

Motor control solutions augmented by ST

Sirichai Jaipachr Motor Control Competence Center industrial Applications(APeC)

Agenda

- 1 Motor Control Competence Center
- 2 Motor Control ecosystem for STM32
- 3 GaN & SiC Based Solution by ST
- 4 Ready Solution

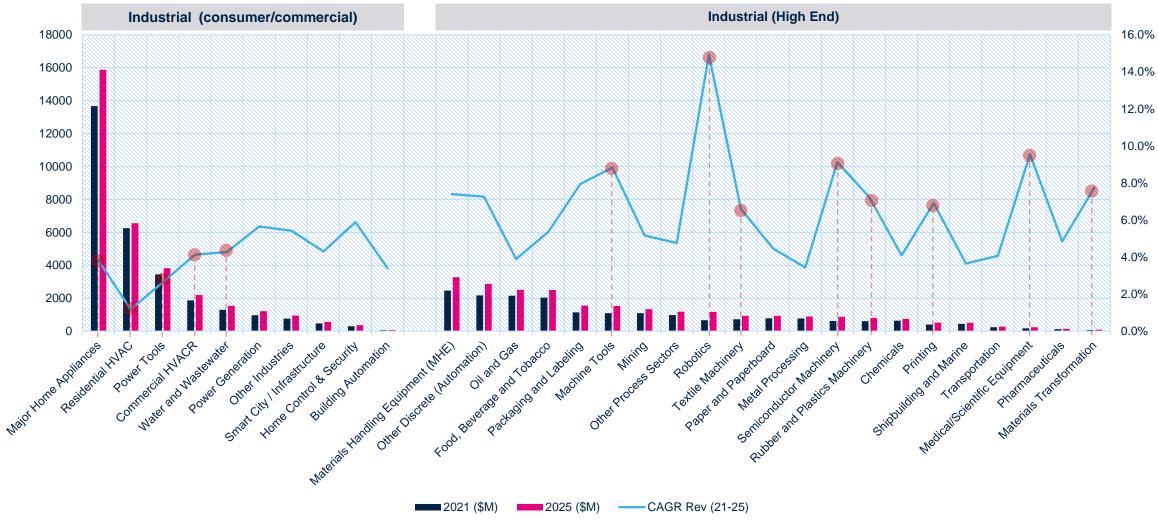
Motor Control Competence Center Mission

to Create and Promote innovative, convenient and mature Motor Control System Solutions; to Design and Partner with our Regional Customers using whole ST product portfolio for Industrial Applications,

SYSTEM R&D

- HW Reference Design, Application Boards
- FW Application Modules for the ST MC Library
- System Solutions

CUSTOMER SUPPORT


- **Evaluation & Training with ST Tools**
- ST Kit Product Selection (in cooperation with TM)
- Schematics; Layout review; Tuning (in cooperation with FAE)

PARTNERSHIP

- Overall Motor Control System expertise
- Partnership & new algorithms
- Customer's IP porting to ST platforms

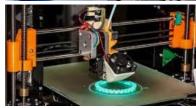
Motor drive shipments (\$M) & CAGR 21-25 (%)

Motor Control

Competence Center

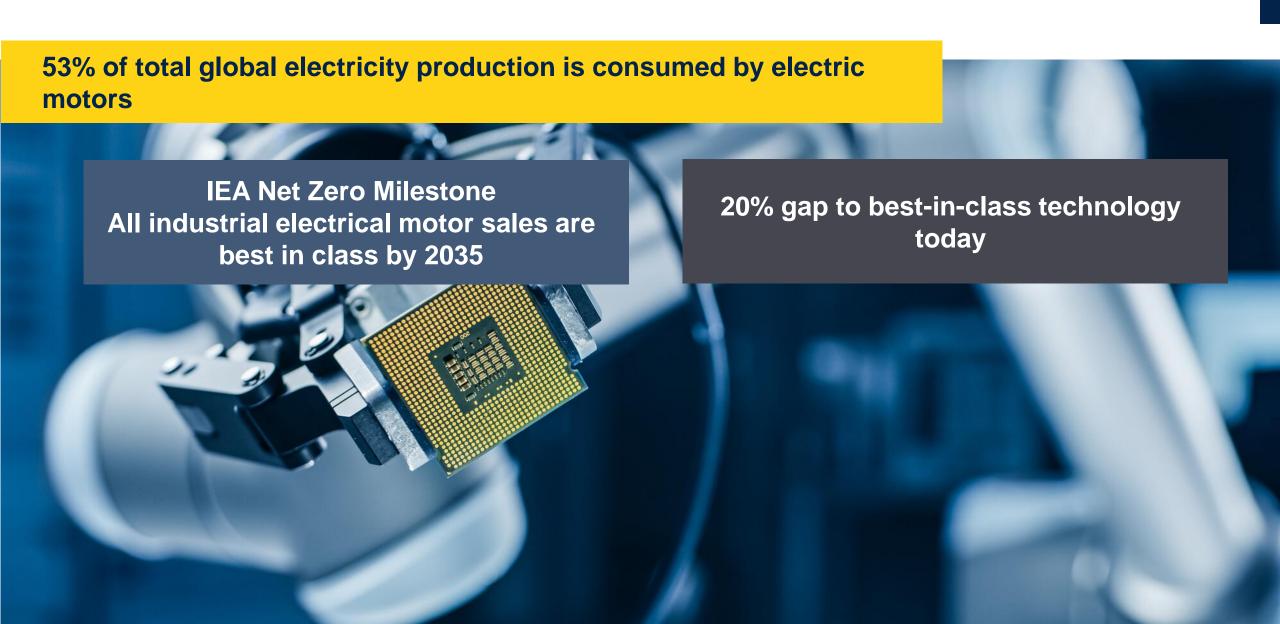
Focus segments and key solutions

Home appliances & aircon

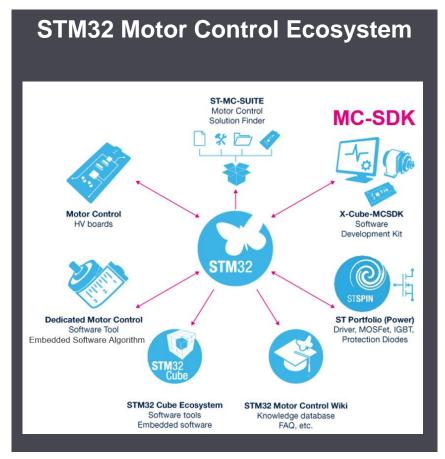


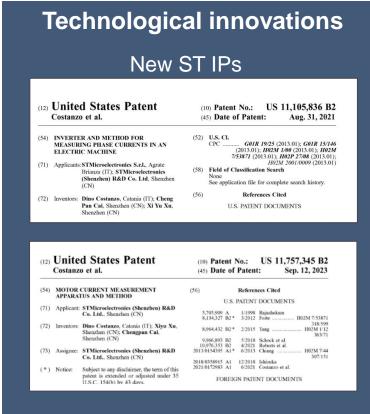
Al MC washing machine

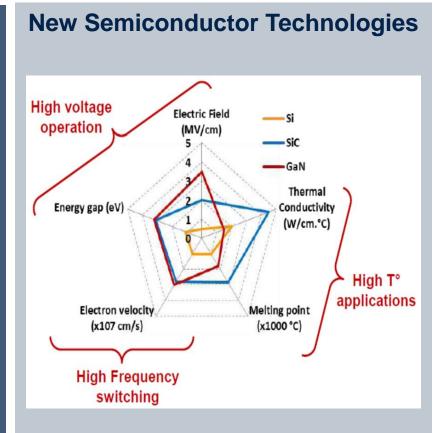
World-Class Breakthrough Efficiency and Saving


Servo drive orchestra

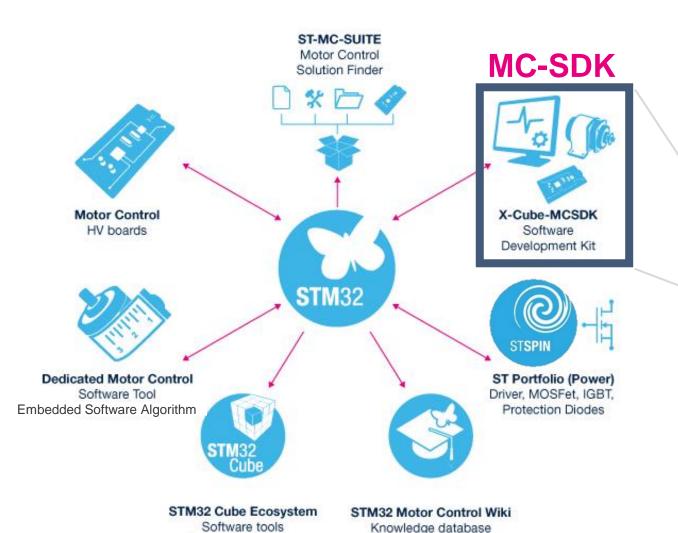
#1 Ensemble in Industry STM32 - SiC - GaN – MEMS - IoT Sensorless drill power tools


ZeST : Impossible made possible & More Powerful & More Integrated




Motor control landscape

Innovation and market transformation



Motor Control ecosystem for STM32

STM32 Motor Control Ecosystem

FAQ, etc.

