Discover ST's Unique GNSS Modules: Best-in-Class Performance, Competitive Price and Easy-to Design Teseo-LIV3x Family

Max Nicotra max.nicotra@st.com

Technology Tour 2019

Boston, MA | November 5

Teseo-LIV3x GNSS Module

Best-In-Class Multi-Constellation-based precision modules for numerous location-aware applications.

Teseo-LIV3x embeds TeseoIII single die standalone positioning receiver IC which leverages simultaneous multi-constellation GNSS (GPS/Galileo/Glonass/BeiDou/QZSS).

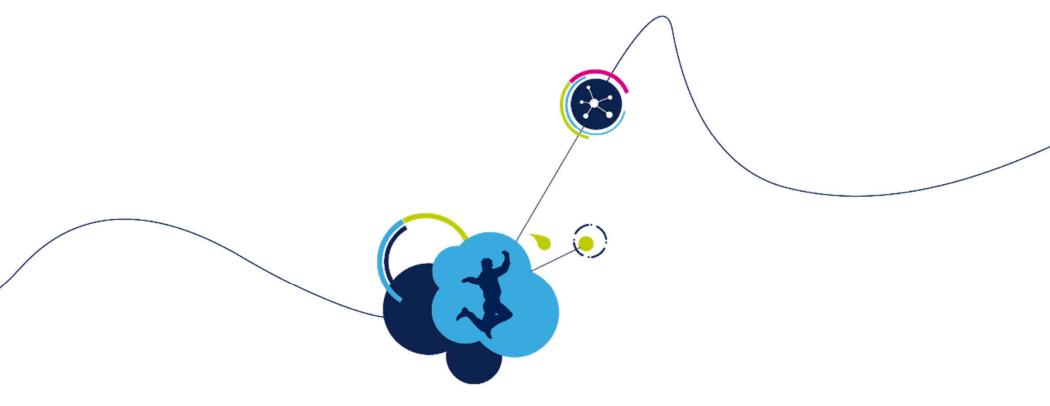
Making your Design Easier and Faster at a Competitive Price

Full collateral package

Evaluation Software

Evaluation Board

X-Nucleo **Board for** STM32


Target Applications

Wearables, Pet and People Tracking,
Assets and Fleet Tracking,
Insurance OBD Dongles,
Road Tolling, Anti-theft,
Emergency calls, Drones,
Precise timings and much more

Teseo-LIV3F, Teseo-LIV3R: GNSS modules for industrial and IoT applications

Teseo-LIV3x Overview

Teseo-LIV3F

Key Features and Benefits

Low Power Modes

Powerful ARM9 processor

Integrated Flash

Pre-loaded functions

Pre-Certified RF Module (CE,FCC,IC)

Best in class accuracy

Lowest Standby consumption

Reduce cold/warm TTFF

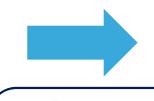
Concurrent functions

Free FW Configuration /upgrade and datalogging

Simplify design


Reduce design risks/costs/time

Best-In-Class GNSS Module with Integrated Flash



Teseo-LIV3R Key Features and Benefits

Pre-loaded functions*

Pre-Certified RF Module (CE,FCC,IC)

Best in class accuracy

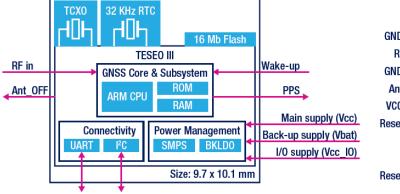
Lowest Standby consumption

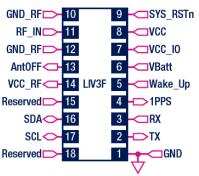
Reduce cold/warm TTFF

Concurrent functions

Simplify design

Reduce design risks/costs/time


Best-In-Class GNSS Module (ROM version)


*different features from Teseo-LIV3F

Teseo-LIV3F Key Features

- Tiny LCC18 package (9.7 x 10.1 x 2.3 mm)
- 2.1 to 4.3 V supply voltage range
- Operating temperature: -40 to 85 °C Industrial qualified
- Simultaneous multi-constellation positioning
- Teseo-LIV3F: 16-Mbit embedded Flash memory for data logging and FW upgrades
- 75mW tracking power consumption; <15µA stand-by current including RTC backup
- TCX0 26MHz for fast TTFF, RTC 32KHz for maintaining accurate time

