

Digital power approach with STM32G4 in unidirectional/bidirectional totem pole PFC

Benson CHU

Power and Energy Competence Center, APeC & China STMicroelectronics

Agenda

- 1 Unidirectional totem pole PFC solution
- Bidirectional totem pole PFC solution
- 3 ST key products on solution
- 4 Takeaways

Uni-directional totem pole PFC solution

3 kW CCM totem pole PFC solution

• Input AC voltage: 90-264 VAC

DC output voltage: 400 VDC

• Switching frequency: 70 70 kHz

Operation mode: CCM

• Peak efficiency: 98.5% @ 230 VAC

Power Factor: >0.98 @ 100% load

• iTHD: <5% @ 100% load

Peak inrush current: <30 A

Key components

- STM32G474RBT (32-bit MCU)
- SCTW35N65G2V (SiC Gen2)
 → SGT40R65ALD (SiC Gen3)
- STGAP2D (gate driver)
- STW70N65DM6-4 (DM6 SJ MOS)
- VIPER26HD (Aux. SMPS)

Target application

Telecom & 5G PSU

Datacenter & Server PSU

Design material

Demo video

(Key words on ST.COM STDES-3KWTPFC)

PFC digital platform - STM32G474

communication

Totem pole PFC operation

- S1, S2: High switching frequency
- S3, S4: Low switching frequency

AC positive cycle (VAC > 0)

Major behavior

- Active switch: S2 controls the input current to charge to PFC choke for making a sinusoidal waveform
- Synchronous switch: S1 is the complementary switch that provides a path to discharge inductor current
- Always-on switch: S4
- Always-off switch: S3

S2 on, inductor current charging

S2 off, inductor current discharging

Totem pole PFC operation

- S1, S2: High switching frequency
- S3, S4: Low switching frequency

AC positive cycle (VAC < 0)

Major behavior

- Active switch: S1 controls the input current to charge to PFC choke for making a sinusoidal waveform
- Synchronous switch: S2 is the complementary switch that provides a path to discharge inductor current
- Always-on switch: S3
- Always-off switch: S4

S1 on, inductor current charging

S1 off, inductor current discharging

Current sampling strategy in TTP

Sampling consideration and configuration

- ✓ Active switch is swapped according to AC polarity
- ✓ Inductor current is sampled at middle duty of active switch
- ✓ Sampling at both of period and reset of PWM count for software filtering (interrupt is double to switch frequency)

High speed switches

- Positive cycle: current sampling at PWM count period and then doing PI computation
- Negative cycle: current sampling at PWM count **reset and** then doing PI computation

PFC control block diagram

Dual loops with SW phase locked loop

- √ Voltage loop: performed at 10 kHz
- ✓ Current loop: performed at 70 kHz
- ✓ SW loop: performed at 10 kHz

Inner loop for shaping AC current that is executed by built-in hardware filter (FMAC)

Voltage loop

Outer loop for bulk voltage regulation and with input voltage feedforward compensation

SW loop

SW PLL (frequency + phase tracking) to synchronize AC phase to achieve blanking time and soft-start scheme

Design challenge: current spike at AC zero-crossing

- At a zero-crossing when the AC input is going from positive to negative.
 - Before zero-crossing, Vcoss_S3=400 V, Dboost=0.99 to S2, (1-Dboost)=0.01 to S1
 - After zero-crossing, Vcoss_S4=400 V, Dboost=0.99 to S1, (1-Dboost)=0.01 to S2
- Right at zero-crossing, if Dboost changes abruptly, the Vcoss_S3 will cause a current spike.

Solution for eliminating current spike

Blanking time and soft-start duty control scheme

All MOSFETs are turned OFF to ensure a safe permutation of the power switches control and to avoid to short-circuit of the output DC capacitor.

S1 or S2 active switches are controlled with a soft duty cycle.

Experimental results @230 Vac

CH2 (blue): DC bus voltageCH4 (green): Input current

Bidirectional totem pole PFC solution

6.6 kW bidirectional totem pole PFC solution

Key features

WWW

Grid voltage: 180-265 VAC

• DC bus voltage: **380-580 VDC**

Switching frequency: 100 kHz

Operation mode: CCM

• Peak efficiency: 98.5% @230VAC

Power factor: >0.99 @100% load

iTHD: <5% @ 50%-100% load

Key components

- STM32G474VBT (32-bit MCU)
- SCTWA60N120G2-4 (SiC Gen2)
 → SCT040W120G3-4AG (Gen3)
- STGAP2SICS (gate driver)
- STP75NF20 (N-ch power MOS)
- VIPer 319HD (Aux. SMPS)

Target application

PFC digital platform—STM32G474

Control block diagram: rectifier mode (charging)

Dual loops with enhanced phase locked loop

- √ Voltage loop: performed at 10 kHz
- ✓ Current loop: performed at 100 kHz
- ✓ EPLL loop: performed at 100 kHz

Voltage loop

Outer loop for bulk voltage regulation and with current feedforward compensation

EPLL loop

Enhanced PLL to synchronize AC phase to achieve blanking time and soft-start scheme

Control block diagram: inverter mode (off-grid)

Dual loops with SW VCO for sine generation

- ✓ Voltage loop: performed at 100 kHz
- ✓ Current loop: performed at 100 kHz
- ✓ SW VCO: performed at 100 kHz

Voltage Outer loop for shaping AC voltage and the reference is from SW sine table basically