Embedded software

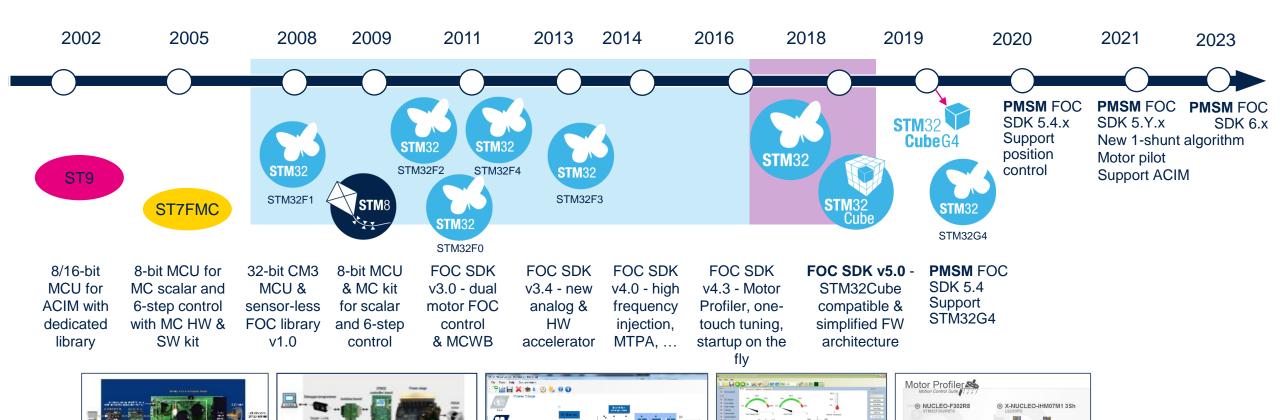
Motor Control Suite (ST-MC-SUITE)

 Online tool that provides easy access to motor-control resources in the our MCU ecosystem - for STM32, STSPIN32 and STM8 MCUs.

Motor Control SW Development Kit (X-CUBE-MCSDK)

- Motor Control FW lib: full feature library
- Motor Control Workbench: Graphical (GUI) configurator/monitor
- For STM32(MCU), STSPIN32 (MCU+GateDriver)

STM32Cubexx


- Embedded software bricks
- Most of STM32 series supported (STM32G4 = Motor Ctrl flagship)

Motor Control Profiler

- Automatic detection of key parameters (Rs, Ls, Ke)
- Zero equipment required
- For STM32 MCUs.

Twenty years of FOC & 6-step for 3-phase motor drives

Product Web Page

Product Web Page

MC-SDK – MC FW lib: new features in v6.2

Key features	STM32 series compatibility				
	Current 1-shunt and/or 3-shunt	F0 F3 F4 F7 L4 G0 G4 H7 C0 H5 STSpin32F0/G4			
Current sensing and overcurrent protection (OCP)	Insulated current sensing (ICS)	G4 STSpin32G4			
(33.)	Embedded Comparators OCP, OPAMPs	F3 G4			
Speed & position sensing	Sensors (Hall, Encoder), Sensor-less	F0 F3 F4 F7 L4 G0 G4 H7 C0 H5 STSpin32F0/G4			
Bus voltage sensing/protection (UVP & OVP)	Vbus reading, Under and Over voltage protection	F0 F3 F4 F7 L4 G0 G4 H7 C0 H5 STSpin32F0/G4			
Temperature sensing/protection (OTP)	Temperature measurement, Over Temperature Protection	F0 F3 F4 F7 L4 G0 G4 H7 C0 H5 STSpin32F0/G4			
	Single	F0 F3 F4 F7 L4 G0 G4 H7 C0 H5 STSpin32F0/G4			
Field oriented control (FOC)	Dual (Couple ADCs per motor)	F3 F4 G4			
	Dual (Sharing ADCs resources for both motors)	F3 F4 G4			
Six-step	Full support	F0 G0 G4 C0 STSpin32F0/G4			
ACIM	Configured through WB, Example only	G4			
Control mode	Torque, Speed or position control	F0 F3 F4 F7 L4 G0 G4 H7 C0 H5 STSpin32F0/G4			
Sensorless mode	STO/PLL, STO/Cordic (Luenberger)	F0 F3 F4 F7 L4 G0 G4 H7 C0 H5 STSpin32F0/G4			
Sensoness mode	HSO (High Speed Observer)	G4			
	MTPA, Flux weaken, Feed Forward	F0 F3 F4 F7 L4 G0 G4 H7 C0 H5 STSpin32F0/G4			
	PFC – FW support	not yet supported			
Other features	Discontinuous PWM	F0 F3 F4 F7 L4 G0 G4 H7 C0 H5 STSpin32F0/G4			
	Over Modulation and Single shunt phase shift	F0 F3 F4 F7 L4 G0 G4 H7 C0 H5 STSpin32F0/G4			
	Monitor control pilot - MC Protocol V2	High bandwidth 1.84mbd			
	IOC reading capability	F0 F3 F4 F7 L4 G0 G4 H7 C0 H5 STSpin32F0/G4			

Major new features in MC-SDK v6.2

HW compatibility

- √ C0 support for FOC 3 shunts and 6 steps
- ✓ H5 support for FOC 3 shunts and 1 shunt
- ✓ Add support of all MCUs part number of F3/G4/G0 series

Motor control features

- ✓ Support of new HSO (High Sensitivity Observer) algorithm
- ✓ Support of Dual drive for F3/F4/G4
- ✓ Addition of ICS (Insulated Current sensor)

Tools

- ✓ Improve user guidance with accurate inline documentation about board's modifications
- ✓ Improve user flow with IOC reading capability:
 - MCWB is now able to re-open solution (.IOC file) created in previous loop = closed loop development process

New ST IPs

```
let bitan = this.bitangent(u, v);
if(MathInternal.vecLength(bitan) === 0) {
    return tan;
                     .vecLength(tan) !== 0) {
                     !== 3 || bitan.lengt
                    = tan.length;
                   = MathInte
```


US patents on multimotor drive current sensing network optimizations

(12) United States Patent Costanzo et al.

- (54) INVERTER AND METHOD FOR MEASURING PHASE CURRENTS IN AN ELECTRIC MACHINE
- (71) Applicants: STMicroelectronics S.r.l., Agrate
 Brianza (IT); STMicroelectronics
 (Shenzhen) R&D Co. Ltd, Shenzhen
- (72) Inventors: Dino Costanzo, Catania (IT); Cheng Pan Cai, Shenzhen (CN); Xi Yu Xu, Shenzhen (CN)

(10) Patent No.: US 11,105,836 B2

(45) Date of Patent:

Aug. 31, 2021

- (52) U.S. Cl.
- (58) Field of Classification Search None See application file for complete search history.
- (56) References Cited

U.S. PATENT DOCUMENTS

72.0 CMG Various Vario

Single shunt current sensing: breaks all barriers of state-of-the-art

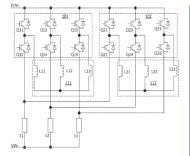
Achieves:

- no PWM distortion
- Simultaneous sampling of two phase currents

(12) United States Patent Costanzo et al.