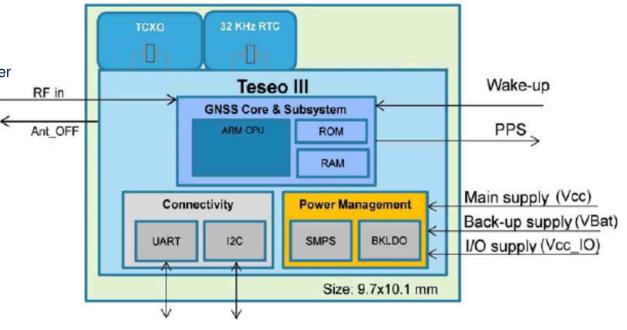
Integrated ARM9 processor for Superior performance

Teseo-LIV3R Key Features 8

Tiny LCC18 package (9.7 x 10.1 x 2.3 mm)

Simultaneous multi-constellation positioning

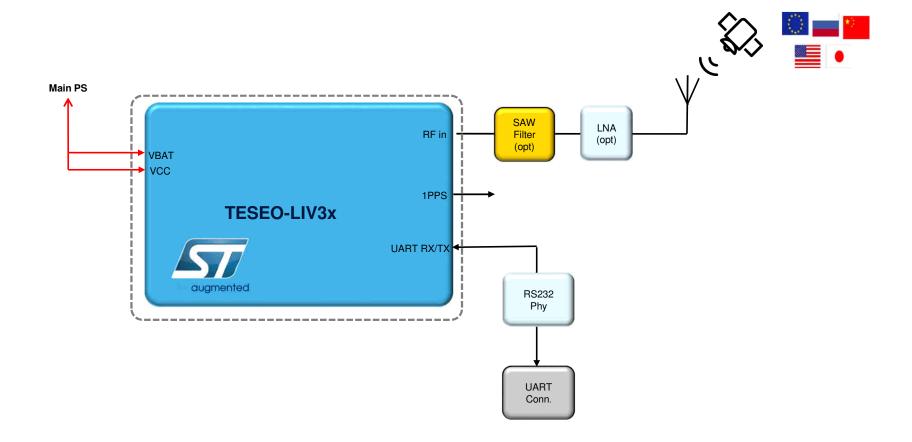
17 µW standby current and 70 mW tracking power

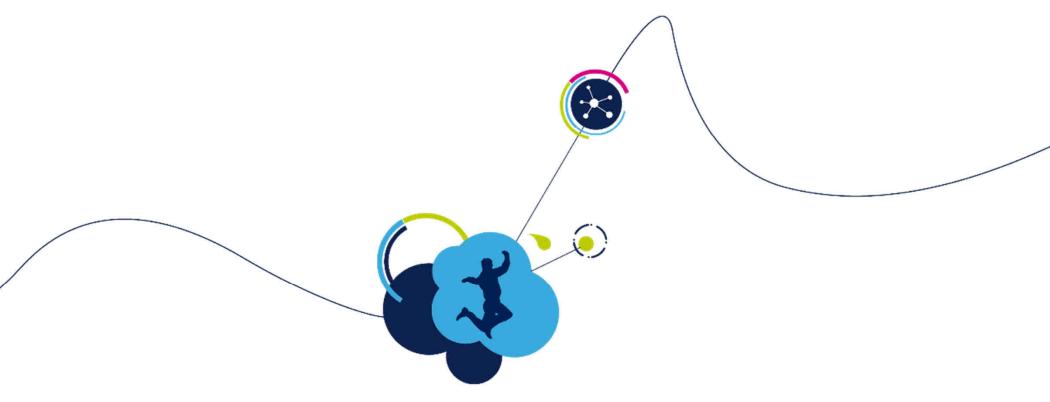

consumption

TCX0 26MHz for fast TTFF, RTC 32KHz for maintaining accurate time

2.1 to 4.3 V supply voltage range

Operating temperature: -40 to 85 °C




Integrated ARM9 processor for Superior performance

Simple Design, minimal BOM

Teseo-LIV3 Performance & Features

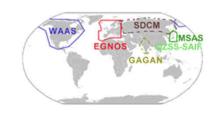
GNSS

Multi constellation

GPS (USA), GLONASS (Russian), Beidou (Chinese)

Galileo * (European)

