Digital power control with STNRG011

Digital Combo PFC+LLC Controller

High Integration for Efficient Digital SMPS Design

Complete Evaluation Ecosystem

Advanced Power Supply Control Topics
STNRG Provides a Complete Offline Digital Controller Solution

Highlights

- On chip HV Half Bridge and PFC drivers
- Complete set of PFC and LLC protections
- UART interface for monitoring functions and black box recording
Highly integrated digital SMPS controller

STNRG011 KEY FEATURES:

• 800V start-up circuit, line sense and Xcap discharge integration
• On chip HV Half Bridge and PFC drivers
• FTP memory for parameters customization
• Complete set of PFC and LLC protections
• UART interface for monitoring functions and black box recording
• Very low no load consumption (<100 mW)
• Ramp Enhanced Constant-On-Time (RECOT) multimode PFC and Time Shift LLC controllers
• Enhanced burst mode

KEY BENEFITS:

• Flexible, ROM based solutions
• Smooth transition from analog to digital SMPS
• High efficiency, low BOM count
• Excellent no load consumption (<100 mW)
High integration for efficient digital SMPS design

Integrated Digital Combo Controller Ideal for 90W to 300W SMPSs

Highlights

- Integrated digital control of HV AC/DC converter
- Low distortion front-end PFC controller
- Efficient LLC converter controller
On Chip HV&LV Drivers with 1A Peak Current
- Embedded 8-bit Core with 60MHz Clock
- 10 bit ADC with 15MHz clock, 1.5us Sampling Time
- Programmable State Machine for PWM Generation
- NVM Memory to Program Application Parameters
- UART&I2C Communication Interface

Digital COMBO PFC + LLC Control

Integrated digital control of HV AC/DC converter
Power Factor Correction Controller

- Digitally managed
 - Vout is converted through the ADC
 - Digital PI for voltage regulation
 - 2 coupled SMEDs generate the PWM signal

- Ramp Enhanced Constant On Time with 2 speed loop
 - Allows achieving very good PF & THD and dynamics
 - Ramp compensates input capacitive currents for high PF

- Multi mode operation
 - TM @ medium / high loads
 - TM, Valley skipping & skipping area @ low load
 - Burst mode @ very low load

PFC Control Structure
Efficient LLC converter controller

Resonant Controller

• LLC Control managed in Mixed Mode
 • Compensation done on secondary side
 • ADC samples opto feedback
 • 2 coupled SMEDs generate the PWM signal
 • The internal core calculates the Time Shift

• Time Shift control
 • Improved dynamic performance
 • Easy compensation
 • Great input voltage ripple rejection (> 50dB)

• Advanced features & protections
 • Safe start
 • Anti Capacitive Protection
 • Over Current management
 • Burst Mode Operation driven by LLC
available with a complete evaluation platform

Complete hardware and software solution

Highlights

• Hardware evaluation platform
• Comprehensive software tools
• Compliance through innovative digital control
A Complete set of tools is available to ease design and test

150W-12V adapter based on STNRG011 and SRK2001

GUI interface for easier configurability

STNRG011 Samples available Board prototype available

Maximum efficiency: state of the art algorithms for PCF & LLC
Communication: programmability and data monitoring
Fully Integrated solution: HV start-up & drivers

Industrial PSU
Alinco-Cone
High power adaptors
A complete development ecosystem

• INTERFACE board
 • Connect the STNRG011 board communication connector with the PC USB port
 • Converts the UART and I2C of STNRG011 to USB protocol
 • Provides electrical insulation between PC and board under test
 • Provides Vcc to STNRG011 to enable ATE mode and to program E2PROM chip

• PC GUI
 • Manages NVM reading and programming (ATE mode)
 • To manage E2PROM read & write
 • Read back real-time performance data
 • To communicate with the IC during operation
Adjust parameters with digital control

- **PROTECTIONS**
 - Protections behavior (latch / auto restart)
 - Protections levels & timings
- **COMPARATORS** filtering & hysteresis
- **PFC**
 - PFC soft start
 - PFC loop compensation
 - PFC light load behavior
 - PFC RECOT parameters (on the fly THD adjustment)
 - PFC maximum frequency
 - PFC nominal, minimum (UVP) and maximum (OVP) output voltages
- **LLC**
 - LLC dead-time
 - LLC safe start & soft start parameters
- **BURST mode operation**
 - in/out thresholds
 - Burst pulses definition
150W-12V SMPS schematic
150W platform meets global efficiency standards

