

Digital power control with STNRG011

Digital combo PFC+LLC controller

Highly integrated digital SMPS controller

STNRG011 KEY FEATURES:

- 800V start-up circuit, line sense and Xcap discharge integration
- On chip HV Half Bridge and PFC drivers
- FTP memory for parameters customization
- Complete set of PFC and LLC protections
- UART interface for monitoring functions and black box recording
- Very low no load consumption (<100 mW)
- Ramp Enhanced Constant-On-Time (RECOT) multimode PFC and Time Shift LLC controllers
- Enhanced burst mode

KEY BENEFITS:

- Flexible, ROM based solutions
- Smooth transition from analog to digital SMPS
- High efficiency, low BOM count
- Excellent no load consumption (<100 mW)

High integration for efficient digital SMPS design

Integrated digital control of HV AC/DC converter

Digital COMBO PFC + LLC Control

- On Chip HV&LV Drivers with 1A Peak Current
- Embedded 8-bit Core with 60MHz Clock
- 10 bit ADC with 15MHz clock, 1.5us Sampling Time
- Programmable State Machine for PWM Generation
- NVM Memory to Program Application Parameters
- UART&I2C Communication Interface

Low distortion front-end PFC controller

Power Factor Correction Controller

- Digitally managed
 - Vout is converted through the ADC
 - Digital PI for voltage regulation
 - 2 coupled SMEDs generate the PWM signal
- Ramp Enhanced Constant On Time with 2 speed loop
 - Allows achieving very good PF & THD and dynamics
 - Ramp compensates input capacitive currents for high PF
- Multi mode operation
 - TM @ medium / high loads
 - TM, Valley skipping & skipping area @ low load
 - Burst mode @ very low load

Efficient LLC converter controller

Resonant Controller

- LLC Control managed in Mixed Mode
 - Compensation done on secondary side
 - ADC samples opto feedback
 - 2 coupled SMEDs generate the PWM signal
 - The internal core calculates the Time Shift
- Time Shift control
 - Improved dynamic performance
 - Easy compensation
 - Great input voltage ripple rejection (> 50dB)
- Advanced features & protections
 - Safe start
 - Anti Capacitive Protection
 - Over Current management
 - Burst Mode Operation driven by LLC

STNRG011 available with a complete evaluation platform

EVLSTNRG011-150 an integrated platform

A Complete set of tools is available to ease design and test

Maximum efficiency: state of the art algorithms for PCF & LLC

Communication: programmability and data monitoring

Fully Integrated solution: HV start-up & drivers

150W-12V adapter based on STNRG011 and SRK2001

GUI interface for easier configurability

STNRG011

available

Board prototype available

A complete development ecosystem

INTERFACE board

- Connect the STNRG011 board communication connector with the PC USB port
 - Converts the UART and I2C of STNRG011 to USB protocol
 - Provides electrical insulation between PC and board under test
 - Provides Vcc to STNRG011 to enable ATE mode and to program E2PROM chip

PC GUI

- Manages NVM reading and programming (ATE mode)
- To manage E2PROM read & write
- Read back real-time performance data
- To communicate with the IC during operation

Adjust parameters with digital control

PROTECTIONS

- Protections behavior (latch / auto restart)
- Protections levels & timings
- COMPARATORS filtering & hysteresis
- PFC
 - PFC soft start
 - PFC loop compensation
 - PFC light load behavior
 - PFC RECOT parameters (on the fly THD adjustment)
 - PFC maximum frequency
 - PFC nominal, minimum (UVP) and maximum (OVP) output voltages
- IIC
 - LLC dead-time
 - LLC safe start & soft start parameters
- BURST mode operation
 - in/out thresholds
 - Burst pulses definition

150W-12V SMPS schematic

150W platform meets global efficiency standards

Eu Coc 5 EPS Tier 2	Limits	Result 115Vac	Result 230Vac	Status
4 points avg	> 0.89	0.900	0.913	Pass
Eff @ 10%	> 0.79	0.836	0.859	Pass
No load	< 0.15 W	0.07	0.0934	Pass

Energy star 6.0 for computer	Limits	Result 115Vac	Result 230Vac	Status
Eff @ 20%	> 0.82	0.857	0.866	Pass
Eff @ 50%	> 0.85	0.902	0.911	Pass
Eff @ 100%	> 0.82	0.914	0.929	Pass
PF @ 100%	> 0.9	0.994	0.982	Pass

DOE – EISA 2007 (from 2016)	Limits	Result 115Vac	Result 230Vac	Status
4 points avg	> 0.88	0.900	0.913	Pass
No load	< 0.15 W	0.07	0.0934	Pass

ErP Lot 7	Limits	Result 115Vac	Result 230Vac	Status
4 points avg	> 0.87	0.900	0.913	Pass
No load	< 0.5 W	0.07	0.0934	Pass

Advanced digital control topics

High efficiency through high performance control algorithms

Highlights

- High level system architecture
- Power factor correction details
- LLC converter technical details

STNRG011 architecture and pinout

Power Factor Correction overview

KEY features

- PFC LV LS driver integrated
 - Up to 20V
 - 1A Peak Current Drive Capability
- Integrated HV start up & HV sense for AC line sense
- AC disconnection detection & Xcap discharge
- Brown out detection
- Surge detection

