

# Ultrasound Pulsers for Non-Destructive Testing and Medical Imaging Applications

Federico Guanziroli – Digital Designer, Analog Custom Products Marco Viti – Application Manager Piercarlo Scimonelli – Product Marketing Manager



**Technology Tour 2019** 

Toronto, Canada | May 29



#### Presentation Outline \_\_\_\_\_

- Ultrasound physics:
  - Ultrasound waves
  - Propagation
  - **Transducers**
  - Beamforming
  - Doppler effect

- Applications:
  - Medical application
  - NDT application
- System and Products:
  - System Architecture
  - ST portfolio



#### **Ultrasound Waves**

- Sound is a mechanical wave (acoustic wave) coming from a vibrating object, propagating in an elastic medium (solid, liquid or gas) through particle collision
- Ultrasound is a sound wave with frequency above the audible range limit of human hearing (over 20KHz). Standard application frequencies are 500kHz 20MHz.
- From the physical point of view, an ultrasound wave is not different from an acoustic wave







# Ultrasound Wave Propagation

- Longitudinal wave: expansion and compression, particles moving from rest position in the same direction of wave propagation. It can propagate in solid, liquid or gas.
- Shear (transverse) wave: particle vibrations are perpendicular to the wave direction. Speed is lower (about half) than longitudinal wave. It can propagate only in solid mediums.
- Superficial wave: the oscillating motion travels along the surface to a depth of one wavelength; the particle movement is a combination of longitudinal and transverse motion, creating an elliptic pattern of motion. Superficial waves follow the surface profile. It can propagate in solid materials.





#### Main Parameters -

- T [s]: time between two maximums of the waveform (Period)
- v [m/s]: waveform speed, it depends on the material properties (elasticity k and density  $\rho$ ) where  $v = \sqrt{k/\rho}$ .
- λ [m]: waveform length. It is the ratio v/f
- $\alpha$ : medium attenuation, used to calculate the wave attenuation vs. penetration  $A(x) = A_0 e^{-\alpha x}$ 
  - Absorption is the transformation of Ultrasound energy in thermal energy
  - Diffusion is the beam dispersion, attenuation in the propagation direction
- Z: acoustic impedance,  $Z = \rho \cdot v$ . It is the resistance to the ultrasound wave propagation. Impedance mismatch is the cause of scattering, transmission and reflection

| Medium            | v [m/s] | ρ [kg/m³] | Z [MRayl] |
|-------------------|---------|-----------|-----------|
| Air               | 330     | 1.2       | 0.0004    |
| Water             | 1480    | 1000      | 1.48      |
| Aluminum          | 6320    | 2700      | 17.06     |
| Bronze            | 3530    | 8860      | 31.27     |
| Copper            | 4660    | 8930      | 41.60     |
| Iron              | 5900    | 7700      | 45.43     |
| Lead              | 2160    | 11400     | 24.62     |
| Silver            | 3600    | 10500     | 37.80     |
| Titanium          | 6070    | 4500      | 27.31     |
| Blood             | 1584    | 1060      | 1.68      |
| Bone, Cortical    | 3476    | 1975      | 7.38      |
| Cardiac           | 1576    | 1060      | 1.67      |
| Connective Tissue | 1613    | 1120      | 1.81      |
| Muscle            | 1547    | 1050      | 1.62      |
| Soft tissue       | 1561    | 1043      | 1.63      |



### Scattering, Reflection & Transmission

 Scattering: the energy lost when the wave propagates onto a medium interface whose irregularities are comparable with λ (the two mediums must have different acoustic impedance)



 Reflection/Transmission: when an incident wave propagates onto an interface larger than  $\lambda$ , the "ray approximation" can be used.