<table>
<thead>
<tr>
<th>Eu CoC 5 EPS Tier 2</th>
<th>Limits</th>
<th>Result 115Vac</th>
<th>Result 230Vac</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 points avg</td>
<td>> 0.89</td>
<td>0.900</td>
<td>0.913</td>
<td>Pass</td>
</tr>
<tr>
<td>Eff @ 10%</td>
<td>> 0.79</td>
<td>0.836</td>
<td>0.859</td>
<td>Pass</td>
</tr>
<tr>
<td>No load</td>
<td>< 0.15 W</td>
<td>0.07</td>
<td>0.0934</td>
<td>Pass</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy star 6.0 for computer</th>
<th>Limits</th>
<th>Result 115Vac</th>
<th>Result 230Vac</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eff @ 20%</td>
<td>> 0.82</td>
<td>0.857</td>
<td>0.866</td>
<td>Pass</td>
</tr>
<tr>
<td>Eff @ 50%</td>
<td>> 0.85</td>
<td>0.902</td>
<td>0.911</td>
<td>Pass</td>
</tr>
<tr>
<td>Eff @ 100%</td>
<td>> 0.82</td>
<td>0.914</td>
<td>0.929</td>
<td>Pass</td>
</tr>
<tr>
<td>PF @ 100%</td>
<td>> 0.9</td>
<td>0.994</td>
<td>0.982</td>
<td>Pass</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOE – EISA 2007 (from 2016)</th>
<th>Limits</th>
<th>Result 115Vac</th>
<th>Result 230Vac</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 points avg</td>
<td>> 0.88</td>
<td>0.900</td>
<td>0.913</td>
<td>Pass</td>
</tr>
<tr>
<td>No load</td>
<td>< 0.15 W</td>
<td>0.07</td>
<td>0.0934</td>
<td>Pass</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ErP Lot 7</th>
<th>Limits</th>
<th>Result 115Vac</th>
<th>Result 230Vac</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 points avg</td>
<td>> 0.87</td>
<td>0.900</td>
<td>0.913</td>
<td>Pass</td>
</tr>
<tr>
<td>No load</td>
<td>< 0.5 W</td>
<td>0.07</td>
<td>0.0934</td>
<td>Pass</td>
</tr>
</tbody>
</table>
Advanced digital control topics

High efficiency through high performance control algorithms

Highlights

• High level system architecture
• Power factor correction details
• LLC converter technical details
STNRG011 architecture and pinout
Power Factor Correction overview

<table>
<thead>
<tr>
<th>KEY features</th>
<th>Algorithms & Operations</th>
</tr>
</thead>
</table>
| - PFC LV LS driver integrated
 - Up to 20V
 - 1A Peak Current Drive Capability
- Integrated HV start up & HV sense for AC line sense
- AC disconnection detection & Xcap discharge
- Brown out detection
- Surge detection | - Ramp Enhanced Constant On Time (ST patented) with 2 speed loop
 - Very good PF, THD and dynamic performance
 - New “Ramp” compensation (patented): compensate input capacitive loads to achieve highest PF
- Multi mode operation
 - TM at medium / high loads
 - TM, Valley skipping & Skipping Area at low load
 - Burst Mode at very low load |
• **PFC control loop** is managed **digitally**

 - Vout is converted through the ADC
 - Compensation is done with a PI filter (calculation made by the core)
 - 2 coupled SMEDs generates the PWM signal

\[
i_m(t) \approx I = \frac{v_{AC} \times t_{ON}}{2L} \tag{1}
\]
Power Factor Correction details: eCOT

- Considerable reduction of the cross-over distortion with enhanced COT:
 - Current level (I_{TH}) defines the start of the Ton period
 - Compensation of the energy lost in MOS charging
 - More effective energy transfer when the instantaneous line voltage is very low.
 - Using eCOT is it possible to join the benefit of COT and TM:
 - Easy implementation
 - Low switching losses
 - High PF & THD

\[I_{in} \approx V_{inpk} \cdot \sin \theta \cdot \frac{T_{ON}}{2} \cdot L - I_{neg} \] (2)

\[I_{in} = V_{inpk} \cdot \sin \theta \cdot \frac{T_{ON}}{2L} + V_{inpk} \cdot \sin \theta \cdot \sqrt{\frac{\text{Coss}}{L}} - V_{o} \sqrt{\text{Coss}} \] (3)