(10) Patent No.: US 11,757,345 B2 (45) Date of Patent: Sep. 12, 2023

(54) MOTOR CURRENT MEASUREMENT APPARATUS AND METHOD

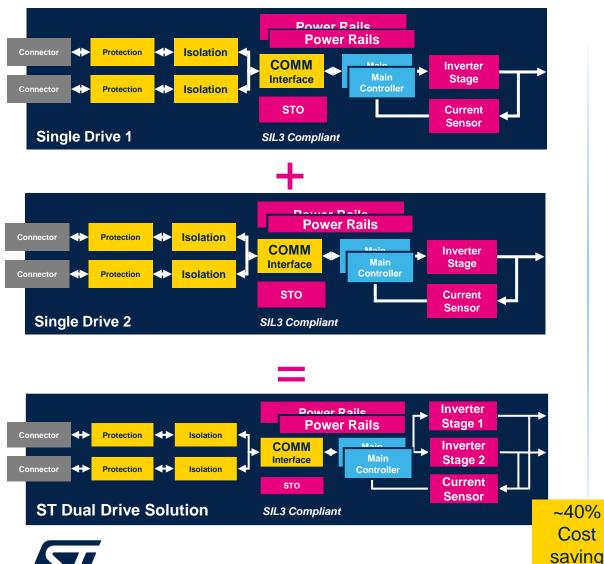

- (71) Applicant: STMicroelectronics (Shenzhen) R&D Co. Ltd., Shenzhen (CN)
- (72) Inventors: Dino Costanzo, Catania (IT); Xiyu Xu, Shenzhen (CN); Chengpan Cal, Shenzhen (CN)
- (73) Assignee: STMicroelectronics (Shenzhen) R&D Co. Ltd., Shenzhen (CN)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 43 days.

(56) References Cited

U.S. PATENT DOCUMENTS

5 705 000		1/1009	Rajashekara	
8,134,327	B2 *	3/2012	Forte H02M 7/538	71
			318/5	99
8,964,432	B2*	2/2015	Tang H02M I/	
0,000,000			363/	
9,966,893	B2	5/2018	Schock et al.	
10,976,353			Roberts et al.	
2013/0154395			Chiang H02M 7/	44
			307/1	51
2018/0358915	A1	12/2018	Ishizuka	
2021/0172983	Δ1	6/2021	Costanzo et al.	

FOREIGN PATENT DOCUMENTS


Multimotor shared current sensing With shunt resistors/ICS

Achieves:

- Savings on current sensors & network
- Savings on PCB space
- Savings on MCU pinout assignment

STSPIN32G4 Dual drive solution V2

Example: SIL 3 architecture / 1.5 kW / 310 VDC

Component	Price (Average Price for 10KU)	Standard Architecture Servo Motor Drive x 2 (pcs / total price)	New ST Solution Dual Servo Drive (pcs / total price)
RJ-45	\$3	4 / \$12	2/\$6
Protection Device	\$1	4 / \$4	2 / \$2
Isolation	\$1	4 / \$4	2 / \$2
EtherCAT Slave Controller	\$7	2/\$14	1 / \$7
MCU	\$10	4/\$40	2/\$20
IPM + Gate Drivers	\$10	2 / \$20	2 / \$20
Power Rails	\$6	4 / \$24	2 / \$12
Shunts / ICS	\$1	6 / \$6	3 / \$3
Total~		\$124	\$72

LOWER COST

HIGHER RELIABILITY MORE COMPACT SIZE HIGHER PERFORMANCE SDK READY

US patents on multimotor drive STM32G4 accelerators

(12) United States Patent Forte et al.

(54) ANALOG TO DIGITAL CONVERSION APPARATUS WITH A REDUCED NUMBER OF ADCS

(71) Applicant: **STMicroelectronics, Srl.**, Agrate Brianza (MB) (IT)

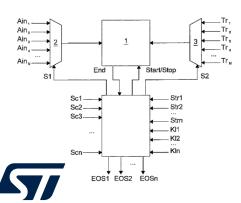
(72) Inventors: Gianluigi Forte, Camporotondo Etneo (IT); Dino Costanzo, Catania (IT); StelloMatteo Bille', Catania (IT)

(10) Patent No.: US 8,994,565 B2 (45) Date of Patent: Mar. 31, 2015

See application file for complete search history

(56) References Cited

U.S. PATENT DOCUMENTS

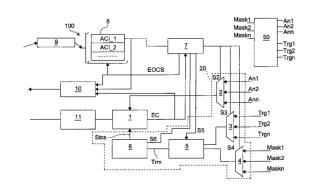

US 8,564,468 B2

Oct. 22, 2013

(12) United States Patent Forte et al.

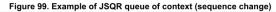
(54) SEQUENCE ARBITER FOR ANALOG-TO-DIGITAL CONVERSIONS

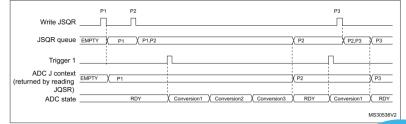
(75) Inventors: Gianluigi Forte, Camporotondo Etneo (IT); Stello Matteo Bille', Catania (IT); Dino Costanzo, Catania (IT)

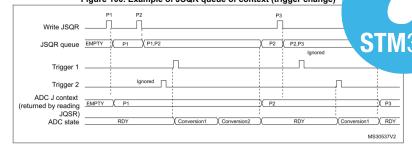


(56) References Cited

(10) Patent No.:


(45) Date of Patent:


U.S. PATENT DOCUMENTS



P1: sequence of 3 conversions, hardware trigger 1
P2: sequence of 1 conversion, hardware trigger 1
P3: sequence of 4 conversions, hardware trigger 1

Figure 100. Example of JSQR queue of context (trigger change)

- Parameters:
- P1: sequence of 2 conversions, hardware trigger 1 P2: sequence of 1 conversion, hardware trigger 2
- P3: sequence of 4 conversions, hardware trigger

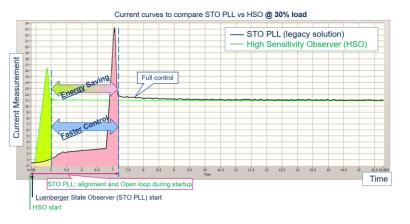
ADC apparatus & sequence arbiter for multimotor sampling sync

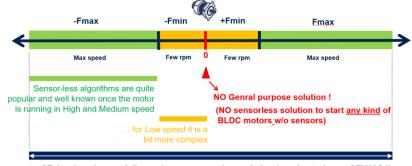
Achieves:

- No dead-band (max MI)
- No IRQ & CPU load for peripherals reconfigure
- Robust, HW based, peripheral transitions

Key features updates on MCSDK V6.2x

- Full speed range sensorless algorithms (FOC) to enhance motor control:
 - **1. HSO** high sensitivity observer
 - Including PolePulse (rotor position detection)
 - 2. STM32 ZeST zero speed full torque
 - 3. Motor Profiler V2
 - Motor's resistance estimated <u>at run-time</u> for more efficient control
- Benefits in applications (beside the full torque @ zero speed w/o sensors)
 - No Sensors:
 - ✓ Lower BOM cost
 - ✓ Higher PCB robustness
 - Start in closed loop (even from HSO only):
 - √ No high peak current = Energy saving
 - ✓ Faster control
 - Control @ very low speed (few rpms) thx to new HSO

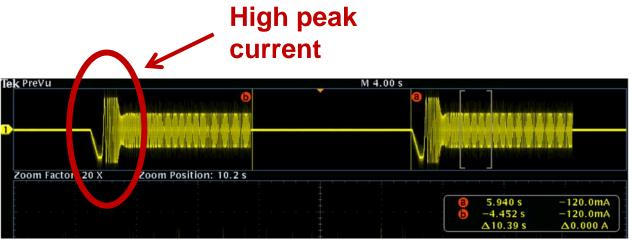




HSO → Energy saving & Faster control!

- ST developed a new full speed range sensor-less solution (running today on STM32G4):
- ✓ STM32 HSO → from very Low speed (few Hz) up to High Speed

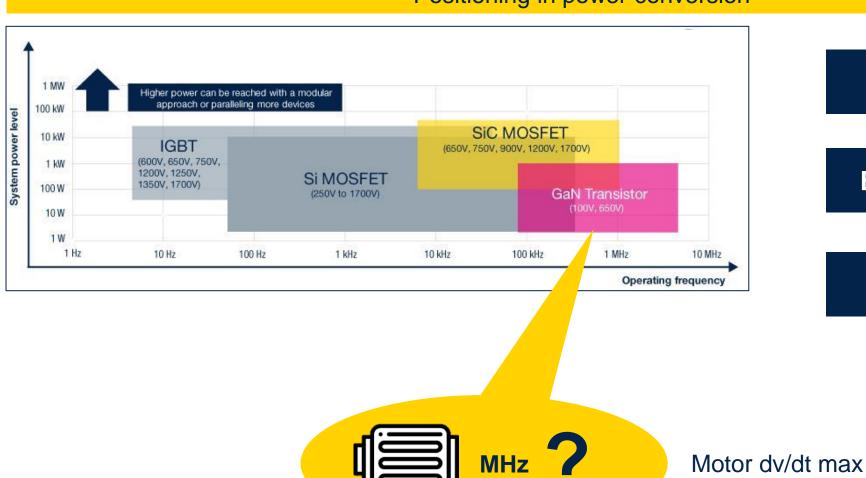
Using STM32 ZeST* to run a smart, power-efficient washing machine

