

Precise Inclinometers for Structural Health Monitoring and Antenna-Positioning Mechanisms for Communication Systems

Jalinous Esfandyari

Dallas-Richardson, TX | March 7

Agenda

- → ST Product Offerings
- → Brief Overview of Product Specifications
- → Calibration Methods & Tilt Calculation
- → Application Examples

SENSORS & Applications

Available in 2019

Applications

CONSUMER

AXL

6-axis IMU

Mag, E-compass

IOT Wearable Alarm **Smart Home Remote Control Voice Assistant**

Microphone

Pressure, Humidity, **Temperature**

INDUSTRIAL

AXL

6-axis IMU

Mag, E-compass

Indus Robot Positioning Tracking Tilt **Vibration**

Microphone Dedicated AXL

AXL

Gyro

6-axis IMU

Alarm E-call **Telematic** Vehicle tracking

SENSORS

ST offer

IOT

Wearable

Alarm

Smart Home

Remote Control

Voice Assistant

Indus Robot

Positioning

Tracking Tilt

Vibration

CONSUMER

AXL

LSM6DSR

LSM6DSOX

HTS2

MP23DB01HP

MP23DB02MM

Microphone

Pressure, Humidity, **Temperature**

MP34DT06J

LIS2DTW12

INDUSTRIAL

IIS3DHHC

IIS3DWB

6-axis IMU

Mag, E-compass

IMP34DT05

Gyro

AIS2IH

Alarm E-call **Telematic** Vehicle tracking

MP in 18H2

MP in 19H1

SENSORS & MOTION MEMS

ST offer 5

Indus Robot

Positioning

Tracking Tilt **Vibration**

INDUSTRIAL

Available in 2018

Available in 2018

New products for H1 2019

IIS3DHHC

IIS3DWB

6-axis IMU

Mag, E-compass

- IIS2DLPC, IIS3DHHC, IMP34DT05-A: in Mass Production
- ISM330DHC: Mass Production targeted in 19Q1
- IIS2IDCLH, IIS3DWB: Mass Production targeted begin of 19Q2

Brief Overview of Product Specifications

IIS2DH, IIS2DLPC, IIS3DHHC

INDUSTRIAL Accelerometer / Inclinometer

IIS2DH

- ±2 to ±16g FS Accelerometer
- Up to 12 bit resolution for Performance and Embedded Functionalities. LPM & HRM available
- Power consumption:
 - 6µA/11µA in LPM/HRM (@50Hz)
 - 2µA in HRM (@1Hz)
- Embedded features (Interrupts, Filters, FIFO, Temperature sensor, Self-Test)

IIS2DLPC

- ±2 to ±16g FS Accelerometer
- From 12 to 14 bit resolution, Low Power and High Performance Modes, low noise enabled fct
- Ultra Low Power:
 - 0.38µA in Low Power Mode @1.6Hz
 - 3µA in Low Power Mode @50Hz
 - 90 / 120µA in HPM @1.6kHz
 - **50nA** in PD
- single shot and ODR from 1.6 to 1.6kHz, FIFO, Temperature sensor, Self-Test, Interrupts

IIS3DHHC

- 3-axis Inclinometer
- ±2.5g Full Scale, **45µg**/√**Hz** noise
- BW 235, 440Hz
- Temperature behavior optimized:
 - < 0.4 mg/K
 - **0.7**% sensitivity change
 - Ceramic package
- Embedded features (Filters, FIFO, Temperature sensor, Self-Test)
- Enable to reach ~1.5° accuracy over temp & time

Common Features

Industrial applications 10Years longevity

IIS2ICLH, IIS3DWB

INDUSTRIAL Inclinometer / Vibrometer

IIS2ICLH*

- 2-axis accelerometer for high performance inclinometer
- Full scale from ±0.5 to ±4g
- BW from 25 to 200Hz
- 20µg/√Hz noise
- High Temperature performance:
 - 0.05 mg/K
 - -40 to 105°C temperature range
- Enable to reach <0.5° accuracy over temp & time