\[I_{TH} = V_{o} \cdot \sqrt{\frac{\text{Coss}}{L}} \] (4)

\[I_{in} \approx V_{inpk} \cdot \sin \theta \cdot \frac{T_{ON}}{2} \cdot L - I_{neg} + I_{TH} \] (5)

\[I_{in} \approx V_{inpk} \cdot \sin \theta \cdot \frac{T_{ON}}{2} \cdot L - I_{neg} + V_{inpk} \cdot \sin \theta \cdot \sqrt{\frac{\text{Coss}}{L}} \] (6)

\[I_{in} \approx K \cdot V_{inpk} \cdot \sin \theta \] (7)
Ramp eCOT allows compensating reactive energy (current) generated by big input filtering capacitor.

All PFCs have one or more capacitors to filter current ripple.

Capacitor current is 90° out of phase.
 - Power factor and distortion are impacted.

PFC details: recot 1/2
ReCOT implementation concept.
PFC details: multimode operation

- PFC uses valley skipping to switch between TM, valley skipping & skipping area and DCM

Max load ➔ TM

Mid load ➔ valley skipping

Low load ➔ Skipping area
LLC resonant converter features

<table>
<thead>
<tr>
<th>KEY features</th>
<th>Algorithms & Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLC HV Half Bridge drivers integrated</td>
<td></td>
</tr>
<tr>
<td>* Up to 600 V</td>
<td></td>
</tr>
<tr>
<td>* 1 A Peak current drive capability</td>
<td></td>
</tr>
<tr>
<td>Matched propagation delays between both channels</td>
<td></td>
</tr>
<tr>
<td>dV/dt immunity ± 50 V/ns</td>
<td></td>
</tr>
<tr>
<td>Advanced features & protections</td>
<td></td>
</tr>
<tr>
<td>* Safe start</td>
<td></td>
</tr>
<tr>
<td>* Anti Capacitive Protection</td>
<td></td>
</tr>
<tr>
<td>* Over Current management</td>
<td></td>
</tr>
<tr>
<td>Time-shift control (ST patented)</td>
<td></td>
</tr>
<tr>
<td>* Improved dynamic performance</td>
<td></td>
</tr>
<tr>
<td>* Easy compensation</td>
<td></td>
</tr>
<tr>
<td>* Great input voltage ripple rejection (> 50 dB)</td>
<td></td>
</tr>
<tr>
<td>Burst Mode operation</td>
<td></td>
</tr>
<tr>
<td>* LLC drives burst mode operation</td>
<td></td>
</tr>
<tr>
<td>* Fixed burst packet with soft start / stop for reduced acoustic noise</td>
<td></td>
</tr>
<tr>
<td>* Most of the circuitry is turned off during no switching periods, I_{cc} = 500 , \mu A</td>
<td></td>
</tr>
</tbody>
</table>
LLC details: time shift algorithm

- Time-shift T_D is defined as **time elapsing from zero-crossing of tank current to next half-bridge toggling**
- A relationship exists between T_D and tank current phase-shift Φ_Y: $\Phi_Y = 180°\left(1 - 2\frac{T_D}{T_{SW}}\right)$
- PWM is toggled after T_D has elapsed from tank current zero crossing
- T_D is calculated by μC based on ADC reading from FB
• **LLC control loop is managed in mixed mode**
 • Compensation is done at secondary side with standard analog circuitry
 • The information from the optocoupler is sampled with the ADC
 • The core calculates the time shift and the SMEDs generates the HS & LS PWM
LLC details: time shift benefits vs DFC

- TSC makes LLC resonant converter dynamics very close to that of a first-order system
- Frequency compensation is much easier
- Response to perturbations is overdamped
- TSC improves load transient response
- Overshoots and undershoots are nearly halved
- Settling time is reduced 3-4 times
- TSC improves input ripple rejection
- 100 Hz gain can be increased considerably
- Rejection ratio increases by more than 15 dB
- TSC prevents hard switching at start-up
- Converter reliability is improved
- Moreover STNRG011 implements the safe start: before the soft start the LVG is turned on for about 10 us order to discharge the resonant capacitor
LLC operation

- Safe start
- Full load start-up
- Full load steady state
- Min load steady state
LLC dynamic performance

Step load (min ↔ max) on main output

Mains freq ripple rejection ≈ 50dB