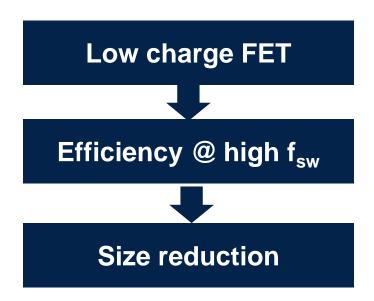

Zero speed full torque sensorless algorithm

Energy saving per washing cycle ~ 15-40%

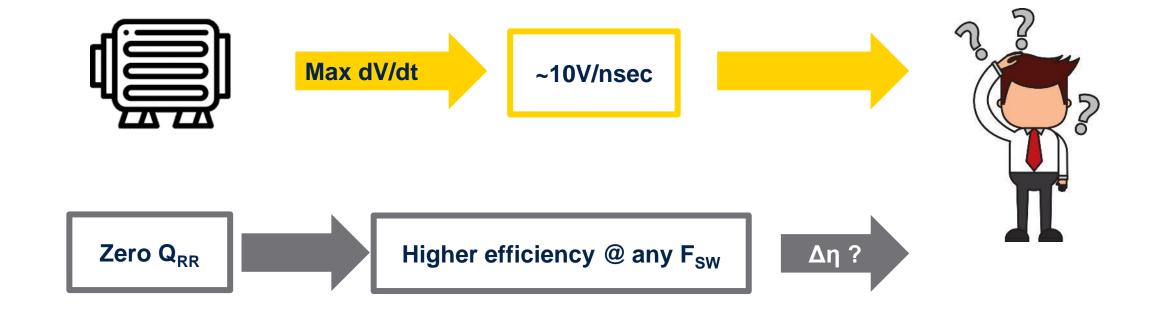
Standard (open loop) sensorless startup

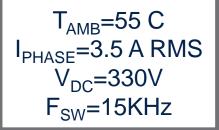
STM32 ZeST startup

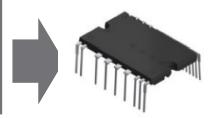



GaN & SiC based solution

SiC & GaN benefits


Positioning in power conversion




GaN in motor control

Estimated power losses in 1000 W inverter

STGIF5CH60TS-L (IGBT based solution)

SGT120R65AL

 $R_{TH J-AMB} = 35 C/W$

	Parameter		STE	EP_0		
			Т	D		
	Conduction	n Loss (avg)	1.83 W	492.73 mW		
	Switching EON/Er	r Loss (avg)	702.75 mW	83.33 mW		
	Switching EOFF Loss (avg)		477.45 mW	-		
	Total Loss (avg)		3.01 W	576.05 mW		
	T+D Total Lo	ss (avg) (W)	3.59 W	-		
		STEP_0				
S	System Total Loss (avg) (W)			21.55 W		
Cas	Case Temperature (max) (°C)			90 °C		
	Heatsink Rth (°C/W)			1.86 °C/W		

IPhase(RMS) A	RDSon(25 °C) ohm	RDSon(TJ° 120 C) ohm	Eon(Ipk Turn ON) J	Eoff(Ipk Turn Off) J	Thermal resistance j-A	Freq Hz	MOTOR ripple current	Vbus
3.5		1.70E-01	1.00E-04	7.00E-05	3.50E+01	15000	0.00E+00	330
Iphase(pk) A	Iphase(pk turnON) A	Iphase(pk turnOFF) A	IMOSFET(RMS) A	Etot(pk) J	Etot(Av mosfet) J°	Psw W	Pcond W	
4.9497	4.95E+00	4.95E+00	2.47E+00	1.70E-04	5.41E-05	8.12E-01	1.04E+00	
Tot Power losses	T ambient °C	TJ .			Tj max			
1.85E+00	55	1.20E+02			1.20E+02			

Total Power losses in GaN solution =11.1 W

Total Power losses in IGBT SLLIMM solution= 21.55 W

	IGBT SW losses		IGBT conduction losses
812 mW	1.262 W	1.04 W	2.32 W

Strategic Development: GaN in Motor Control Segmentation, identified applications

Orchestra of scalable servo drive solutions

Key Products

- . STM32G4 MCU / STSPIN32G4 SiP
- . 100V STripFET F7 Power MOSFET
- . Wide-bandwidth rail to rail Op-Amps

Features

- High Integration SiP for reduced PCB size and BOM
- . High Power Density
- . Ready solution with Realtime Fieldbus

Key Products

- . STM32H7 MCU
- . 650V e-mode PowerGaN
- . High Speed Half-bridge drivers for GaN
- . VIPerPlus high voltage converter

Features

- . System-level High Energy Efficiency
- . Reduced Torque Ripple
- . Reduced PCB size
- . Optimized GaN driving voltage and transients

Key Products

- . STM32H7 MCU
- 1200V SiC MOSFET in ACEPACK SMIT package
- . STGAP2SICS galvanic isolated gate drivers

Features

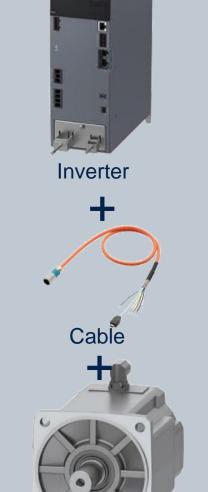
- . High Power Density
- . Reduced losses at high temperatures
- . Overall reduction of system cost

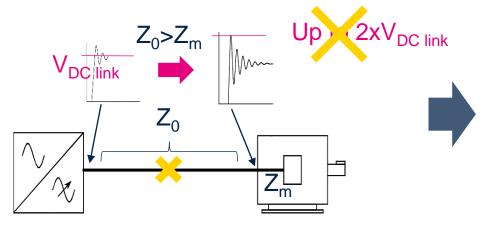
Key Products

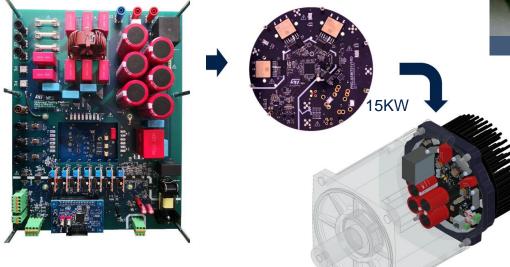
- . STM32H7 MCU
- . 1200V IGBT in ACEPACK SMIT package
- . STGAP2HD galvanic isolated gate drivers
- . Galvanic isolated Sigma-Delta modula-

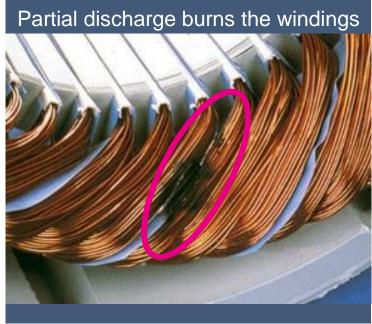
Features

- . SIL2 certification assessment from TÜV
- . Currents sensing SigmaDelta modulators
- . SafeTorqueOff (STO) SafeBrakeControl (SBC)

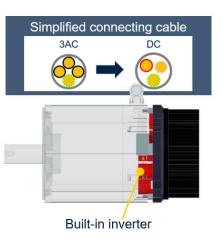

Motor Control
Competence
Center

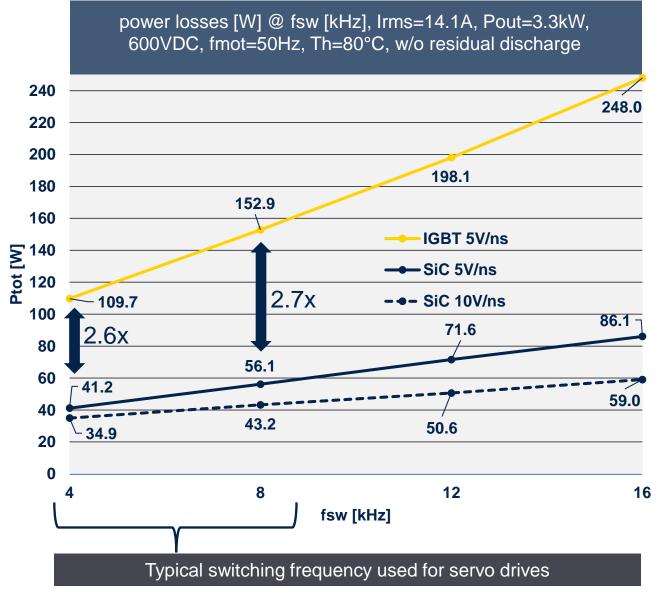

Conventional topology




Motor

Solving dV/dt impact on motor with SiC





Inverter loss measurements in the lab

SiC MOSFETs efficiency @ same dV/dt

- +1.9% at 4 kHz
- +2.7% at 8 kHz

165 days duty to pay back delta price

SiC MOSFETs losses @ same dV/dt

- 2.6x lower at 4 kHz
- 2.7x lower at 8 kHz

Opportunity:

- Increase power density
- Reduce frame size

500 W HV motor drives based on GaN

GaN high-voltage servo motor drive

Available on demand

Key features:

- GaN ready solution for motion control
- 10 V dV/dt both hard-on and hard-off
- Overcurrent protection integrated in the gate driver
- FOC supported
- Designed for 230 V AC mains
- HEMT GaN 650 V, 75 mΩ typ R_{DSon}

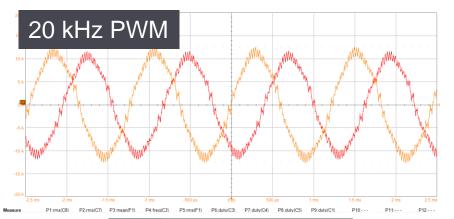
Specifications:

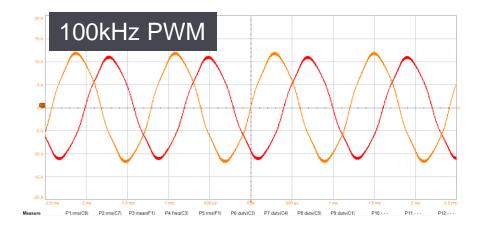
- 500 W+ max output power without cooling fan
- RS485 for absolute position encoder
- SPI, I²C
- Hall sensor & encoder

Key products

- STDRIVEG611
- SGT120R65AL
- TSV791ILT
- VIPER06HS

- STM32H730VBT6
- LDK320ADU33R
- ST715MR
- ST3485EBDR


Applications


- Home appliances
- Servo drives
- · High speed motors & tools
- Miniaturized motors

Increasing PWM frequency for efficiency gains

Frequency

Peaks	Frequency	Amplitude
1	750 Hz	6.5713 A
2	40.75 kHz	269.4 mA
3	39.25 kHz	248.8 mA
4	3.76 kHz	248.1 mA
5	21.50 kHz	159.0 mA
6	18.50 kHz	135.4 mA
7	122 Hz	115.7 mA
8	17.00 kHz	113.4 mA
9	23.00 kHz	102.3 mA
10	1.46 kHz	98.8 mA

Not producing active torque

1	750 Hz	6.6455 A
2	3.75 kHz	251.8 mA
3	199.24 kHz	85.2 mA
4	5.25 kHz	74.2 mA
5	98.50 kHz	44.4 mA
6	101.49 kHz	37.8 mA
7	103.00 kHz	31.1 mA
8	97.00 kHz	28.6 mA
9	196.24 kHz	11.4 mA
10	49.24 kHz	7.7 mA

Amplitude

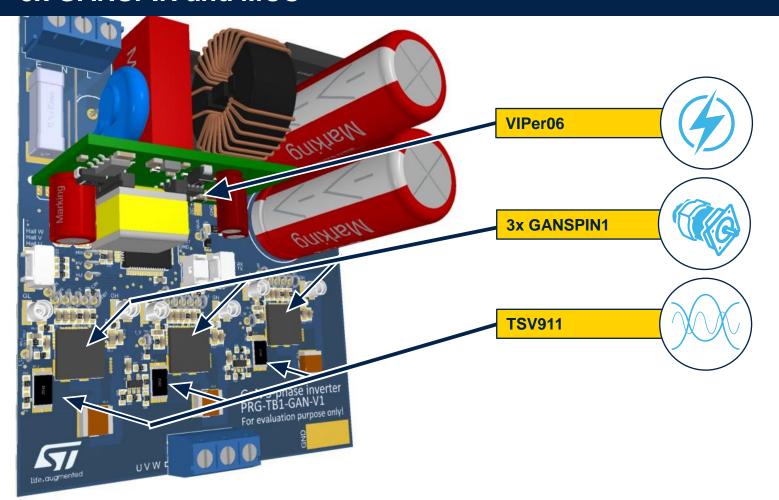
	Si @20kHz	GaN @100kHz
Inverter efficiency	98.28%	98.68%
Motor efficiency		+4%
Overall efficiency		+4.12%

COP test for HV fridge compressor

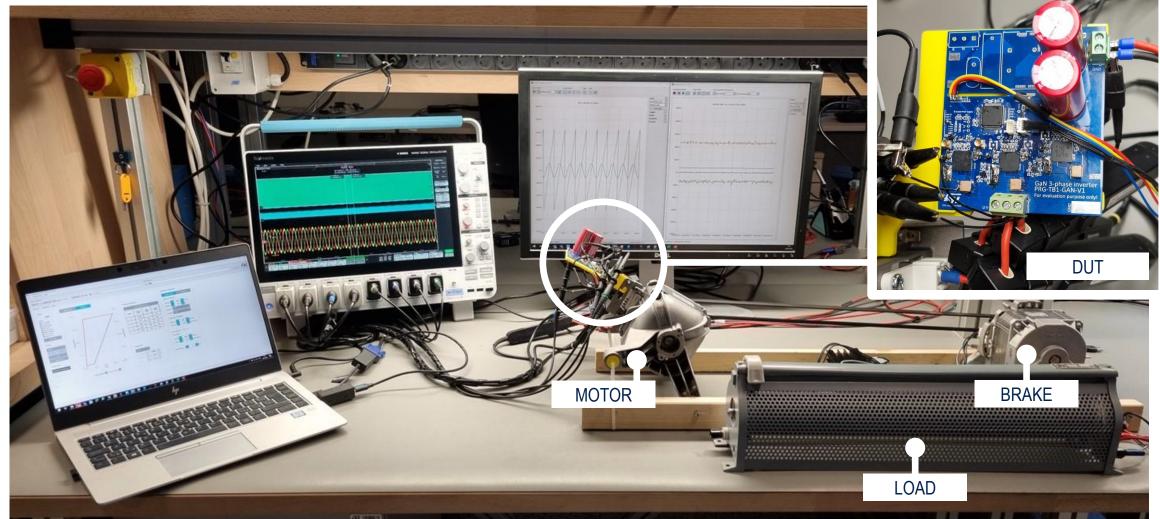
Compressor motor:

• Phase resistance: 10 Ω

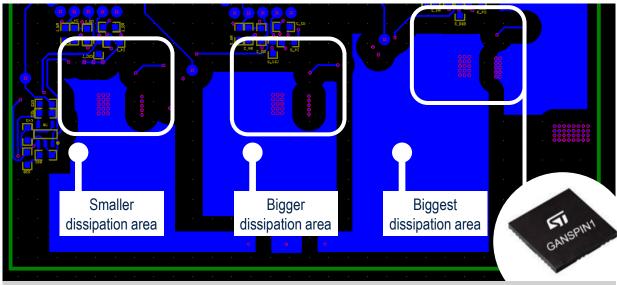
• Ls: 200 mH

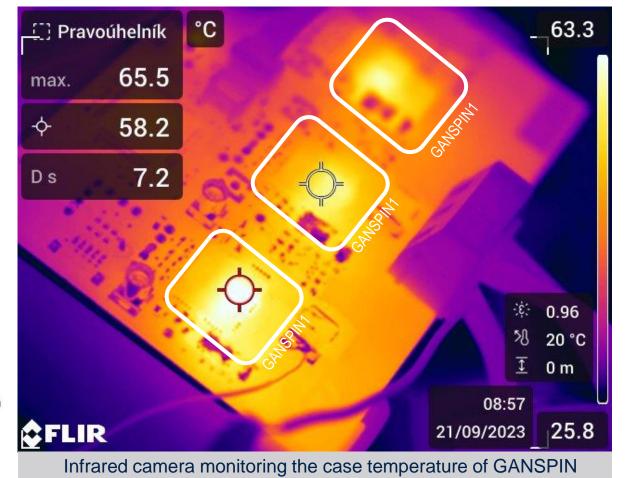

Power devices	Fpwm (kHz)	Nominal speed [rpm]	Cooling capacity [W]	Input power [W]	СОР	COP increased
		1200	65.793	34.681	1.897	
Leading solution STD8N60DM2	5	3000	167.208	89.78	1.862	
_		4500	232.425	145.847	1.594	
		1200	66.814	34.451	1.939	+2.2%
	5	3000	169.875	90.313	1.881	+1.0%
New ST GaN		4500	233.945	146.26	1.600	+0.3%
solution SGT120R65AL		1200	66.379	34.852	1.905	+0.4%
	8	3000	168.538	89.869	1.875	+0.6%
		4500	233.182	146.394	1.593	0