Up to 3 simultaneous active constellations

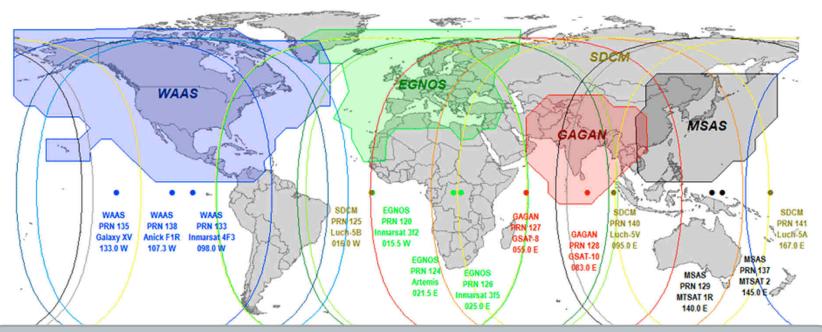

* Teseo-LIV3F only

Differential-GPS

S-BAS (satellite-based augmentation system): WAAS (USA), EGNOS (Europe), MTSAT (Japan), GAGAN (India),

QZSS (Japan & Australia)

RTCM v3.1


Algorithm

Teseo-LIV3 has NOT a reduced GNSS algorithm capability

On Teseo-LIV3, ST provides the **same** algorithm car-makers use.

Satellite Based Augmentation Systems (SBAS)

SBAS Benefits:

Accuracy – Provide wide-area corrections (Ionospheric, GPS satellite timing & orbit) for reducing GNSS ranging errors Integrity – Fast detection & indication to receivers when satellite signal errors occur Availability – If ranging signal is transmitted from SBAS satellite

GNSS Performance 13

	Condition	GPS & GLONASS	GPS & BeiDou	GPS & Galileo
Time To First Fix (s)	Cold start	< 32	< 36	< 30
	Warm start	< 25	< 29	< 26
	Hot Start	< 1.5	< 2.5	< 2
Accuracy (CEP 50%)	Velocity (m/s)	0.01	-	0.01
	Heading (deg)	0.01	-	0.01
	Horizontal position with AGNSS (m)	< 1.8	< 1.5	-
	Horizontal position with SBAS (m)	< 1.5	-	-
Sensitivity (dBm)	Tracking	-163	-163	-163
	Navigation	-158	-158	-158
	Reacquisition	-156	-156	-156

Assisted GNSS 14

Self Trained*

ST-AGNSS predicts satellite data based on previous observation of satellite broadcast data

Internet **NOT** needed

6-days prediction

Available for free

TTFF ~1-4sec

Predicted*

P-AGNSS predicts satellite data based on data downloaded by an assistance server

Internet **NEEDED** (8kB data per download)

14-day prediction

Assistance server available for free

TTFF ~1-4sec

Real-Time

RT-AGNSS uses real-time satellite data downloaded by an assistance server

> Internet **NEEDED** (6kB data every 2hrs)

Continuous/RealTime

Assistance server available for free

TTFF <= 1sec

* Teseo-LIV3F only

Low Power Modes _____

Continuous Fix * (GPS+GLONASS)

Adaptive

Dynamic Constellation switching and reduced tracked satellites (switching based on EHPE)

> **GLONASS RF OFF** when not needed (use GPS)

Cycle

Dynamic change duty-cycle of RF channels and Base-Band (duty-cycle period based on EHPE)

> ~70% of time **RF-channels** and Base-Band are off

Periodic Fix (GPS only)

5sec to 18hour fix period in Standby mode or OFF when not active

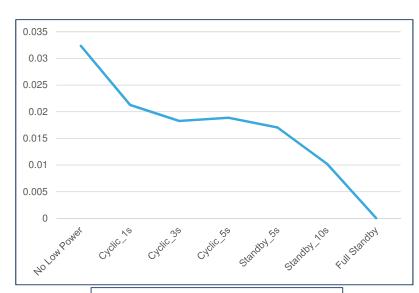
> **Lowest Average Power Option**

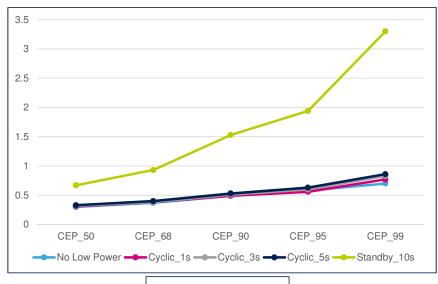
Fix On **Demand**

Device always in standby

GNSS woken-up through the wakeup-pin based the host's needs

Lowest Power Option




Teseo-LIV3F has the lowest standby power consumption

Low Power Curves 16

- IoT application tradeoffs:
 - Fix Frequency
 - Average Power
 - Accuracy

Average current consumption (A)

