## Automation



Rotary Inverted Pendulum

Walking Robot

Maze Game

Humanoid robot

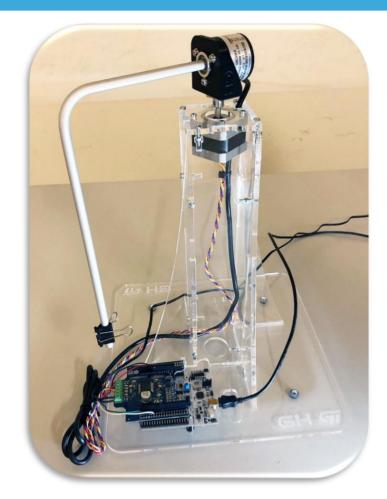


# Rotary Inverted Pendulum



A Kit to Experiment with Stepper Motor Control and Control Systems

Based on STM32 ODE


Part of a Large Educational Ecosystem





## Furuta Rotary Inverted Pendulum Kit

#### Experiment with motor control and control systems



#### Components

- Nucleo F401RE
- IHM01A1 Motor Controller with L6474PD
- Stepper Motor
- Optical Encoder

#### Structure

- Interlocking easy to assemble structure
- Rigid structure
- Customizable motor mount

#### System Power

- 12V Power Supply
- 5V USB Power or Computer Interface via USB





## Ecosystem

#### The system can be upgraded in the future





- Stepper Motor systems appear in broad class of consumer, vehicle, industrial and medical robotics systems
- Brushless Motor with integrated encoder rapidly expanding in each application area
- Multiple Sensor and Structural Choices





## Highly Flexible Architecture

#### Based on STM32 ODE

- Learn the basic of stepper motor control
- Experiment with different control system strategies in a real time solved unstable system (PID, root locus, State Space, LQR etc...)
- Interface with MATLAB to build custom electro-mechanical models and asses system performances in real time





### Ideal Educational Tool

#### The education is the key essence

- Motor Control Curriculum based on an unstable system
  - Instructor objectives
    - Introduce Frequency Response Design
    - Introduce Root-Locus Design
    - Enable course projects
    - Provide all students with access to platforms in Year 1
- System Development
  - Developed Frequency Response Design application
  - Developed Root-Locus Design application
- Full open source curriculum material under development @ UCLA





## **Educational Platform Roadmap**

### Part of a large educational ecosystem

### **Embedded Systems**

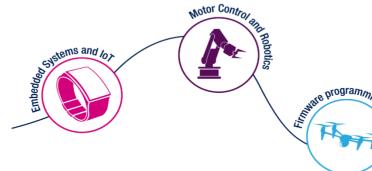
Low level FW Drone01



programming with



**Power Electronics** 










Capstone level course on IoT



Introduction to motor control and control systems





Electrical Eng.

**Computer Science** 

IoT

Electrical Eng.

Control & Automation

Robotics

Aerospace

development:

**Future development under** 

More on motor control

**Power conversion** 



# Walking Robot



STSPIN32F0

3 phase motor controller with embedded STM32 MCU

New FW algorithms

From position control to servo drive

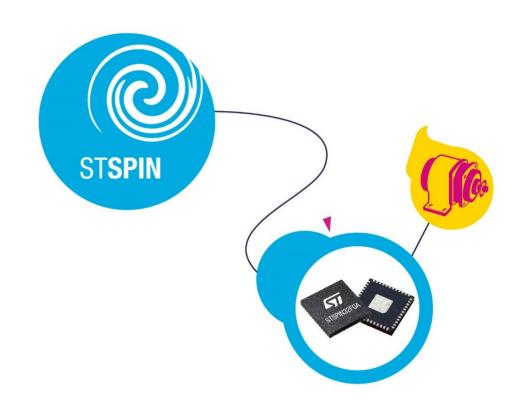
**EVALKIT-ROBOT-1** 

Maxon motor

Walking robot demo

First PMSM robotic demo with ST products







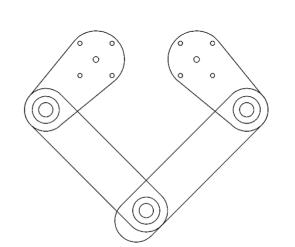

## STSPIN32F0

Cost effective solution for motor driving with integrated gate drivers in the STM32 ecosystem