Algorithms & Operations

- Ramp Enhanced Constant On Time (ST patented) with 2 speed loop
 - Very good PF, THD and dynamic performance
 - New "Ramp" compensation (patented): compensate input capacitive loads to achieve highest PF
- Multi mode operation
 - TM at medium / high loads
 - TM, Valley skipping & Skipping Area at low load
 - Burst Mode at very low load

PFC control principle

PFC control loop is managed digitally

- Vout is converted through the ADC
- Compensation is done with a PI filter (calculation made by the core)
- 2 coupled SMEDs generates the PWM signal

$$i_{in}(t) \approx \bar{I} = \frac{v_{AC} \times t_{ON}}{2L}$$
 (1)

Power Factor Correction details: eCOT

- Considerable reduction of the cross-over distortion with enhanced COT:
 - Current level (I_{TH}) defines the start of the Ton period
 - Compensation of the energy lost in MOS charging
 - More effective energy transfer when the instantaneous line voltage is very low.
 - Using eCOT is it possible to join the benefit of COT and TM:
 - Easy implementation
 - Low switching losses
 - High PF & THD

$$\overline{\lim} \approx \operatorname{Vin}_{\mathrm{pk}} \cdot \sin \theta \cdot \frac{\mathrm{T}_{\mathrm{ON}}}{2 \cdot \mathrm{L}} - \operatorname{Ineg}$$
 (2)

$$I_{in} = Vin_{pk} \cdot \sin \theta \cdot \frac{T_{ON}}{2L} + Vin_{pk} \cdot \sin \theta \sqrt{\frac{Coss}{L}} - Vo\sqrt{\frac{Coss}{L}}$$
 (3)

$$I_{TH} = Vo \cdot \sqrt{\frac{Coss}{L}}$$
 (4)

$$\overline{\text{lin}} \approx \text{Vin}_{\text{pk}} \cdot \sin \theta \cdot \frac{T_{\text{ON}}}{2 \cdot L} - \text{Ineg} + I_{\text{TH}}$$
 (5)

$$\overline{\text{lin}} \approx \text{Vin}_{\text{pk}} \cdot \sin \theta \cdot \frac{T_{\text{ON}}}{2 \cdot L} - \text{Ineg} + \text{Vin}_{\text{pk}} \cdot \sin \theta \cdot \sqrt{\frac{\text{Coss}}{L}}$$
 (6)

$$\overline{\lim} \approx \mathbf{K} \cdot \mathbf{Vin_{nk}} \cdot \sin \theta \tag{7}$$

PFC details: recot 1/2

- Ramp eCOT allows compensating reactive energy (current) generated by big input filtering capacitor
- All PFCs have one or more capacitors to filter current ripple
- Capacitor current is 90° out of phase
 - Power factor and distortion are impacted

PFC details: recot 2/2

ReCOT implementation concept.

PFC details: multimode operation

• PFC uses valley skipping to switch between TM, valley skipping & skipping area and DCM

LLC resonant converter features

KEY features

- LLC HV Half Bridge drivers integrated
 - Up to 600 V
 - 1 A Peak current drive capability
- Matched propagation delays between both channels
- dV/dt immunity ± 50 V/ns
- Advanced features & protections
 - Safe start
 - **Anti Capacitive Protection**
 - Over Current management

Algorithms & Operations

- Time-shift control (ST patented)
 - US877387 • Improved dynamic performance
 - Easy compensation
 - Great input voltage ripple rejection (> 50 dB)
- Burst Mode operation
 - LLC drives burst mode operation
 - Fixed burst packet with soft start / stop for reduced acoustic noise
 - Most of the circuitry is turned off during no switching periods, Icc = 500 uA

LLC details: time shift algorithm

- Time-shift T_D is defined as time elapsing from zero-crossing of tank current to next half-bridge toggling
- A relationship exists between T_D and tank current phase-shift Φ_Y : $\Phi_Y = 180^{\circ} \left(1 2\frac{T_D}{T_{SW}}\right)$
- PWM is toggled after T_D has elapsed from tank current zero crossing
- T_D is calculated by μC based on ADC reading from FB

LLC control principle

LLC control loop is managed in mixed mode

- Compensation is done at secondary side with standard analog circuitry
- The information from the optocoupler is sampled with the ADC
- The core calculates the time shift and the SMEDs generates the HS & LS PWM

LLC details: time shift benefits vs DFC

- TSC makes LLC resonant converter dynamics very close to that of a first-order system
- Frequency compensation is much easier
- Response to perturbations is overdamped
- TSC improves load transient response
- Overshoots and undershoots are nearly halved
- Settling time is reduced 3-4 times
- TSC improves input ripple rejection
- 100 Hz gain can be increased considerably
- Rejection ratio increases by more than 15 dB
- TSC prevents hard switching at start-up
- Converter reliability is improved
- Moreover STNRG011 implements the safe start: before the soft start the LVG is turned on for about 10 us order to discharge the resonant capacitor

LLC operation

Safe start

Full load steady state

Full load start-up

Min load steady state

LLC dynamic performance

Step load (min ←→ max) on main output

Mains freq ripple rejection ≈ 50dB

