

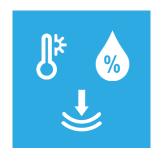
Developing with Sensors Made Simple

STMicroelectronics

MEMS and Sensors

Sensors are Everywhere

ST Sensors Addressable Market Segment



Broad Sensors Portfolio

Motion

Environment

Optical

Microphones

Micro-Actuators

Sensors Evolution

Technologies Manufacturing

Accuracy Stability

Multi Sensors Integration

Embedded
Smart Functions

Low Power Always ON

Sensors Evolution

Technologies Manufacturing

Accuracy Stability

3x3x1mm LGA

Multi Sensors Integration

Embedded
Smart Functions

Low Power Always ON

4x4x1mm

6.1mA	Current consumption	0.55 mA	91% Power reduction
220μg/√Hz	Acceleration noise	60μg/√Hz	73% Accel noise reduction
±0.03 dps/°C	Gyro offset vs. temp	±0.003 db3/ 0	83% Improvement in temperature stabilization
30mdps/√Hz	Gyro noise	4mdps/√Hz	87% Noise reduction
25mm²	Size	7.5 mm ²	70% Size reduction 2.5x3x0.86mm
Up to ± 2000 dps	Dynamic full-scale	$\ln f n + 40000 dns$	100% Increase in Full-scale range
None	Programmability	Pedometer, FSM, MLC	Embedded FSM and ML Core Finite State Machine Machine Learning Core
	Cost		75% Cost reduction

Online Hands-on Exercise with Sensors

Course outline

- Part 1: Introduction
- Part 2: Software Installation
- Part 3: Software Configuration
- o Part 4: Lab 0 Read All Sensors in Polling Mode
- o Part 5: Lab 1 LIS2DW12 XL Orientation Change Detection
- Part 6: Lab 2 LPS22HH Barometer Read from Internal FIFO
- Part 7: Lab 3 LSM6DSO XL Embedded Step Counter
- Part 8: Lab 4 LIS2DW12 XL Wake Up Detection
- Part 9: Lab 5 LSM6DSO XL Single & Double Tap Detection
- Part 10: Lab 6 LSM6DSO XL 6.6 kHz Data Rate Read at 20 Hz

Developing with Sensors Made Simple

Free massive open online course (MOOC) with hands-on exercises

Register for the course

Learn the key features of each of these sensors and how to use the hardware with the software to set up the sensors, log sensor data, optimize sensor configurations and leverage embedded smart sensor functions

Developing With Sensors Made Simple

Complicated

Peripheral 0x4000 7000 - 0x4000 73FF 0x4000 6000 - 0x4000 6FFF Reserved 0x4000 5C00 - 0x4000 5FFF 0x4000 5800 - 0x4000 5BFF I2C2 0x4000 5400 - 0x4000 57FF I2C1 Reserved 0x4000 4400 - 0x4000 47FF USART2 0x4000 4000 - 0x4000 43FF I2S3ext PB11 not available anymore 0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3 Replaced by V_{CAP1} APB1 0x4000 3800 - 0x4000 3BFF SPI2 / I2S2 0x4000 3400 - 0x4000 37FF 0x4000 3000 - 0x4000 33FF 0x4000 2C00 - 0x4000 2FFF 0x4000 2800 - 0x4000 2BFF RTC & BKP Registers 0x4000 1000 - 0x4000 27FF Reserved V_{CAP} increased to 4.7 μf 0x4000 0C00 - 0x4000 0FFF TIM5 ESR 1 Ω or below 1 0x4000 0800 - 0x4000 0BFF 0x4000 0400 - 0x4000 07FF TIM3 VSS VDD 0x4000 0000 - 0x4000 03FF

Table 42. CTRL1_XL register

ODR_XL3 ODR_XL2 ODR_XL1 ODR_XL0 FS1_XL FS0_XL LPF2_XL_EN 0		ODR_XL3	ODR_XL2	ODR_XL1	ODR_XL0	FS1_XL	FS0_XL	LPF2_XL_EN	0
--	--	---------	---------	---------	---------	--------	--------	------------	---

Table 43. CTRL1_XL register description

ODR_XL[3:0]	Accelerometer ODR selection (see Table 44)
FS[1:0]_XL	Accelerometer full-scale selection (see Table 45)
	Accelerometer high-resolution selection
LPF2_XL_EN	(0: output from first stage digital filtering selected (default);
	1: output from LPF2 second filtering stage selected)

HW STM32 Nucleo with Sensor Nucleo eXpansion

STM32CubeIDE / STM32CubeMX, X-Cube-MEMS1 software package

#2 Board power supply . through USB or external source Integrated debugging and programming ST-LINK probe STM32 microcontroller Morpho extension header Arduino™ • extension header

HW #1 **NUCLEO-L476RG** Board

STM32 complete product range from ultra-low power to high performance

High performance MCUs

STM32**F2**

STM32**F4**

STM32**H7**

STM32**F7**

Mainstream MCUs

STM32**F0**

STM32**G0**

STM32**F1**

STM32**F3**

STM32**G4**

Ultra-low power MCUs

STM32**L0**

STM32**L1**

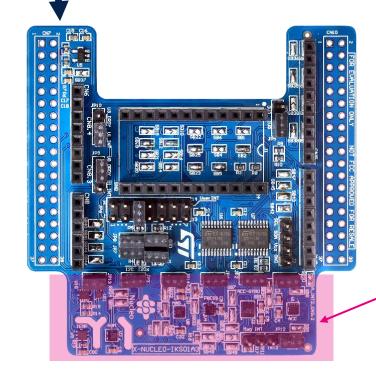
STM32**L5**

STM32L4

STM32**L4+**

Wireless MCUs

STM32WL


STM32WB

HW #2 X-NUCLEO-IKS01A3 Board Motion MEMS and Environmental Sensors

Low Power Accelerometer:

LIS2DW12

IMU Accelerometer + Gyroscope:

LSM6DSO

Pressure:

LPS22HH

Magnetometer:

LIS2MDL

Temperature:

STTS751

Humidity:

HTS221

Online Hands-on Exercise with Sensors

Upcoming Events & Technical Seminars

Featured Events

22 Jun - 18 Aug 2020

Discover our STM32 security ecosystem, from theory to practice online workshop More

Developing with Sensors Made Simple

Free massive open online course (MOOC) with hands-on exercises

Register for the course

ST Sensors and Embedded Tech Virtual Event More

Event	Date	Location
ST Online Embedded Tour	19 Feb 2020 - 31 Jan 2021	Online
Motor Control hands-on workshop series	26 Feb - 19 Nov	USA
ST Technology Tour 2020	26 Mar - 05 Nov	USA/Canada
APEC 2020 - ST Virtual Booth	16 Apr - 31 Oct	Online
Sensor development MOOC with hands-on exercises	15 Jun - 02 Oct	On demand

https://www.st.com/content/st_com/en/about/events/events.html/sensor-development-with-x-cube-mems1-mooc.html

Thank you

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

