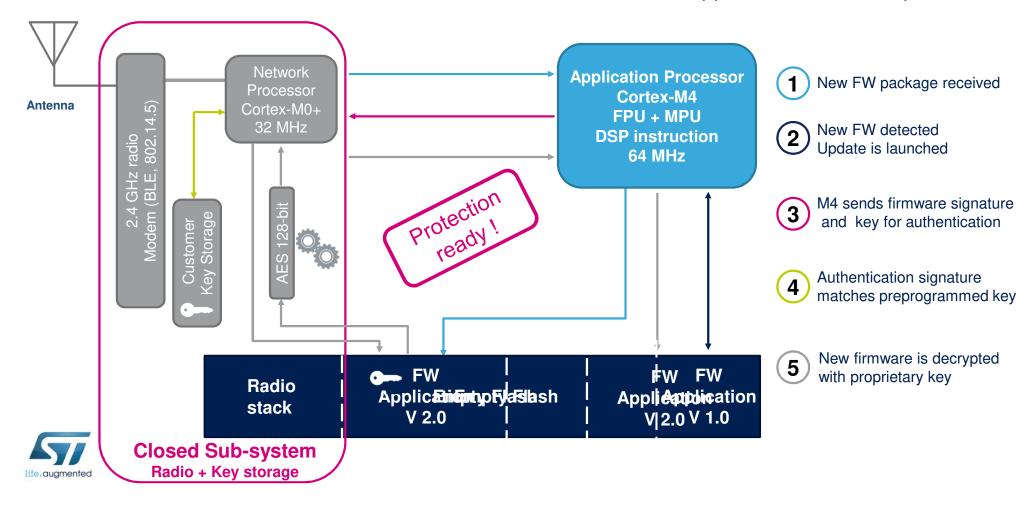
50 μs

() Typ. value for SMPS mode

RUN (Range1) at 64 MHz 117 (73) µA / MHz** RUN (Range2) at 16 MHz 109 μ A / MHz** **LPRUN at 2 MHz** $103 \mu A / MHz**$ 41 μA / MHz **SLEEP at 64 MHz** 45 μA / MHz **LPSLEEP at 2 MHz** STOP 0 (full retention) 100 μΑ **STOP 1 (full retention)** 9.2 μΑ / 9.6 μΑ* **STOP 2 (full retention)** 1.8 μΑ / 2.2 μΑ* STANDBY + 32 KB RAM 320 nA / 600 nA* RF Operation **STANDBY** 110 nA / 440 nA** **SHUTDOWN** 30 nA / 315 nA* **VBAT** 2 nA / 300 nA* Typ @ VDD =1.8 V @ 25 °C

* with RTC ** from SRAM1

Overview 43


FlexPowerControl

- High performance
 - → CoreMark score = 215
- Outstanding power efficiency
 - → ULPBbench score = 175

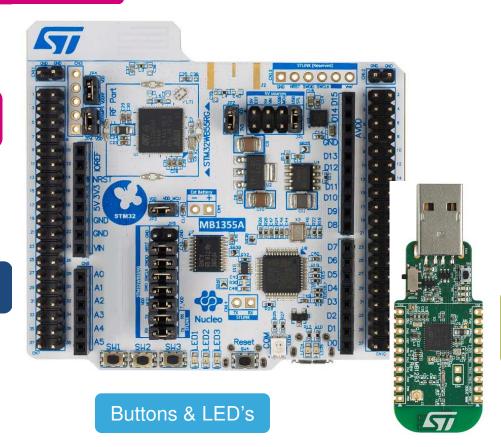
IoT Protection Ready

Radio stack or Application firmware updates

IoT Protection Ready

Attacks	Attacks description	STM32WB Countermeasures
Non Invasive	 Environment Temp / Voltage / Clocks Fault injection Exploit debugger Side channel Power Analysis 	 Temp sensor Power supply monitor Clock security system Tamper pads ECC, Parity check SRAM mass erase Read out protection Flash-only boot
Software	 Break the encryption Extract keys Exploit debugger / test modes Malware Replay 	 Customer Key Storage RNG, Crypto accelerator, CRC Readout / Write memory protections Memory Protection Unit Root Security Service Secure Firmware Update (SFU) 96-bit Unique ID