The reflected wave is the echo







### Transmission and Reflection

Angle of refraction is defined by Snell's law:

$$\frac{\sin \theta_{\rm I}}{c_1} = \frac{\sin \theta_{\rm T}}{c_2}$$



- The angle of reflection is equal to the incident angle
- The fraction of transmitted and reflected energy depends on the acoustic impedance (Z) and incidence angle ( $\theta$ ). The greater the impedance mismatch, the greater the percentage of energy that will be reflected at the interface or boundary between one medium and another

$$R = \frac{(Z_2 \cos \theta_i - Z_1 \cos \theta_t)^2}{(Z_1 \cos \theta_t + Z_2 \cos \theta_i)^2}$$

$$T = 1 - R = \frac{(4Z_1Z_2\cos\theta_i\cos\theta_t)^2}{(Z_1\cos\theta_t + Z_2\cos\theta_i)^2}$$





# Critical angle of incidence









#### 

#### Piezoelectric transducer

based on misalignment of the dipoles

#### **Transmission (TX) mode**

Forcing a voltage on a piezoelectric material, it contracts or expands proportionally to the applied voltage



#### Receiving (RX) mode

Forcing a mechanical stress on a piezoelectric material, it generates an electric field





### Transducer Types

- An Ultrasound transducer is a material able to convert electrical energy into mechanical vibrations (ultrasound wave) and vice versa.
- Mainstream industrial solutions:
  - Piezoceramic (PZT, lead zirconate titanate)
  - CMUT (Capacitive Micro machined Ultrasound Transducer)
  - PMUT (Piezoelectric Micro machined Ultrasonic Transducers)

| Parameters    | PIEZOCERAMIC | CMUT   | PMUT           |
|---------------|--------------|--------|----------------|
| Bandwidth     | narrow       | wide   | wide           |
| Linearity     | high         | low    | low            |
| Sensitivity   | high         | medium | low            |
| Cost          | high         | low    | Medium/<br>low |
| Dimension     | large        | small  | small          |
| HV bias in RX | no           | yes    | no             |





### Physical Structure of Piezo Transducers





#### **Transducer main characteristics:**

- · Physical dimensions
- Resonant frequency:
  - low frequency → lower resolution / higher penetration;
  - high frequency → higher resolution / lower penetration

**Backing material:** absorbing material used to increase beam penetration (on back side)

**Active element:** Piezoelectric material, whose dimension depend on wave characteristic

**Matching Layer:** material used to improve the coupling between active element and the medium



### Transducer arrangement -

#### Single transducer

- Used for both RX and TX
- Alternate phases (TX, wait, RX)

#### Double transducer

- Dedicated transducer for TX
- Dedicated transducer for RX
- Continuous analysis

#### Probe array

- More elements side-by-side
- Dynamic focusing (beamforming)







## Beamforming

- In a probe array application, a delay profile can be used to maximize the energy sent in particular area in TX
- The delay is important also in RX to realign the echo and improve SNR







### Doppler Effect 14

The reflected wave from a moving obstacle shows a frequency shift proportional to the obstacle speed

$$\Delta f = 2 \frac{v \cos \theta}{c} f_0$$

 $v \cos\theta$ : target speed component in the wave propagation direction

c: wave speed

f<sub>0</sub>: wave frequency



- Positive or negative depending on the direction of motion
- Doppler mode has no imaging capability







# Ultrasound and Medical Imaging



Early '50: A-mode (amplitude) image



Late '50: B-mode (brightness) static image



'60: real time B-mode imaging



2000: 3D ultrasound imaging



2010: 4D ultrasound imaging



# Ultrasound NDT application -16

Non-Destructive Testing (NDT) is a technology used to detect defects in materials and structures, either during manufacturing or while in service (cracks, slag, porosity, stringers, ...).