IIS3DWB*

- 3-axis accelerometer for vibration monitoring
- From ±2 to 16g Full Scale, 90µg/√Hz noise
- BW 5kHz (ODR @26.6kHz)
- -40 to 105°C temperature range
- Embedded features (Filters, FIFO, Temperature sensor, Self-Test)

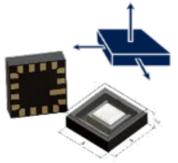
NEW

Industrial applications 10Years longevity

IIS3DHHC - Digital Inclinometer

High Resolution, High Stability 9

Features

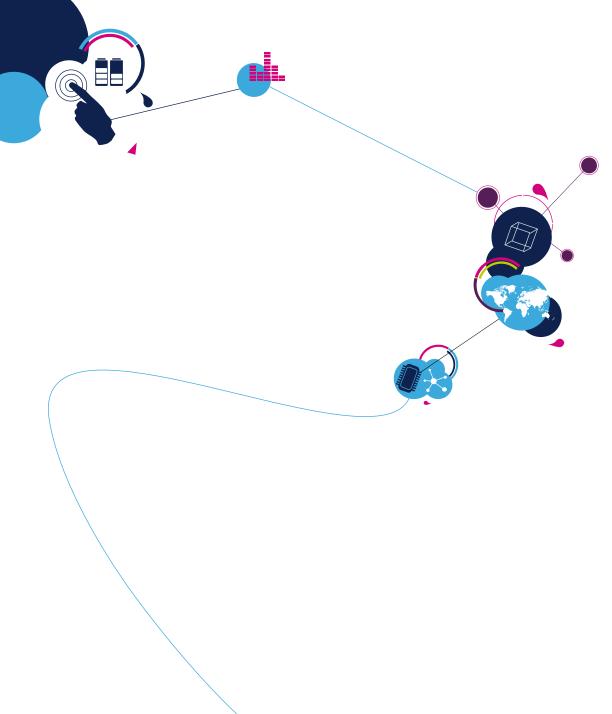

- 10 years longevity commitment
- 3-axis, ±2.5 g Full Scale
- Ultra Low noise: 45 µg/√Hz
- High-stability (offset and sensitivity) over temperature and time
- Digital features (FIFO & Interrupts) to reduce power consumption at system level
- · High end Ceramic Package: LGA 16-lead, 5x5x1.7mm3

Applications

- Precision Inclinometer
- Antenna and platform pointing and leveling
- Structural health monitoring
- Leveling Instruments

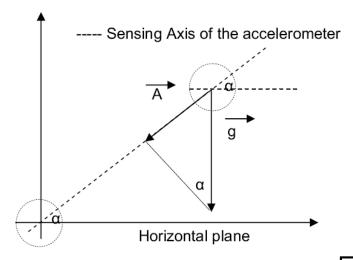
Benefits

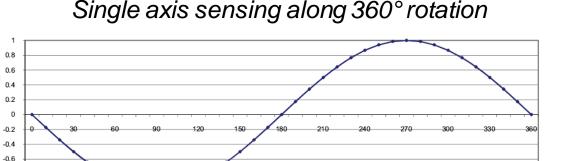
- Continuity and stability of the component supply
- Ultra high resolution
- High stability over temperature and over time
- High end ceramic package
- Ideal solution for accurate inclination sensing