First inverter prototype with GaNSPIN


Motor control inverter designed with full ST BOM, including 3x GANSPIN and MCU

Test setup for a BLDC motor

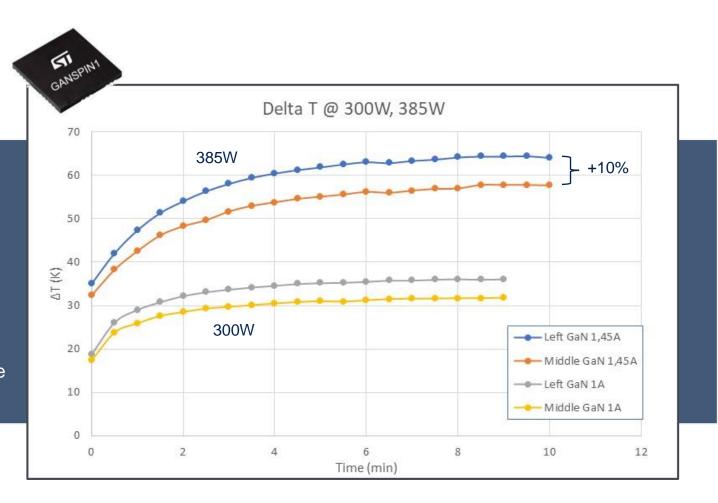




Thermal performance of GANSPIN inverter layout

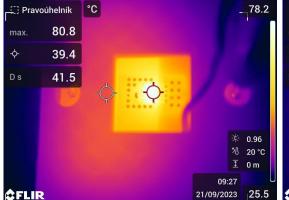
- Infrared thermal camera used for temperature measurements
- GANSPIN mounted on the left side of the PCB produces the most heat, due to a smaller dissipation area
- → PCB layout has big influence on maximum output power!

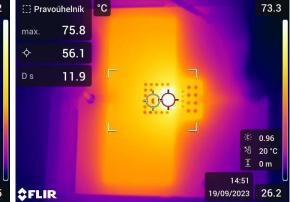
Heat pads on PCB (large blue areas) used for power dissipation



Thermal performance of GANSPIN inverter layout

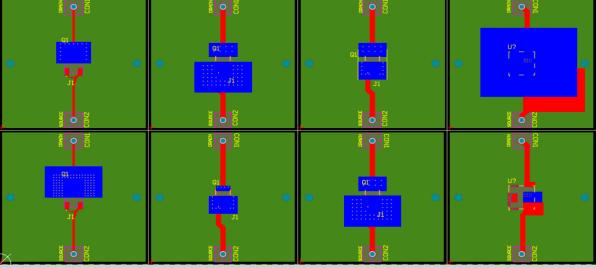
- Very good performance at 300 W output power:
 - Temperature rise only ~35°C above T_{amb}
 - Suitable for application with high T_{amb}
- Max output power reached is now 385 W:
 - Switching losses contributing for 65% of total losses
 - Heat dissipation area also influencing the performance




Heat dissipation of GaN in PowerFLAT package


- Evaluation of heat dissipation in GaN PowerFLAT
- Cooling through PCB only
- Testing several layout setups:
 - 2-layer and 4-layer PCB
 - Different copper areas
 - · Different vias count
- Goal: evaluate power losses dissipation without the use of a conventional heatsink

GaN Transistor in PowerFLAT5x6 mm



Infrared camera snapshots monitoring the case temperature of the GaN

Testing enclosure manufactured with our 3D printer

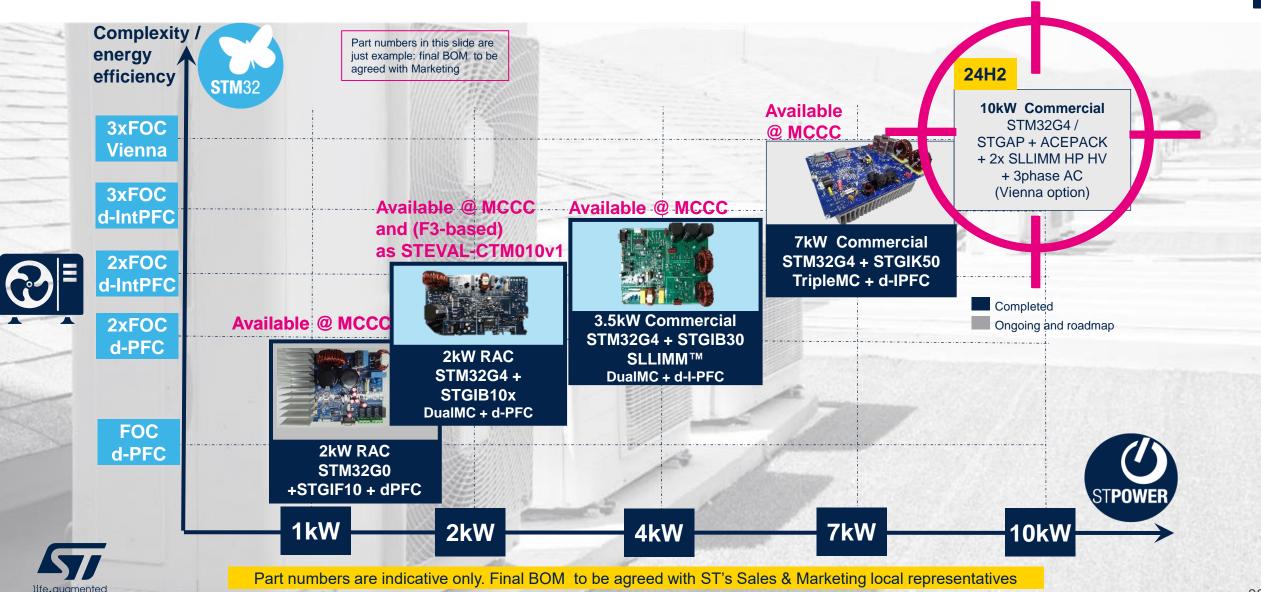
Multiple PCB layouts with different cooling areas designed in Prague