Nucleo Pack



2.4GHz PCB antenna

Nucleo

STM32WB55RGV6 (VQFPN68)

> Arduino & Morpho Headers

ST-Link/V2-1 (for programming and debugging)

Dongle

STM32WB55CGU6 (VQFPN48)

GPIO for simple apps

Button & LED's

SWD interface but no ST-Link

2.4GHz PCB antenna or uFL

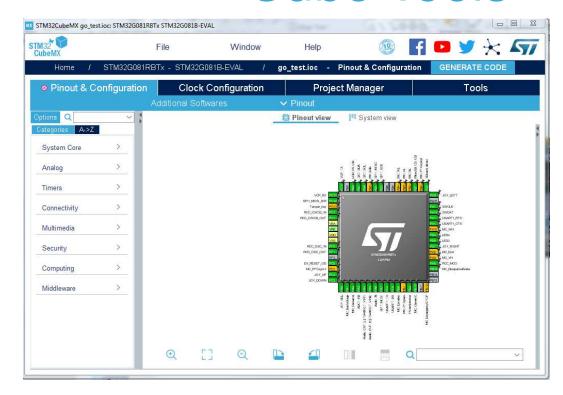
Cube Tools

STM32CubeMX

• STM32CubeProgrammer

STM32CubeMonitorRF

CubeWB HAL Firmware

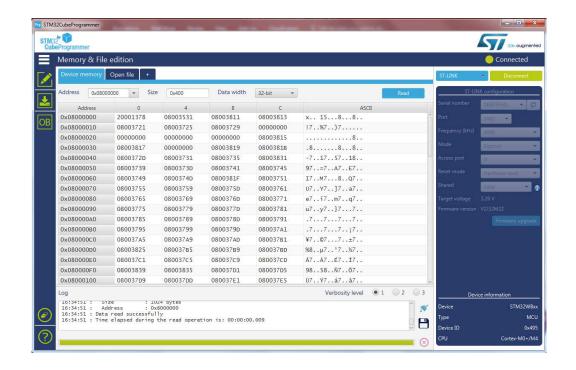


STM32CubeMX

- STM32CubeProgrammer
- STM32CubeMonitorRF

CubeWB HAL Firmware

Cube Tools

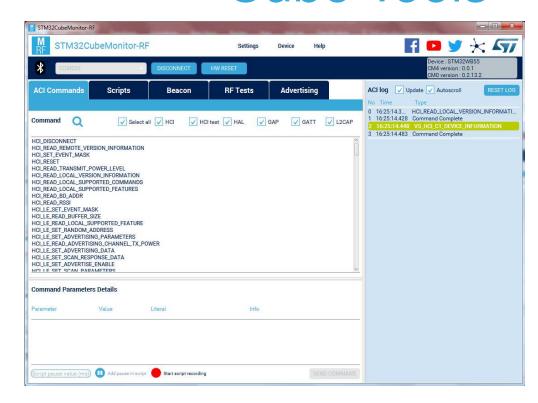


Cube Tools

STM32CubeMX

- STM32CubeProgrammer
- STM32CubeMonitorRF

CubeWB HAL Firmware



STM32CubeMX

- STM32CubeProgrammer
- STM32CubeMonitorRF

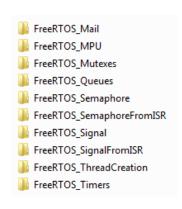
CubeWB HAL Firmware

Cube Tools

STM32CubeMX

- STM32CubeProgrammer
- STM32CubeMonitor-Power
- CubeWB HAL Firmware

Bonus Cube Tool!