- 32-bit ARM® Cortex® M0
- Three-phase gate drivers
- VDC bus 8 to 45V
- 3.3V DC/DC buck converter regulator









# New Firmware Algorithms

#### Motor Control SDK v5.0 with Servo Drive capability

- Position control with encoder
- Servo drive capability
- Master/slave MODBUS communication
- Inverse kinematic FW for a 5 bars leg









### **EVALKIT-ROBOT-1**

### Building block for multi joint robotic SDK

### Key Features

- 36 V 6 Apk power stage
- STSPIN32F0A advanced 3-phase motor controller embedding Cortex-M0 MCU
- STL7DN6LF3 60 V, 35 mΩ Dual N-channel MOSFETs
- Hall sensors + Encoder interface
- Extremely compact footprint (40 mm x 40 mm)
- Maxon EC-i 40 100 W 3-phase brushless DC motor
- Maxon ENX 16 EASY 1024-pulse incremental encoder









## Walking Robot Demo

### First PMSM robotic demo with ST products

- 1 x NUCLEO-F303RE board as Modbus Master
- 8 x STSPIN32F0A-SERVO boards
- 8 x Maxon motors with gearbox
- X-NUCLEO-IDB05A1 + STEVAL-BCN002V1B as remote control
- Developed in collaboration with UniCt





## Maze Game



**Demo Overview** 

Real Time communication through EtherCAT

Embedded
Algorithm for
Position Control

EtherCAT solution based on STM32





### **Demo Overview**

#### A table with a maze controlled by ST solutions -> PLAY TO DRIVE THE BALL

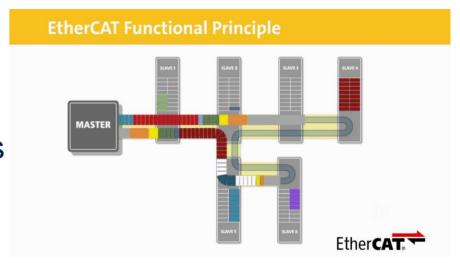
 Wired connectivity, based on Hilscher network controller NETX90





- Wireless connectivity for user interface based on X-NUCLEO-IDB05A1 and BCN002V1B BlueCoin
- Kinematic inversion and position control embedded in a ST servo drive solution








# Realtime Communication Through Ethercat

#### Real time axis synchronization

- Ethercat based communication
- Master send position command to each of 4 slaves
- Fine axis synchronization and jitter control





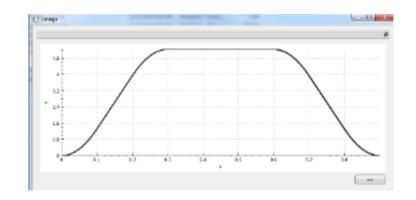


### EtherCAT Solution Based on STM32

#### Complete Low Voltage Servo Drive

- Bus interface using NETX90 network controller
- Processing unit for communication and driving based on STM32F767ZI
- Incremental Encoder and RS485 interface for ENDAT and BSSi encoder
- Actuation based on STDRIVE101 and STH270N8F7-2 STripFET™ F7 Power MOSFET








## **Embedded Algorithm for Position Control**

### Manage motor position with high precision

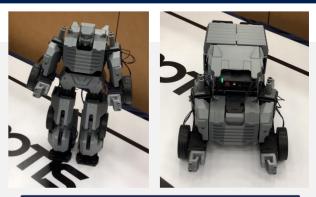
- Embedded position control algorithm for STM32F7 platform, control of jerk and adaptive
- Inverse kinematic firmware (from XY to motor angle)
- Motor drive Actuation (Field Oriented Control)

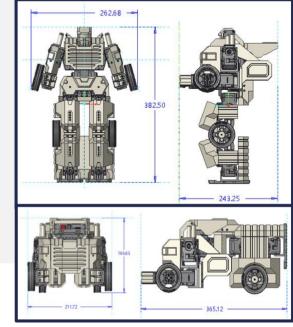












### Humanoid robot 18

#### A Transformable Robot controlled by a smartphone app

- A robot transformer shifting from humanoid to car controlled by smartphone app
- **Example of complex cinematic motion algorithms** using ST devices.
- STM32F1 + STSPIN2 series
- Robotis owns deep know-how in robotics and develop 2 kind of products:

OS robotics platforms for edu/home, based on