Air or cracks represent a reflector with different acoustic impedance

- By analyzing these reflections it is possible to measure the thickness of a test piece, or find the location of internal flaws.
- Amplitude, frequency and delay of echoes are related to position, speed, material composition and geometry of the target

Ultrasound NDT works with a large number of materials:

- Metals, plastics, ceramics...
- Biological tissue
- It doesn't work well in wood





# Inspection Methodologies

#### Normal beam inspection:

- Longitudinal wave
- Perpendicular to surface
- Not useful on welded areas

#### Angle beam inspection:

- Refracted shear wave (high incident angle to remove longitudinal wave)
- Variable angle between transducer and surface
- Works on area with no irregular surface (welded areas)









### Ultrasound NDT Demo 18



Artificial flaws at various depths





# Ultrasound vs. other NDT Technologies

| Parameters                 | Visual      | X-ray       | Eddy current | Magnetic<br>particle | Liquid<br>penetrant | Infrared<br>thermography | Ultrasonic  |
|----------------------------|-------------|-------------|--------------|----------------------|---------------------|--------------------------|-------------|
| Testing cost               | low         | high        | low/medium   | medium               | low                 | high                     | very low    |
| Time consuming             | short delay | delayed     | immediate    | short delay          | short delay         | short delay              | immediate   |
| Possible to automate       | no          | fair        | good         | fair                 | fair                | good                     | good        |
| Portability                | high        | low         | high/medium  | high/medium          | high                | low                      | high        |
| Type of defect             | External    | all         | external     | external             | Surface<br>breaking | internal                 | internal    |
| Thickness gauging          | no          | yes         | yes          | no                   | no                  | yes                      | yes         |
| Effect of surface geometry | Negligible  | significant | significant  | negligible           | negligible          | negligible               | significant |



# Quality Parameters

- <u>Sensitivity</u> is the ability of a system to detect reflectors at a given depth. The greater the signal that is received from these reflectors, the more sensitive the transducer system.
- <u>Resolution</u> is the ability of a system to detect separate echoes from reflectors placed near to each other.
  - Axial resolution: Smallest detail that can be seen in the direction of propagation, it is equal to λ so it depends on frequency (higher frequency, higher resolution) (+/-1um @ 1MHz)
  - Lateral resolution: Smallest detail that can be seen in the direction perpendicular to the propagation axis. It depends on frequency, transducer width, focusing capability.
  - Near surface resolution is the ability of the ultrasonic system to detect reflectors located close to the surface



|             | High frequency signal | Low frequency signal |
|-------------|-----------------------|----------------------|
| Attenuation | HIGH                  | LOW                  |
| Penetration | LOW                   | HIGH                 |
| Resolution  | HIGH                  | LOW                  |



### Near Field and Far Field 21



www.olympus-ims.com

Ultrasound wave intensity along the beam is not constant because of transducer finite dimension

- Near field: zone close to active element.
  - · Extensive fluctuations in the sound intensity
  - · Difficult evaluate flaws in this zone
- Far field: zone far to active element.
  - · Beam is more uniform
  - · Beam spreads out
  - · Good detection
- Natural focus is the distance between far and near filed.
- Natural focus is the distance where sound wave have the maximum strength



# Signal Excitation 22

**Acoustic Pressure** In transmission









### ST Ultrasound Pulsers



### Medical Ultrasound 24

#### ST technologies for Ultrasound: from Standard Products to Application Specific ICs





### Medical Ultrasound Partitioning

#### High Voltage Stage and Smart Probe





### STHV1600

#### 16 channel Pulser with Beamforming

### Monolithic 16 ch high-speed ultrasound pulser with integrated transmit beamformer

- 0 to 200V peak-to-peak output signal
- Up to 30MHz operating frequency
- Power-up/down sequence free
- Pulsed wave (PW) mode operation:
  - 5/3 RTZ level output, ±2A / ±4A source and sink
- Continuous wave (CW) mode operation:
- Elastography mode operation
- Programmable delays to minimize 2<sup>nd</sup> harmonic distortion
- $11\Omega$  integrated active clamp to ground (±2 A)
- Integrated 9Ω T/R switch
- Digital Core
  - TX Beamforming in transmission mode
  - Programmable single-channel delay
  - Clock frequency up to 200MHz
  - Delay from 0 to 327µs with 5ns resolution
  - 65Kb embedded RAM to store patterns
  - Waveform compression algorithm
  - Control through serial interface (SPI)
- Package: TFBGA144 10x10x1.4mm