Accuracy - CEP%

Test conditions: Teseo-LIV3F in Static position & Full sky

Flash* advantages 17

Firmware Update*

New GNSS library can be provided on www.st.com to improve and/or fix the GNSS device to guarantee longevity to a product in the field

Firmware Configuration & GNSS data*

The whole configuration and GNSS data sit on flash.

Battery backup

Not needed

Host doesn't need to reconfigure the module and download GNSS data on each start-up

Ready to be used

Configured and programmed with our best solution

NO SDK required

* Teseo-LIV3F only

Standard Applications 18

Datalogging*

saves lat/lon to flash for retrieval by host

Up to 12h data logging (1Hz) Logged data-fields configurable Memory full alarm

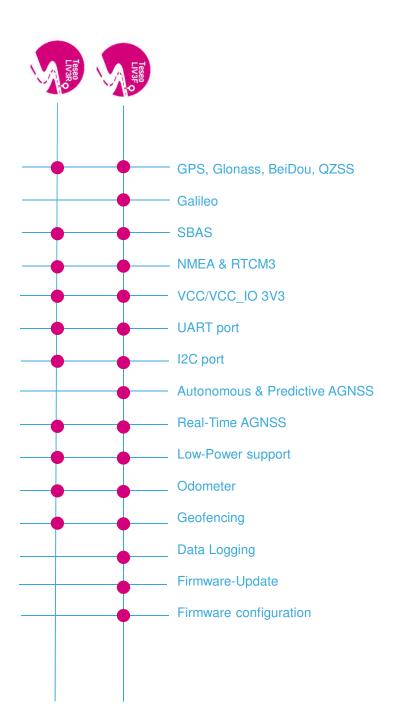
Geofencing

notifies when lat/lon is close to a defined circle

Up to 8 configurable circles Crossing fence alarm

Odometer

computes distance travelled from position & velocity data



Up to 3 TRIP counters Distance achieved alarm

* Teseo-LIV3F only

Teseo-LIV3x variants



Teseo-LIV3 – Platform Ready

Device Driver created for several platforms to speed-up development and time-to-market

Teseo-LIV3 – Application Ready

Several STM32 applications ready to be used to speed-up development and time-to-market

X-Nucleo-GNSS1A1

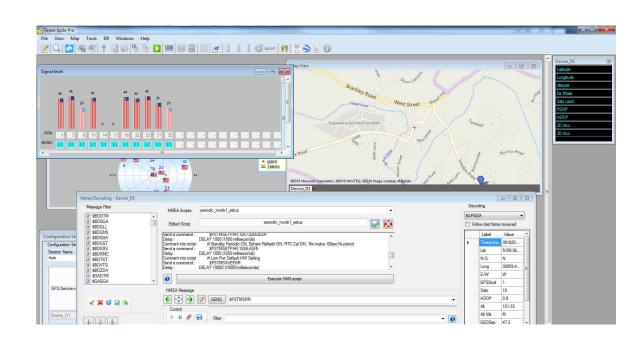
For development on STM32 based design, Teseo-LIV3F based

- Compatible with
 - STM32 Nucleo boards:
 - NUCLEO-F401RE
 - NUCLEO-L073RZ
 - NUCLEO-L476RG
 - Arduino boards
- Protocols: NMEA
- Interfaces:
 - 1 UART
 - 1 DDC (I2C compliant)
 - Digital I/O configurable timepulse
 - 1 EXTINT input for Wakeup

EVB-LIV3F / EVB-LIV3R

For complete evaluation of GNSS solution with Teseo-Suite, including power consumption measurement:

- Protocols: NMEA
- Interfaces:
 - 1 UART
 - 1 DDC (I2C compliant)

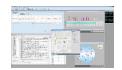


SW Tools Teseo Suite 24

- View/Record/Playback
- NMEA & DEBUG
- View Graphics charts
 - o Position
 - o CNO
 - Sky view
 - Map view
- Send Commands
- Dedicated panels:
 - o Assisted GPS
 - FW configurator
- TEST plan
- Embedded TOOLs:
 - o FW Upgrade

Free, Powerful, Easy PC-Windows SW Suite. For evaluation, development and FW configuration updates.