Calibration Methods & Tilt Calculation

Using an Accelerometer





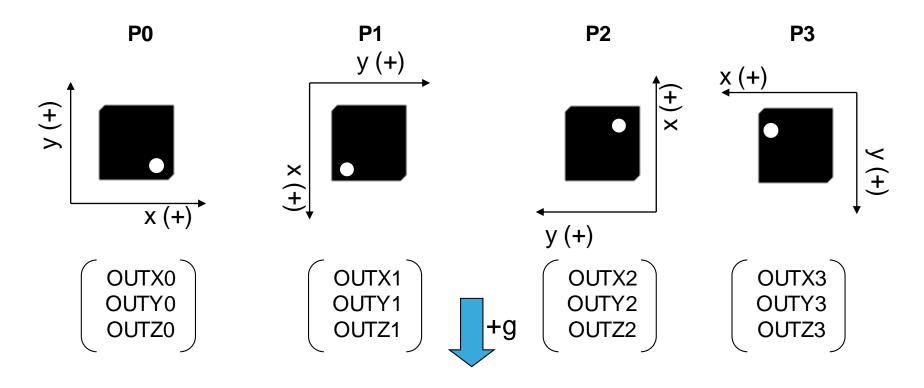
Tilt Calculation Using an Accelerometer

The Basic Concept

- The accelerometer measures the projection of the gravity vector on the sensing axis.
- The amplitude of the sensed acceleration changes as the sine of the angle α between the sensitive axis and the horizontal plane

Angle [°]

$$\alpha = \arcsin(\frac{a}{g})$$



Parameters Calibration For Tilt Calculation

- In order to get accurate tilt calculation using MEMS accelerometers, the following parameters need to be calibrated:
 - Zero-g level offset and sensitivity accuracy
 - Non linearity
 - Cross axis sensitivity
 - Offset and sensitivity drift over temperature

Positions Required for Calibration

 Consider the 4 positions of above and the sensor outputs recorded on each position for a 2-axis accelerometer.

Calibration Formulas (1/2)

Each sensor axis can be calibrated using the following parameters:

 Offset 	(OFFX, OFFY)	[LSB]
 Sensiti 	ivity (SENSX, SENSY)	[LSB/g]
• CrossA	Axis (CXY, CYX)	

 Such parameters can be estimated using the 4 positions in the previous slide using the following approach:

```
OUTX = OFFX + SENSX * (ACCX + ACCY * CXY)/1000 [LSB]

OUTY = OFFY + SENSY * (ACCX * CYX + ACCY)/1000 [LSB]

where ACCX and ACCY are the real acceleration along X and Y (expressed in 'g')
```


Calibration Formulas (2/2)

The parameters will be estimated as follow:

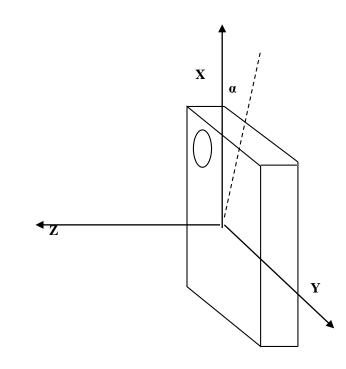
```
OFFX = (OUTX0 + OUTX1 + OUTX2 + OUTX3)/4

SENSX = (OUTX2 - OUTX1)/2

CXY = (OUTX0 - OUTX3)/(2 * SENSX)
```

OFFY = (OUTY0 + OUTY1 + OUTY2 + OUTY3)/4 SENSY = (OUTY0 - OUTY3)/2CYX = (OUTY2 - OUTY1)/(2 * SENSY)

Where OUTXK is the Output in the K position (See slide 1)

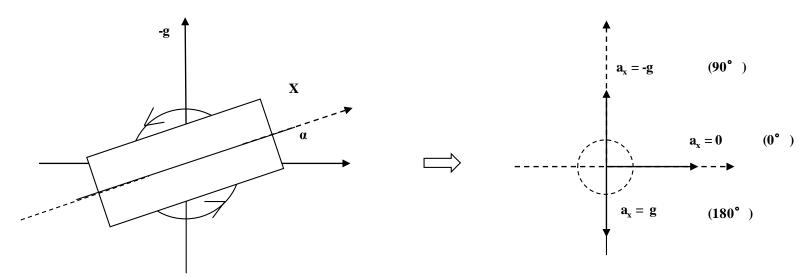

Then solve iteratively to obtain estimated real acceleration value (ACCX', ACCY'):

From Calibrated Data to Tilt Angle

 Once the calibration parameters have been applied to the raw data from the accelerometer, the tilt angle can be calculated with the following formula:

$$\alpha = \arctan\left(\frac{ACCX'}{\sqrt{(ACCY')^2}}\right)$$

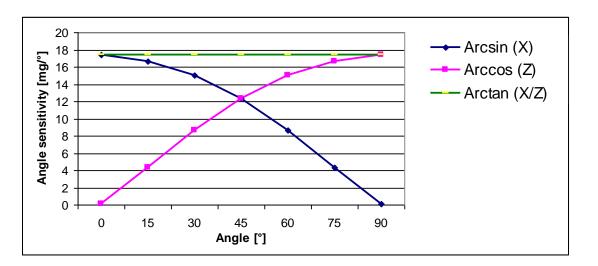
Where ACCX' and ACCY' represent acceleration data after applying calibration formulas.