# Pulse Wave operation 27





# Continuous Wave operation 28 2017-05-26 10:30:57





#### GUI - HV waveforms builder





# STHV1600 evaluation kit STEVAL-IME014V1B

The kit consists of three connected modules:

- Pulser module (STEVAL-IME014V1):
  - STHV1600 16-channel pulser and buttons
  - Four preset programs and waveforms
  - USB interface to change programs and waveforms
  - · Pushbutton interface to control waveform generation
  - Status LEDs
- Power supply module (STEVAL-IME014V1D):
  - Four high voltage and one low voltage supply lines
  - · All low voltage supplies generated on-board
- STM32 Nucleo microcontroller module:
  - STM32 microcontroller

1. Nucleo F401RE



2. STEVAL-IME014V1





3. STEVAL-IME014V1D

### STHV748S

#### 4 channel pulser

### Monolithic 4 channel, 5 level, high voltage pulser

- Pinout compatibility with best selling STHV748
- 0 to ±90V output voltage
- Up to 20MHz operating frequency
- · PW operation:
  - 3/5-level output waveform
  - ±2 A source and sink current
  - ≤ 20 ps jitter

#### Continuous wave (CW) operation:

- ≤ 0.1 W power consumption
- ±0.6 A source and sink current
- 205 fs RMS jitter [100 Hz-20 kHz]
- Integrated 8 Ω synchronous active clamp
- Integrated T/R switch
  - 13.5 Ω on-resistance
  - Up to 300 MHz BW
  - Receiver multiplexing function
- 1.8V to 3.6V CMOS logic interface
- Package: QFN64 9X9 mm









## STHV800

#### 8 channel pulser

#### Monolithic 8 channels, 3 level, high voltage pulser

- Up to ±90V output voltage
- Up to 20MHz operating frequency
- Two independent half-bridges per channel, one dedicated to continuous wave (CW) mode
- Main half bridge (±2A source and sink current, 20ps jitter
- CW half bridge (±0.3A source and sink current, 10ps jitter)
- Integrated T/R switches (8Ω, 300MHz BW)
- Integrated active clamp switches (8Ω, ±2A)
- · 6 capacitors integrated in the package
- Power up free
- Current consumption down to 10µA in RX phase
- · Anti memory function
- 1.8V to 3.6V CMOS logic interface
- Package: LGA 8X8 mm 56 leads







### STHV64SW

#### 64 channel HV Switches

#### Monolithic 64 independent High Voltage Analog Bi-directional Switches

- 200 V peak-to-peak input and output signal
- Three main operating ranges:
  - From -100 V to +100 V
  - From 0 V to 200 V
  - From -200 V to 0 V
- ±3 A peak output current.
- Very fast input slew rate (40V/ns at no load)
- Low on-resistance (10OHM)
- · Low cross-talk between channels
- 40kOHM bleed resistor on the outputs
- Recirculation current protection on input and output

TX/RX CHAIN

- · Control through serial interface
- 20 MHz data shift clock frequency
- TFBGA196 12x12





## Differential drive for very high voltage



Single ended drive



Differential drive with two pulsers





400Vpp differential pulsed wave with two channels supplied at  $\pm -100$ V



# Ultrasound Imaging ST Key Differentiators

#### Customized BCD8SOI technology, optimized for ultrasound

3/5/7/9 output levels to enhance image quality

Integrated T/R switch and Beamforming

Very low 10ps jitter for accurate frequency response in echo-doppler

Very short 5ns HV pulse piezo transducer control, for superior image quality



### ST Vision 35

#### Towards higher integration



32 and 128 Channels

Linear/Pulser 2 Channels

STHV1600 16 Channels

