

Enhancing the User Experience with TouchGFX Advanced Graphics on the STM32

Mike Hartmann Product Marketing

Technology Tour 2019

Schaumburg, IL | April 25

Accelerating the *HMI of Things*

Enabling high-end user experience in embedded devices

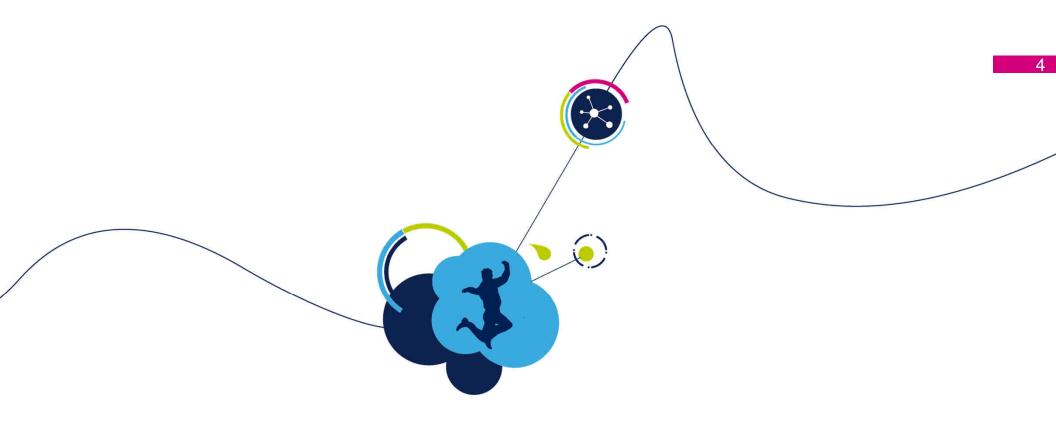
Smarter and richer devices requiring Advanced Graphic User Interfaces

STM32 Graphics Offering

Enabling Enhanced User Experience in Embedded Devices

Advanced Graphics STM32 Portfolio

STM32 Graphics Software and Tools

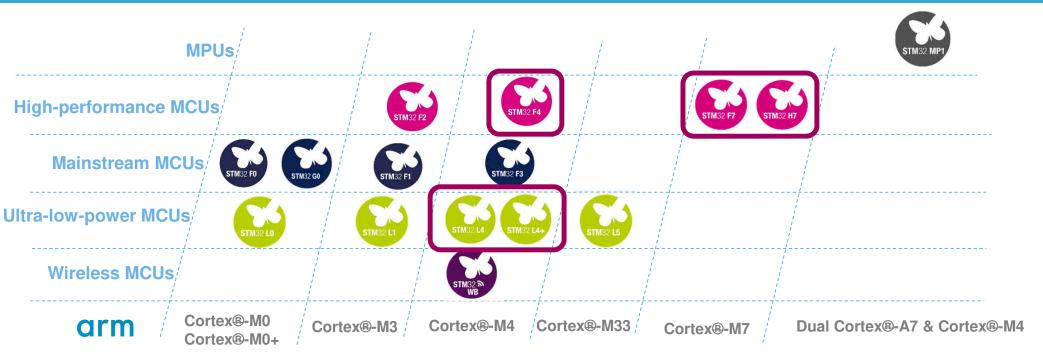


Reference Designs and Worldwide Support

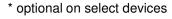
Extended Graphic Ecosystem

Advanced Graphics STM32 Portfolio

STM32 Portfolio


15 Product Series / More than 50 product lines

STM32 Portfolio


MCU Products with Advanced Graphics Capability

STM32 Graphics Feature Matrix

Device	Core	Flash	RAM	Display Controller	Chrom-ART	Other Optimization
STM32H7x3	M7 @ 400MHz	1MB to 2MB	1MB	TFT	✓	JPEG
STM32H750	M7 @ 400MHz	128KB	1MB	TFT	✓	JPEG
STM32F7 Advanced	M7 @ 216MHz	1MB to 2MB	320KB to 512KB	TFT*, DSI*	√	JPEG*
STM32F750	M7 @ 216MHz	64KB	320KB	TFT	\checkmark	
STM32F469	M4 @ 180MHz	512KB to 2MB	384KB	TFT, DSI	✓	
STM32F429	M4 @ 180MHz	512KB to 2MB	256KB	TFT	✓	
STM32F427	M4 @ 180MHz	1MB to 2MB	256KB		✓	
STM32L4+	M4 @ 120MHz	1MB to 2MB	640KB	TFT*, DSI*	\checkmark	Chrom-GRC*
STM32L496	M4 @ 80MHz	512KB to 1MB	320KB		✓	