Sensitivity Variation With Angle

 When the sensing axis is perpendicular to the force of gravity the sensitivity is approximately:

$$17.45 \text{mg/}^{\circ} = [\sin (1^{\circ}) - \sin (0^{\circ})]$$

• Due to the derivate of the *sin* function the sensor is less sensitive to tilt angle changes when the sensing axis is close to ±1g.

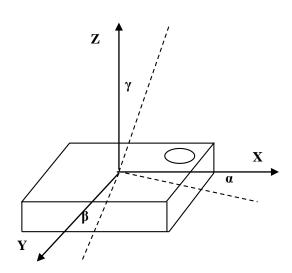

$$0.15 \text{mg/}^{\circ} = [\sin (90^{\circ}) - \sin (89^{\circ})]$$

Constant Sensitivity

Thanks to this approach, sensitivity can be kept constant along a 360° rotation

• The same concept applies to 2-axis tilting on the vertical plane considering $a_z = 0$.

$$\alpha = \arctan\left(\frac{a_X}{\sqrt{(a_Y)^2 + (a_Z)^2}}\right) \longrightarrow \alpha = \arctan\left(\frac{a_X}{\sqrt{(a_Y)^2}}\right)$$

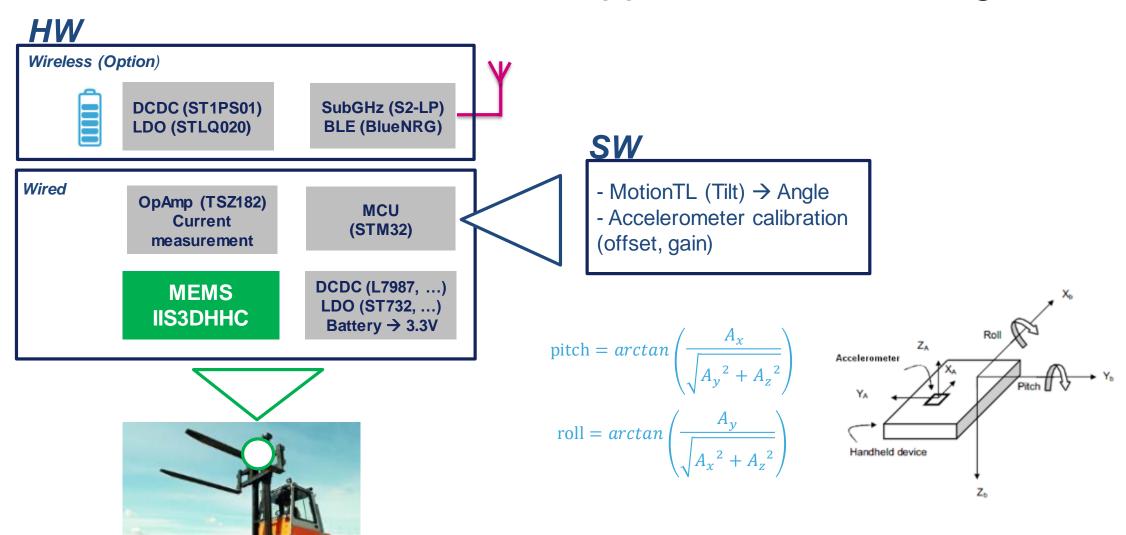


3-axis Tilt Calculation ____

- To measure the tilting independently from 3D space orientation, it's required to use 3-axis linear accelerometer that is able to sense the vector of gravity along all the 3 axes X,Y & Z.
- Trigonometric equations allow to express the angle $\alpha \& \beta$ as a function of a_X , a_Y , a_Z as follow:

$$\alpha = \arctan\left(\frac{a_x}{\sqrt{(a_y)^2 + (a_z)^2}}\right)$$

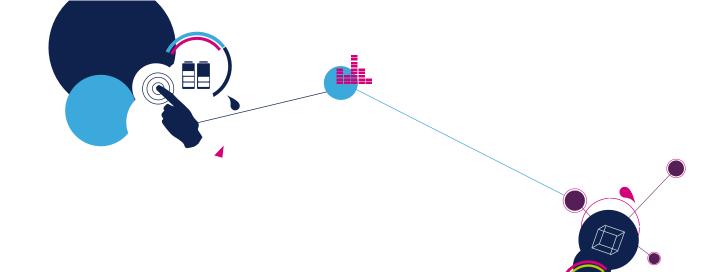
$$\beta = \arctan\left(\frac{a_{Y}}{\sqrt{(a_{X})^{2} + (a_{Z})^{2}}}\right)$$



Inclinometer

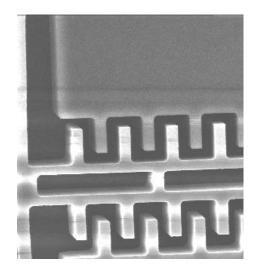
Application Block Diagram

Inclinometer:


Accuracy Estimations 21

Key Parameters	Note	Typical Error - illustrative data	
(KPIs)		[mg]	[°]
Zoro a offoot	No calibration	30	1.72
Zero-g offset	With calibration	0	0
Noise	90 μg/√Hz, BW = 100 Hz	1.1	0.06
Bias drift	Short term	< 1	< 0.06
Zero-g level change vs. temperature	25°C ± 5°C	± 2	± 0.11
Total Error	No calibration	34.1	1.95
Total Lift	With calibration	4.1	0.23

Tilt Sensors	Total error with calibration (-40 ~ 85°C)	
IIS3DHHC	26 mg	1.49 °
IIS2ICLH*	4 mg	0.23 °



Application Examples

Measurements with an Accelerometer

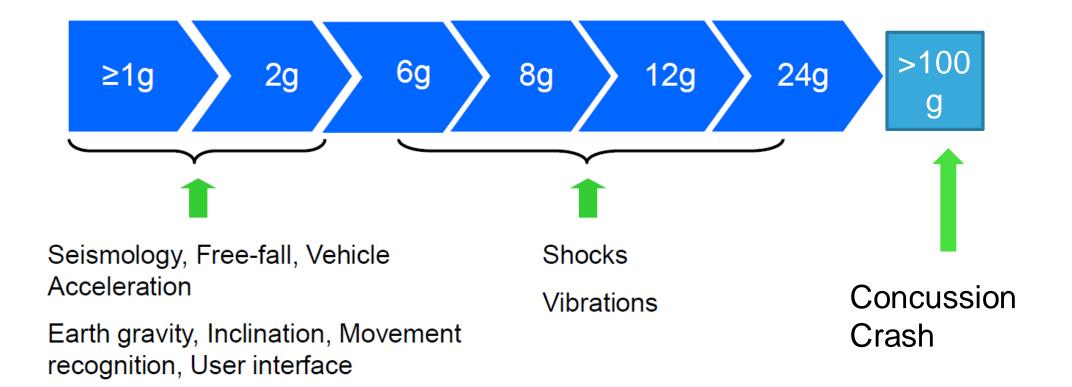
> Accelerometer is a system based on silicon mechanical structure able to sense motion

Acceleration

(dynamic measurement)
Physical activity monitoring

Vibration

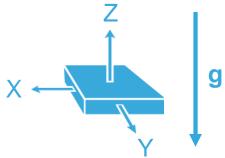
(dynamic measurement)
Involuntary hand motion (Parkinson's diseases,...)