Ready solutions

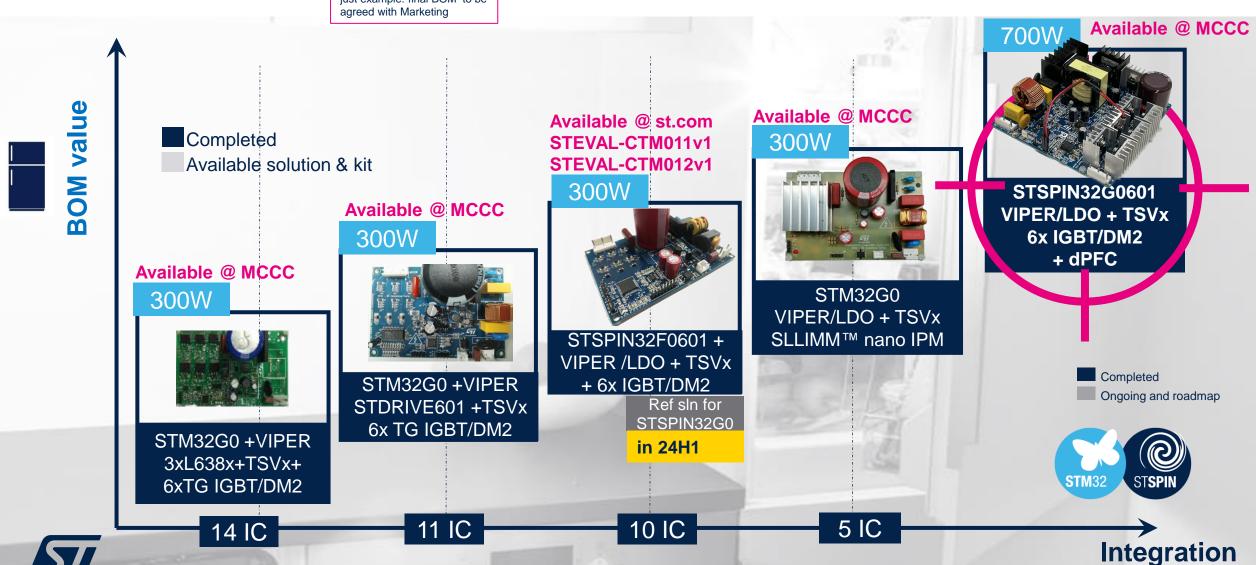
Home appliances & aircon

Power tools & high-end consumer



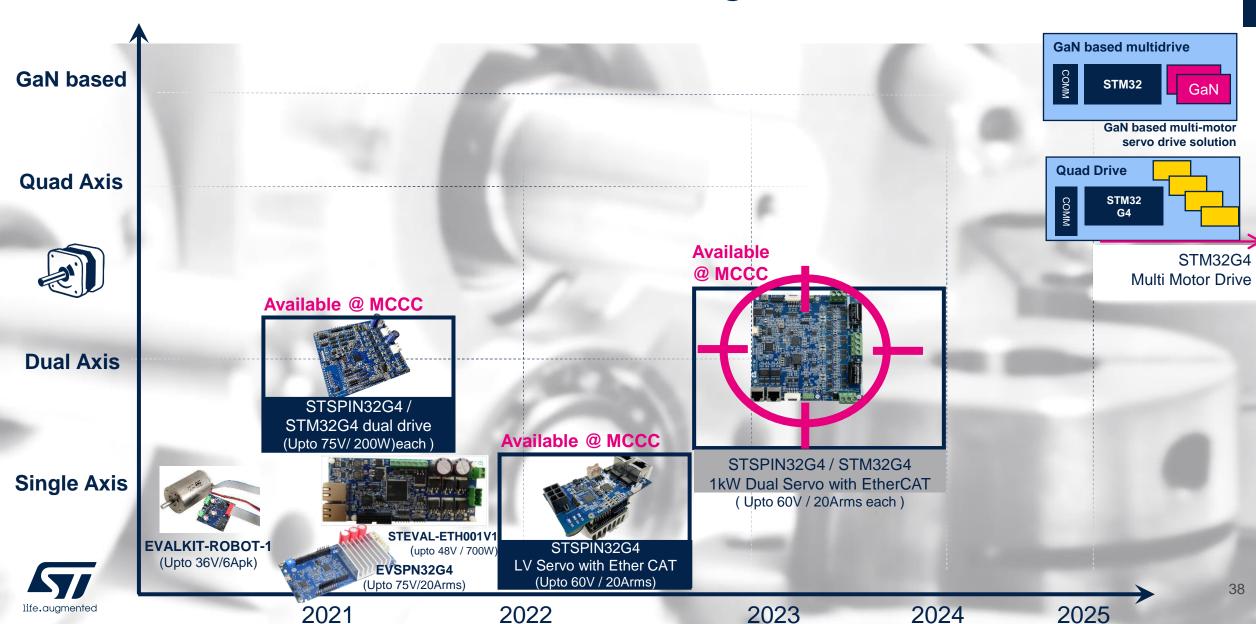


Solutions for aircon/heatpumps



life.augmented

Motor control solutions for refrigerators


Part numbers in this slide are just example: final BOM to be agreed with Marketing

Low voltage servo drive solutions

Reference Solutions

B-G431B-ESC1 Based on STM32G431 FOC – HSO sensorless

EVSPIN32G4NH Based on STSPIN32G4 FOC – HSO sensorless

EVSPIN32G4-DUAL Based on STSPIN32G4 FOC – STO sensorless

STEVAL-ESC002V1 Based on STSPIN32F0A 6step – sensorless

Dual motor

Easiness

(12) United States Patent Costanzo et al.

(10) Patent No.: US 11,105,836 B2 (45) Date of Patent: Aug. 31, 2021

Single shunt current sensing: breaks all barriers of state-of-art **Achieves:**

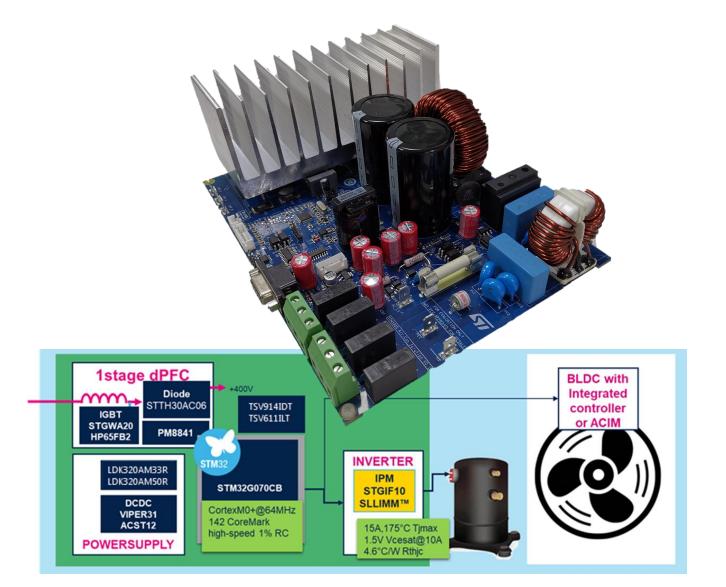
- no PWM distortion !!
- Simultaneous sampling of two phase currents!!

(12) United States Patent Costanzo et al.

US 11.757.345 B2 (10) Patent No.: Sep. 12, 2023 (45) Date of Patent:

Dual motor shared current sensing

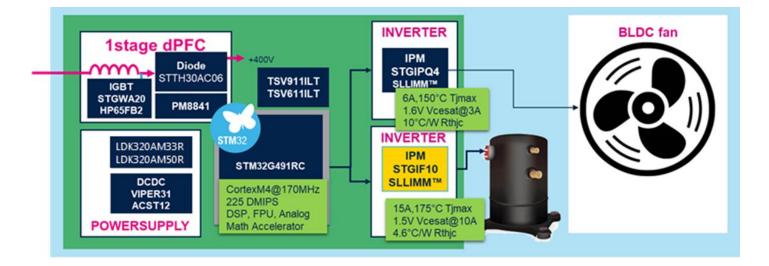
Achieves:


- Savings on current sensors
- Savings on PCB space
- Savings on MCU pinout assignment

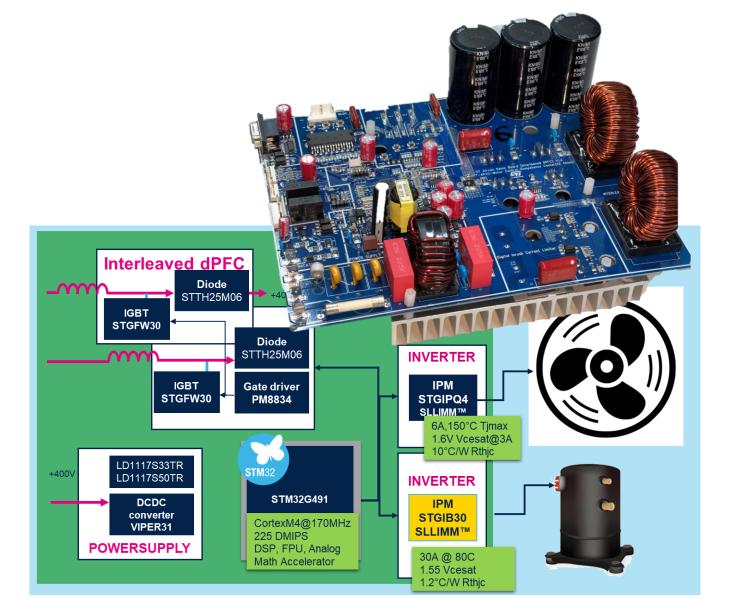
Single FOC + d-PFC 2 kW STM32G0 room aircon solution

- STM32G0 MCU drive all functions
- Compatible with all architectures
 - BLDC fan with 5 wires
 - ACIM fan
- Innovative FW architecture for integration of MC and dPFC 5kHz / 40kHz; 65~ CPU load
- FW module for 5 wires fan control
- ST SLLIMM IPM
 - High Energy Efficiency
 - DBC / FM wide portfolio
- High Frequency 40kHz dPFC
 - IGBT TFS
 - Ultrafast "AC" rectifier