STM32 Chrom-ARTTM Accelerator

Efficient 2D graphic acceleration for high-end transitions and effects

- DMA2D 2D Image Copy
 - Mem-to-mem DMA transfer with programmable rectangle area
- Alpha Blender
 - per-object alpha
 - · per-pixel alpha
- Pixel Format convertor
 - Input/output: ARGB8888 / RGB888 / RGB565 / ARGB1555 / ARGB4444
 - Input-only: A4 /A8 alpha bitmap for glyphs, L8 for 256 colors CLUT

2-10% CPU load with Chrom-ART™ 80-100% without

STM32 Chrom-GRCTM


Chrom-GRC™ for Memory Optimization

Chrom-GRC™

- Graphic Resource Cutter for non-square displays
- No modification or special management at SW level
- → Saving up to 20% of RAM footprint for framebuffer

Saved Memory

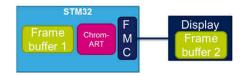
- For 360x360 round display
 - @16bpp ~205kBytes (vs.253kBytes)
 - @24bpp ~307kBytes (vs.380kBytes)
- For 400x400 round display
 - @16bpp: 250kBytes (vs.312kBytes)
 - @24bpp: 372kBytes (vs.469kBytes)

STM32 JPEG Codec

MJPEG video acceleration for branding and tutorial videos

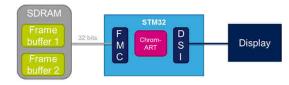
HW JPEG accelerator

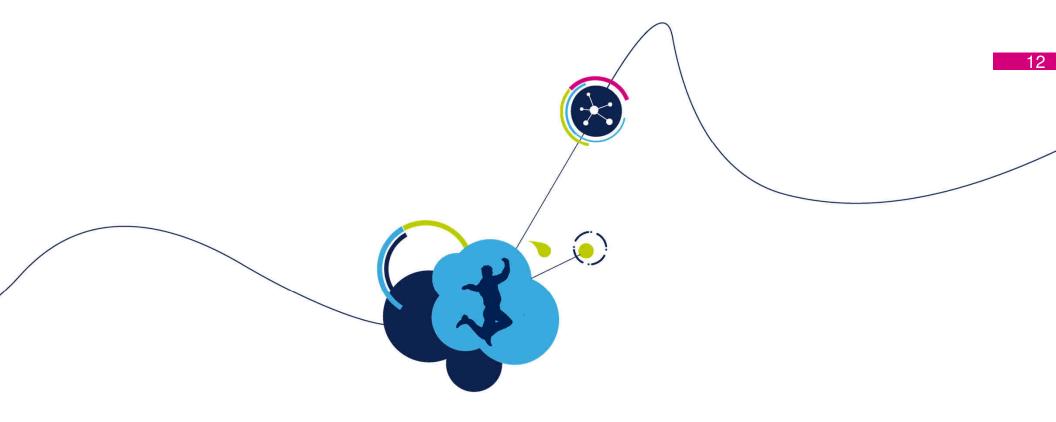
- Fast and simple hardware JPEG compression and decompression
- Full management of JPEG headers
- Supporting motion JPEG videos
 - **→** Saving CPU load for MJPEG management
 - **→** Enhancing branding and user experience
 - → Branding animations at startup
 - **→**End-product embedded tutorials



STM32 Display Interfaces

Intel 8080 and Motorola 6800 LCD interfaces for small resolutions


• TFT controller for medium resolutions (up to XGA) and new generation MiP low power displays


• MIPI-DSI interface for medium resolutions, high pixel density GUI, mainly consumer today

STM32 Graphics Software and Tools

Free State-of-the-art Graphic Software and Tools

Required Pixel Clack (MHz)

Maximum System Pixel Clock (MHz)

New price point

Full features

· Flash kept to the essential

AT!

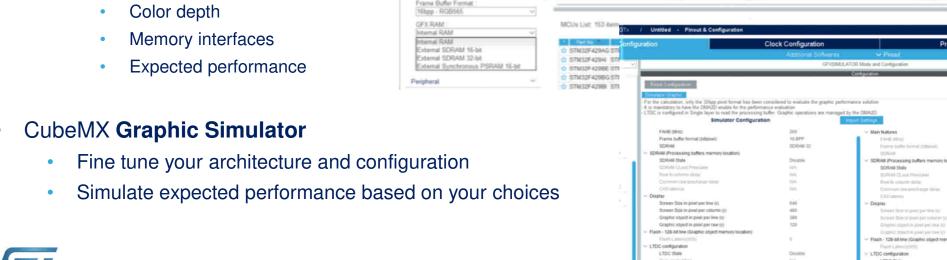
Required Graphic RAM (kBytes) 510.0

Graphic Performance Score (GFXMark) 353 (2)

Find the best STM32 fit with our Graphic Selector and Simulator added in CubeMX

Advanced Graphic

Height: 272 Pixels


Width: 400 Plosts

RGB Parallel 16-bit - RGBS6

Enable Enable

- CubeMX Graphic Selector
 - Select your STM32 based on
 - Display resolution

CubeMX Graphic Simulator

TouchGFX Graphics Framework

Now Part of the STM32 Ecosystem

TouchGFX is a software framework written in C++ that unlocks the graphical user interface of STM32 hardware.