V_{AC} feedforward compensation

Theta Θ generation

Simple software VCO for AC phase (Θ) generation

Inner loop for controlling AC current and with

Control block diagram: inverter mode (on-grid)

Current loop only for grid-tied feature

- ✓ Current loop: performed at 100 kHz
- ✓ EPLL loop: performed at 100 kHz

Inner loop for with V_{AC} feedforward compensation, and AC current reference is from VR (due to no DCDC section)

EPLL loop

Enhanced PLL to synchronize AC phase to achieve grid connection and phase control

Experimental results

- CH1 (yellow): Vds of upper high-speed MOSFET
- CH2 (blue): Vds of upper low-speed MOSFET
- CH3 (purple): Inductor current

- CH1 (yellow): Vds of upper low-speed MOSFET
- CH2 (blue): Vds of upper high-speed MOSFET
- CH3 (purple): Inductor current

ST key product on solution

SiC MOSFET range

High voltage and fast switching for high density applications

Optimized Ron and Tj for motor drive Gen1 applications Balanced **Ron** and **Qg** for a broad range Gen2 of automotive & industrial applications Ultrafast series optimizing Ron and Qg Gen3 for very high frequency applications Very high voltage SiC extend the SiC VHV advantages of SiC technology to higher 2200 V* voltage ranges

1200-1700 V

650 V, 1200 V, 2200 V

650 V, 750 V, 900 V, 1200 V

2200 V

STGAP gate driver 1700V/6kV galvanic isolated single- & dual-channel

- 3V3 / 5 V logic inputs
- Up to 26 V supply voltage
- 4A sink / source driver current capability
- 100 V / ns CMTI
- Propagation delay 80 ns
- Standby function
- High-voltage rail up to 1700 V
- Temperature shut down protection

High performance

Galvanic isolated up to1700V

Robustness

- Interlocking
- Negative gate drive ability

High performance

 Galvanic isolated up to 6 kV optimized for SiC MOSFET

STM32G474 MCU

Hi-resolution PWM and comprehensive set of analog peripherals for digital control

Connectivity

4x SPI, 4x I2C, 6x UxART

1x USB 2.0 FS. 1x USB-C PD3.0 (+PHY)

Arm® Cortex®-M4

Up to 170 MHz

213 DMIPS

Floating Point Unit

Memory Protection Unit

Embedded Trace

Macrocell

6-channel DMA + MUX

Up to 2x 256-Kbyte Flash memory / ECC

Dual Bank

96-Kbyte SRAM

3x CAN-FD

2x I2S half duplex, SAI

External interface

FSMC 8-/16-bit (TFT-LCD, SRAM, NOR, NAND)

Quad SPI

Accelerators

ART Accelerator™

32-Kbyte CCM-SRAM

Math Accelerators

Cordic (trigo...) Filtering

Timers

5x 16-bit timers

2x 16-bit basic timers

3x 16-bit advanced motor control timers

2x 32-bit timers

1x 16-bit LP timer

1x HR timer (D-Power) 12-channel w/ 184ps (A. delay line)

Analog

5x 12-bit ADC w/ HW overspl

7x Comparators

7x DAC (3x buff + 4x non-buff)

6x Op-Amp (PGA)

1x temperature sensor

Internal voltage reference

- 170 MHz 32-bit Arm® Cortex®-M4 core with FPU
- Routine booster of CCM-SRAM up to 32 KB
- Mathematic hardware accelerators (CORDIC / FMAC)
- High-resolution timer (184 ps) for precise PWM control
- Rich advanced analog
- USB Type-C® Power Delivery (PD)
- ±1% internal clock

MAIN APPLICATIONS

STM32G4 hardware solutions

Accelerate evaluation, prototyping, and design

STM32 Nucleo

Flexible prototyping

- NUCLEO-G431RB
- NUCLEO-G474RE
- NUCLEO-G431KB

Evaluation boards

Full feature STM32G4 evaluation

- STM32G484E-EVAL
- STM32G474-EVAL

Motor control Pack

Full feature for motor control and analog

P-NUCLEO-IHM03

Discovery kits

Key feature prototyping

- B-G474E-DPOW1
- B-G431B-ESC1

STM32G4 software tools

Complete support of Arm® Cortex®-M ecosystem

STM32CubeMX

STM32CubeMX

- Configure and generate code
- · Conflicts solver

IEDs compile and debug

Flexible solutions

- Partners IDE, like IAR and Keil
- Free IDE based on Eclipse, like STM32CubeIDE

STM32 programming tool

STM32CubeProgrammer

- Flash and/or system memory
- GUI or command-line interface

Digital power workshops with Biricha

Combining industry leading ST MCUs with Biricha's tools and training

STM32 PSU/PFC design Step-in Digital Power technology

Biricha digital power:

- World leading expertise and training in digital power
- Workshop based on STM32F334/G474 Nucleo and dedicated digital power expansion board
- Learn how to implement digital power supplies and power factor correction

Takeaways

Takeaways

Digital control with STM32G4 allows unidirectional/bidirectional solutions based on bridgeless totem pole topology

Totem pole PFC offers inherent bidirectional power flow control and can be used for various applications

ST 3 kW reference design for telecom rectifier application demonstrates a conventional unidirectional solution

6.6 kW reference design demonstrates bidirectional capability, including rectifier, off-grid, and on-grid

STM32 ecosystem provides a complete design environment and rewarding development experience

Our technology starts with You

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