The Goods 25


Teseo-LIV3x	
Datasheet	Software User Manual
Hardware User Manual	Videos training
Application Note	

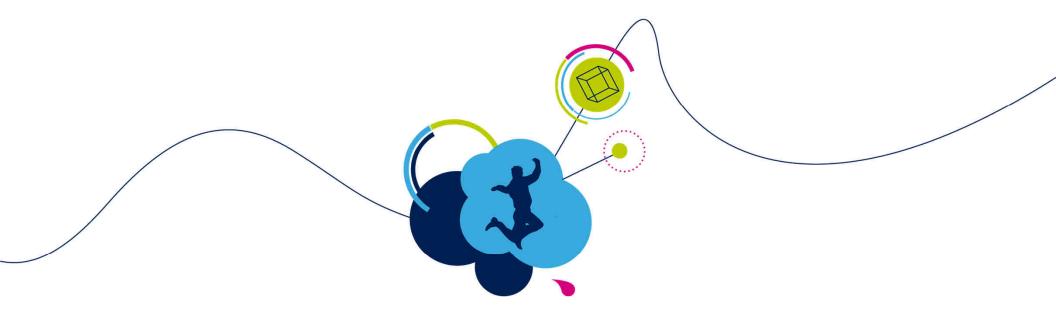
EVB-LIV3x	
Datasheet	Schematic/BOM/Gerber
User Manual	Quick Start Guide

X-Nucleo-GNSS1A1		
Datasheet	Schematic/BOM/Gerber	
User Manual	Device driver	

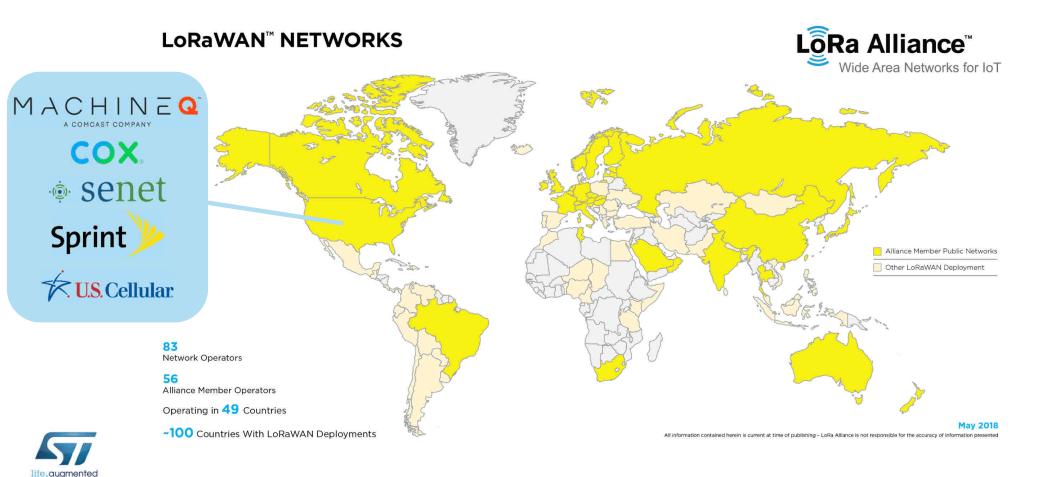
Teseo Suite PC Tool			
Datasheet	Videos training		
Quick Training Guide	User Manual		

www.st.com/gnssmodules Learn more:

Join us in the ST GNSS community

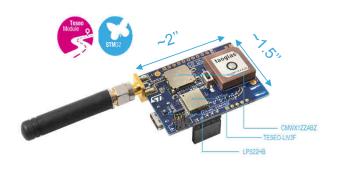

- Get involved in the <u>ST GNSS community</u>
- Share ideas
- Ask questions

https://community.st.com/community/gnss


GNSS Teseo-LIV3F based LoRa® Asset Tracker (in collaboration w/MDG group, Marc Hervieu)