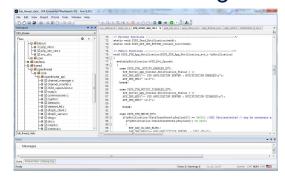

Cube Tools

STM32CubeMX

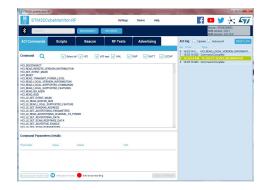
- STM32CubeProgrammer
- STM32CubeMonitorRF

CubeWB HAL Firmware

- ADC BSP COMP Cortex CRC CRYP DMA FLASH GPIO A HAL HSEM ■ I2C IWDG LPTIM PKA PWR RCC RNG SPI MIT 🚛 UART WWDG
- Thread_Cli_Cmd
 Thread_Coap_DataTransfer
 Thread_Coap_Generic
 Thread_Coap_MultiBoard
 Thread_Commissioning
 Thread_FTD_Coap_Multicast
 Thread_SED_Coap_Multicast
 Thread_Coap_Generic.zip
- ble_beacon
 ble_blood_pressure
 ble_cable_replacement
 ble_data_throughput
 ble_health_thermometer
 ble_heart_rate
 ble_heart_rate
 ble_hid
 ble_ota
 ble_p2p_client
 ble_p2p_routeur
 ble_p2p_server
 ble_proximity
 ble_transparent_mode



Iterative Design Process


Configure

Code & Debug

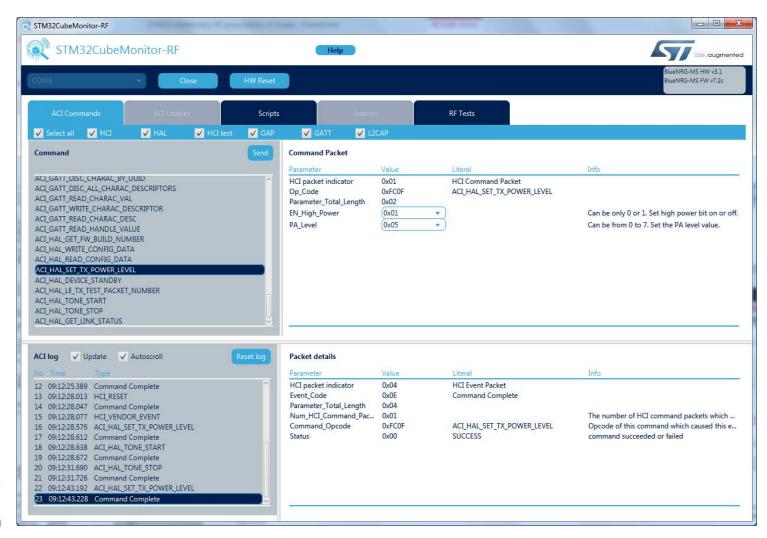
Test

Measure

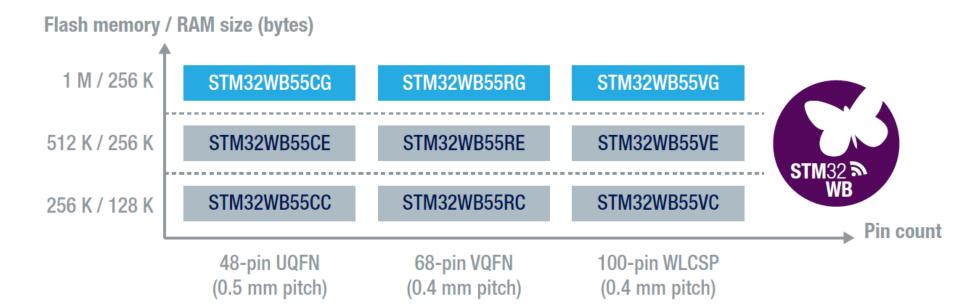
BOM cost

Silicon cost

- Embedded RF balun
- Few external components
- Simple RF front-end
- Embedded USB crystal
- Capacitive touch controller
- Simple 2-layer PCB


Ecosystem cost

- BLE 5 stack
- OpenThread stack
- Open 802.14.5 MAC stack
- Zigbee 3.0 (coming soon!)
- STM32CubeMX
- STM32CubeMonitorRF
- Atollic C-compiler IDE


STM32CubeMonitorRF

STM32 offering

Releasing Your Creativity

www.st.com/stm32wb