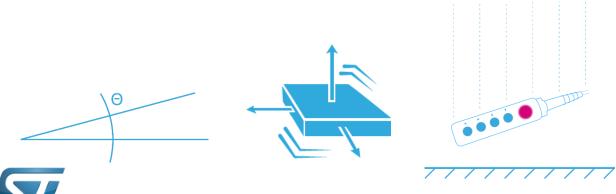


Inclination

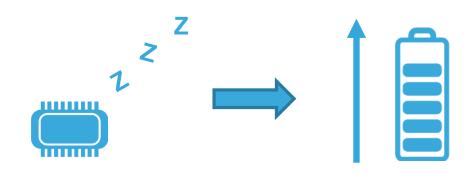
(static measurement) Adjusting stimuli levels in pacemakers

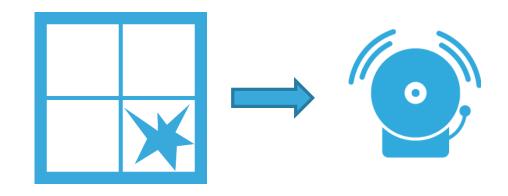
Ful-Scale Range vs. Application




What are the key roles of an Accelerometer

in Applications?


 Acceleration on the 3-axis measurement mg


 Measure tilt, vibrations and fast acceleration variation (free-fall) in industrial applications for predictive maintenance

 Save power (cost) by using accelerometer for wakeup and standby mode

 For alarms, generate interruption to detect unexpected situation

Accelerometer Applications

Consumer, Industrial, Automotive 26

Asset Tracking Shock / WakeUp

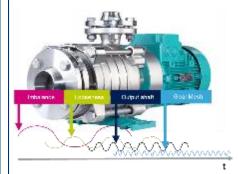
Alarms Tilt / WakeUp

Sport Activity tracking / Pedometer

Predictive maintenance & Monitoring Vibration / Tilt

White Goods Vibration / Tilt

Industrial /Automotive Inclinometer Positioning / Tilt


Car Alarms / PKE* Tilt / Movement

Real Time Condition Monitoring

Condition Monitoring

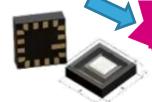
Smart installation

Antenna pointing

Platform Levelling

Ultra wide bandwidth, low noise, digital accelerometer for vibration monitoring

- From ±2g up to ±16g Full Scale
- 5KHz Bandwidth
- Ultra low noise (90 µg/√Hz)
- Package LGA 2.5x3x0.83


Vibrometer IIS3DWB

Ultra accurate, ultra high resolution digital inclinometer Inclinometers:

- High resolution, High accuracy (<0.5° over Temp. and Time)
- Operating range -40÷105C
- High end ceramic
 Package 5x5x1.7 CLGA 16Lead

IIS3DHHC

MP: Q2'19

Inclinometer

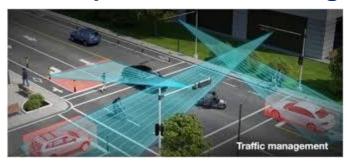
Use Cases

- Scales Tilt Correction
- Compass Tilt Correction
- (Liquid) Level Sensing Tilt Correction
- Construction Equipment and Man Lift Safe Operating Angle
- Crane Boom Angle
- Platform Leveling
- Headlight Leveling

- Factory Automation
 - Precision Inclinometer
 - Robotics
- Building Automation
 - Antenna pointing and platform leveling
- Structural health monitoring
 - Position change detection

- Agricultural Systems & Vehicles
 - Leveling Instruments
 - Fork lifts, Cranes
- Hand Tools
 - Leveling Instruments (laser)

Inclinometer for Precise Positioning



applications

Automotive

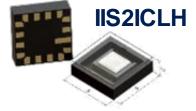
3-axes INCLINOMETER

LiDAR position monitoring

Levelling

LIS3DHHC

Automatic parking brake



High Resolution, High Stability 3-axes Digital Inclinometer

- High-stability (offset and sensitivity) over temperature and time
- ±2.5 g Full Scale
- High End Ceramic Package
 5x5x1.7 CLGA 16Lead

- High resolution, High Accuracy (<0.5° over Temp. and Time)
- Ultra Low Power (0.17mA)
- High End Ceramic Package
 5x5x1.7 CLGA 16Lead

Thank You!

jalinous.esfandyari@st.com