Communication Technologies - Overview 28

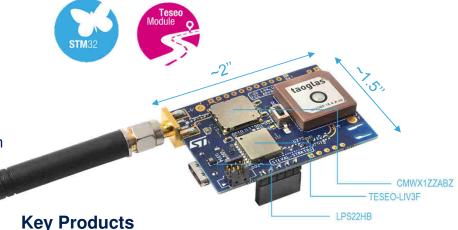
LoRa® Network Deployments 29



ST LoRa® Asset Tracking Ref Design

Published on www.st.com
Search for STEVAL-STRKT01

ST LoRa® Asset Tracking Ref Design STEVAL-STRKT01


The perfect Small Form Factor Reference Design

Key Features

- Optimized tracker solution over LoRaWAN network with simultaneous multi-constellation GNSS positioning and Geofencing support
- Battery-operated solution with smart power-management architecture
- Environmental and motion sensors / Data Logging
- IoT ST reference design with USB Type-C

• FW Function Pack FP-ATR-LORA1 for modular and integrated solution

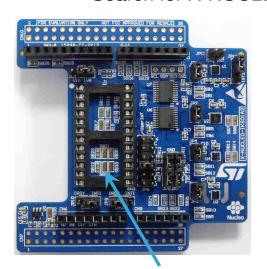
- CMWX1ZZABZ: LoRa® module
 - STM32L072, and SX1276 Semtech LoRa transceiver
- TESEO-LIV3F: GNSS standalone module based on TESEO III
- STBC02: Li-Ion linear battery charger with LDO and power path
- ST1PS01EJR: 400mA Nano-Quiescent™ Synchronous step-down converter
- STUSB1600A: USB Type-C controller
- LIS2DW12, HTS221, LPS22HB: Motion and environmental sensors
- M95M02-DR FFPROM

ST LoRa® Dev Kit Hardware

base board B-L072Z-LRWAN1

B-L072Z-LRWAN1

- Murata Module
 - Host: STM32L0
 - 20KB RAM, 192KB Flash, 6KB Eeprom
 - Radio: Semtech SX1276



ST LoRa® Dev Kit Hardware

Sensor Shield X-NUCLEO-IKS01A2

Published on www.st.com Search for X-NUCLEO-IKS01A2

3D Accel. + 3D Gyro. (LSM6DSL)

3D Accel. + 3D Magno. (LSM303AGR)

Pressure (LPS22HB)

Published on <u>www.st.com</u> Search for STEVAL-MK*

Temperature + Humidity (HTS221)

ST LoRa® Dev Kit Hardware

GNSS board X-NUCLEO-GNSS1A1

Published on www.st.com Search for X-NUCLEO-GNSS1A1

Teseo-LIV3F expansion board kit based on STM32 Nucleo:

Compatible with STM32 Nucleo boards and Arduino boards

Protocol: NMEA

Interfaces: 1 UART, 1 DDC (I2C compliant), Digital I/O configurable

time-pulse, 1 EXTINT input for Wake-up.

Teseo-LIV3F module is an easy to use Global Navigation Satellite System (GNSS) standalone module, embedding Teseolll single die standalone positioning receiver IC working simultaneously on multiple constellations (GPS/Galileo/Glonass/BeiDou/QZSS).

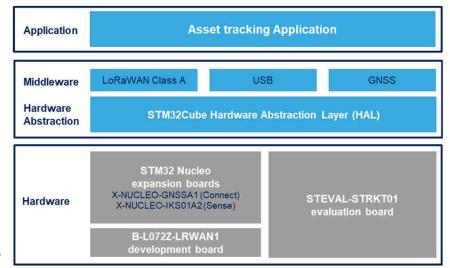
LoRa® Asset Tracking Function Pack

Published on <u>www.st.com</u> Search for FP-ATR-LORA1

FP-ATR-LORA1

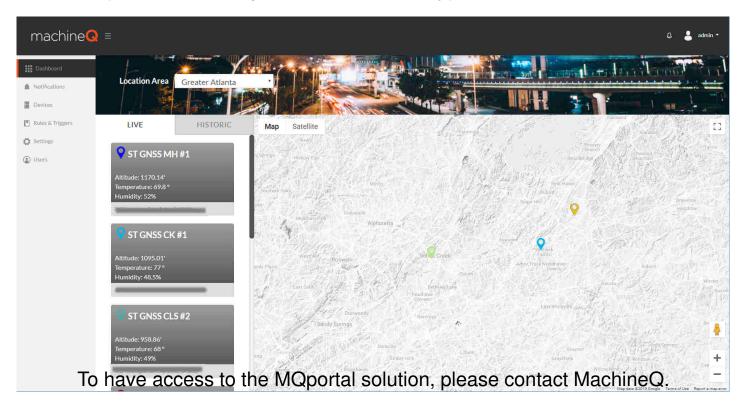
Key Features

 Complete firmware to connect an IoT node to a LoRaWAN network, sending geo-position coming from GNSS and environmental and sensor data