The technology lets you create high-end GUIs that fully live up to today's smartphone standards at a fraction of the cost.

TouchGFX is integrated with the STM32Cube ecosystem.

TouchGFX is FREE with STM32!

TouchGFX Graphics Framework

Maximum Performance

performance on STM32 devices

Unbeatable GUI Performance on STM32

TouchGFX Designer

TouchGFX Engine Embedded graphic library

Easy to Use

Create Anything

unique UI designs

TouchGFX combines a WYSIWYG designer, auto code generation and a PC-simulator with the efficiency and flexibility of the C++ language

The TouchGFX technology enables you to achieve the highest level of smartphone GUI

The structure and flexibility of TouchGFX gives the Developer control to easily create

TouchGFX Designer

RUN ON TARGET

Intuitive Approach to GUI Development

From Idea to Prototype

A simple drag n' drop approach combined with ready-to-use high quality sample graphics enable you to create stunning prototypes in minutes with no need for advanced design and programming skills or TouchGFX knowledge.

From Prototype to Product

TouchGFX Designer supports you throughout your entire UI project by simplifying the process of creating the visual design and layout of your screens and custom controls. Your TouchGFX application code is automatically updated with the changes done in the Designer.

TouchGFX Designer

Accelerates GUI Creation - No Programming Skills Needed for Prototyping

- Structure: TouchGFX Designer lets you create multiple screens while providing a clear view of screen content.
- Widgets: Wide selection of widgets like Swipe container, Scrollable list etc.
- **Interactions:** Add dynamic interactions to create a user-friendly application.
- Custom Container: Create custom reusable controls for your application
- Text Handling: Multiple alphabets and scripts, such as Latin, Cyrillic, Arabic, Chinese, and Japanese.

TouchGFX Code Generation

Realization of any GUI design made easy

- TouchGFX Designer generates and maintains performant C++ code
- Flexible software architecture makes the developer able to easily add his own code
- Developer can use preferred IDE

TouchGFX Engine

Optimized for STM32 Hardware Resources and Acceleration

Optimized for Minimum MCU Load and Memory Foot Print

Compile and Run time Analysis
Utilization of STM32 hardware acceleration

Advanced Rendering Algorithms

Optimized visible surface determination algorithm and customized invalidation techniques minimize the number of drawn pixels

Advanced Graphical Objects

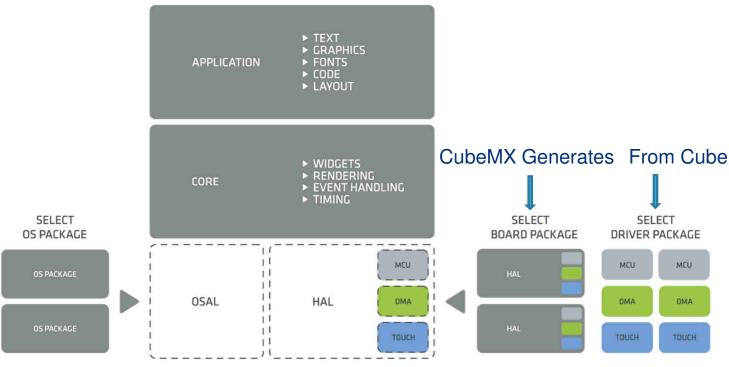
Draw lines, circles, custom shapes, and graphics, or apply scaling and 3D rotation to images at runtime with highly optimized and memory efficient widgets

TouchGFX Framework

Optimized for Memory Resources

- Internal RAM for Library: 11-35 kB
 - 10-20 KB for Framework data structures and GUI task stack
 - 1-15 KB for Widgets used by the Screens
- Internal/External RAM for Framebuffers:
 - Memory usage depends on display resolution, color depth and the number of framebuffers (1,2 or 3)
 - Example: 480x272, 16 bit color, 2
 framebuffers: 480x272 x 2 bytes x 2 = 520 KB

- Internal/External Flash for Library: 21-221 kB
 - 20 kB (framework)
 - 1-200 kB (screen definitions, GUI logic)
- Internal/External Flash for Assets:
 - Depends on the total size of the graphical elements, typically 1-20 MB



TouchGFX Application Components

Software Layers – Low-Level Application Templates available for all STM32 display kits