- Library supporting LoRaWAN 1.0.2 class A and USB
- Teseo-LIV3F based GNSS positioning and Geofencing.

- · LoRaWAN keys provisioning via USB
- · Power/Battery Management with low-power operating modes

· Data logging on external EEPROM

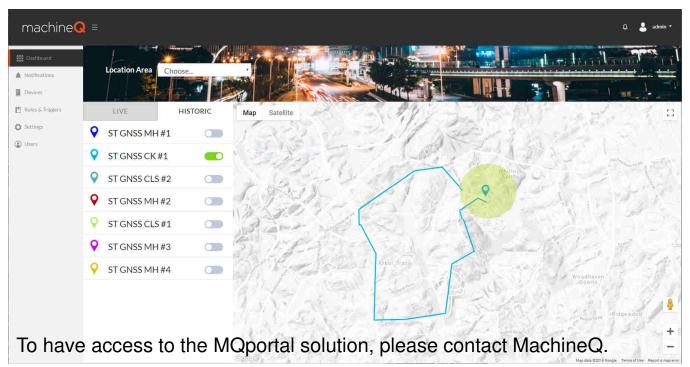


Asset Tracker – MQportal UI

Sensor Monitoring

Monitoring

- Reverse address discovery based on GNSS location
- Monitor sensors (Altitude, Temperature, Humidity)



Asset Tracker - MQportal UI

Asset Tracking

Historic Path

- Inside LoRa Network → Track position near real time
- Outside LoRa Network → Store position & catch-up when connection restored
 - Keep track of the time to rebuild the path

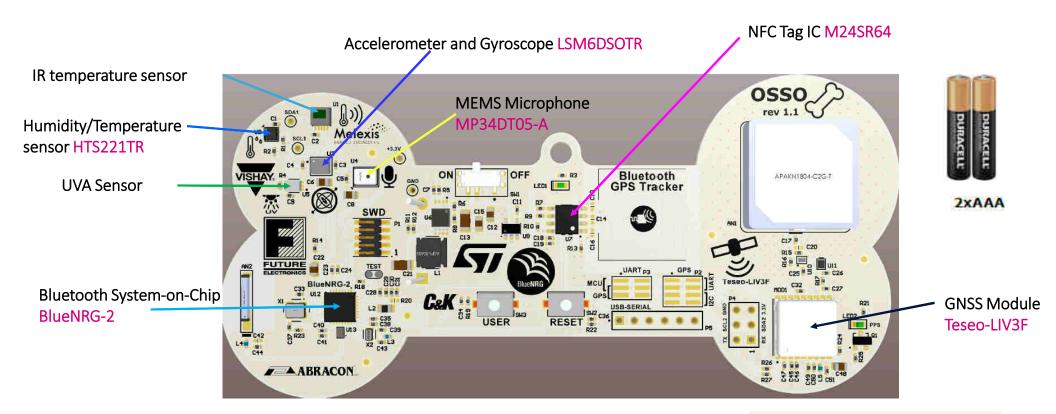
OSSO Pet Tracker Reference Design (in collaboration w/ Future)

What is OSSO?

- OSSO is the Italian word for "bone"
- OSSO is a Pet Tracking application Reference Design
- Created and designed by Future Connectivity Solutions and ST
- Accurate, Small and Light-weight, Bluetooth 5.0 compliant
- iOS and Android app functionalities:
 - Sensor Demo
 - ✓ Environmental demo
 - √ IR temperature demo
 - ✓ Accelerometer demo
 - ✓ Microphone demo
 - ✓ RSSI and battery demo

GPS Demo

✓ Locate pet demo



Visit OSSO Demo today by

A closer look at OSSO 40

thank you.

If any questions please contact me at max.nicotra@st.com