Motor Control



Dual FOC + d-PFC 2 kW STM32G491 room aircon solution

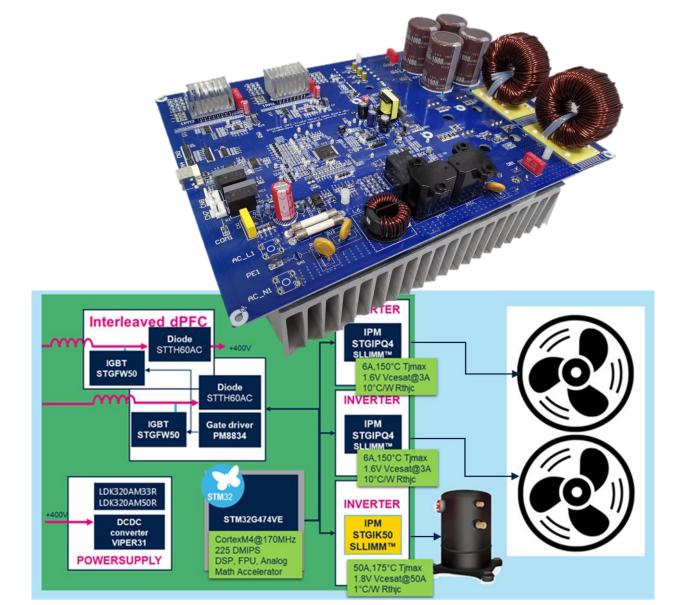

- One STM32G4 MCU only to drive all functions
 - Reduced number of components
 - No need sync between controllers
 - One FW workspace only
 - MC SDK v5.Y
- ST SLLIMM IPM
 - High Energy Efficiency
- High Frequency dPFC 60kHz
 - SJ MOSFET / IGBT
 - SiC diodes

Motor Control

Dual FOC + d-I-PFC 4 kW STM32G4 commercial aircon

- One STM32G4 MCU only to drive all functions
 - Reduced number of components
 - No need sync between controllers
 - One FW workspace only
 - MC SDK v5.Y
- ST SLLIMM IPM
 - High Energy Efficiency
- High Frequency d-i-PFC 60kHz
 - SJ MOSFET / IGBT
 - SiC diodes

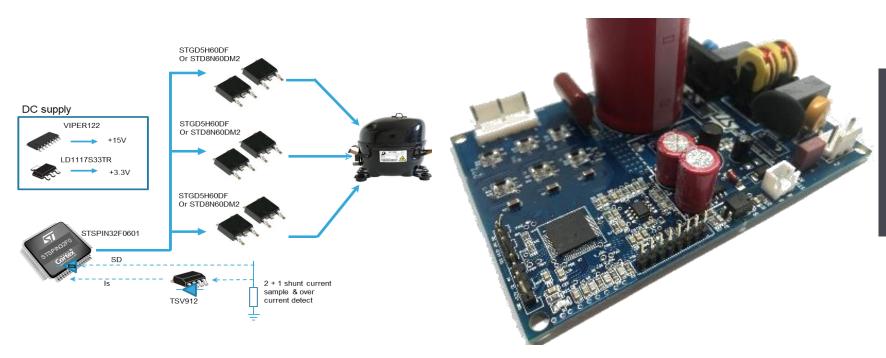
Motor Control



Triple FOC + d-I-PFC 7 kW STM32G4 world class comm aircon

- One STM32G4 MCU only to drive all functions
 - Reduced number of components
 - No need sync between controllers
 - One FW workspace only
 - MC SDK v5.Y
- New ST HP SLLIMM 50A
 - High Energy Efficiency
- High Frequency d-i-PFC 60kHz
 - SJ MOSFET / IGBT
 - SiC diodes

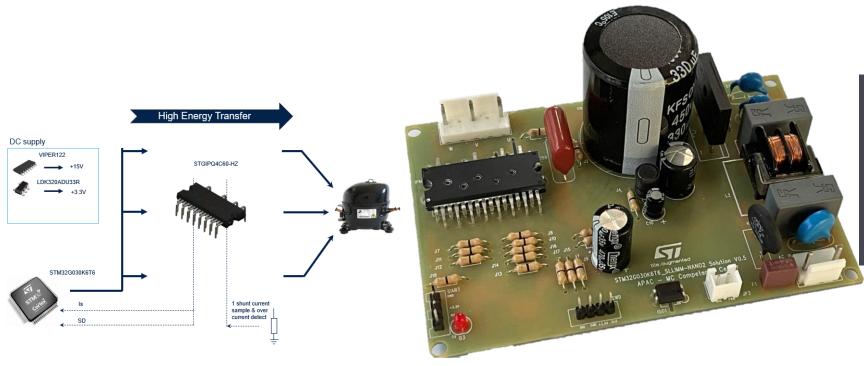
Motor Control



STSPIN32F0601 + TGFS IGBT/SJ MOS 250 W MC fridge solution

- High Integration SiP, with embedded HW protections OCP & UVP
- High Energy Efficiency with TGFS IGBT / SJ MOSFET
- STSPIN32F0601 -40C to 125C
- Standby power<30 mW @ 230 VAC

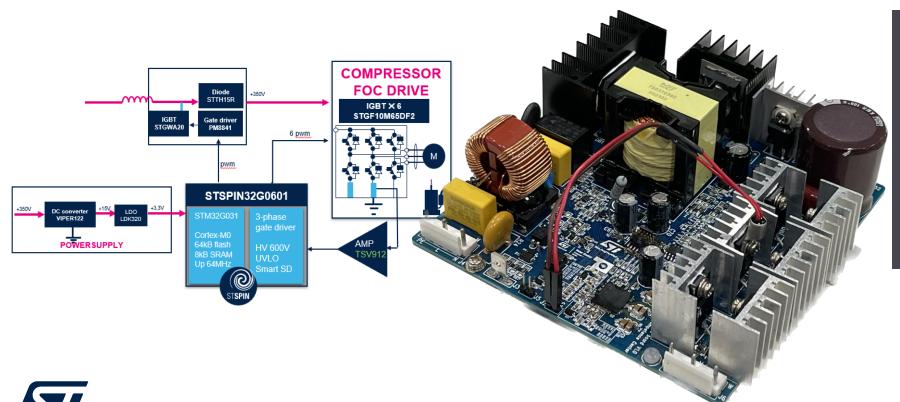
Motor Control



STM32G0 + SLLIMM nano IPM 250 W MC fridge solution

- High Integration Fridge Solution STM32G0 + SLLIMM 6A IPM
- Embedded OCP & OPAMP embedded in SLLIMM nano
- High Energy Efficiency with TGFS IGBT
- Single Layer PCB
- Standby power<30 mW @ 230 VAC

Motor Control



STSPIN32G0601 + TGFS IGBT 700 W commercial fridge MC & dPFC CCM

- STSPIN32G0 drive all functions, MC and CCM dPFC
- Qualified dPFC IEC 61000-3-2
- Innovative FW architecture for integration of MC & dPFC @40kHz
- High Integration SiP, with embedded HW protections
- High Energy Efficiency with TGFS IGBT and Ultrafast rectifier
- MC Switching Frequency 4~6.6 kHz
- Standby power<30 mW @ 230 VAC

Motor Control

Servo drives orchestra Scalable Solutions

EVLSPIN32G4-ACT

Smart Actuators interfacing with STWIN.box

Key Products

- . STM32G4 MCU / STSPIN32G4 SiP
- . 100V STripFET F7 Power MOSFET
- . Wide-bandwidth rail to rail Op-Amps

Features

- . High Integration SiP for reduced PCB size and BOM
- . High Power Density
- . Ready solution with Realtime Fieldbus

Key Products

- . STM32H7 MCU
- . 650V e-mode PowerGaN
- . High Speed Half-bridge drivers for GaN
- . VIPerPlus high voltage converter

Features

- . System-level High Energy Efficiency
- . Reduced Torque Ripple
- . Reduced PCB size
- . Optimized GaN driving voltage and transients

Key Products

- . STM32H7 MCU
- . 1200V SiC MOSFET in ACEPACK SMIT package
- . STGAP2SICS galvanic isolated gate drivers

Features

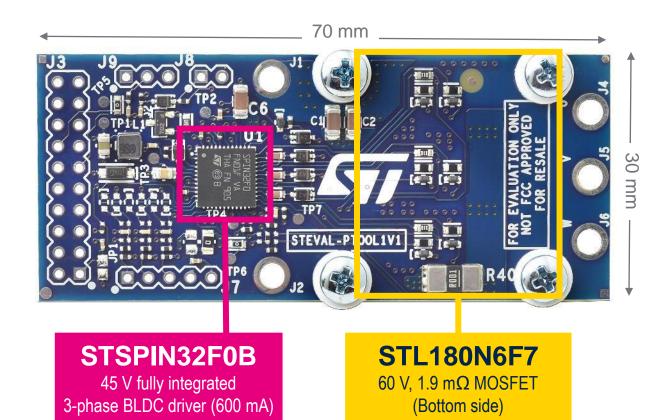
- . High Power Density
- . Reduced losses at high temperatures
- . Overall reduction of system cost

Key Products

- . STM32H7 MCU
- . 1200V IGBT in ACEPACK SMIT package
- . STGAP2HD galvanic isolated gate drivers
- . Galvanic isolated Sigma-Delta modula-

Features

- . SIL2 certification assessment from TÜV
- . Currents sensing SigmaDelta modulators
- . SafeTorqueOff (STO) SafeBrakeControl (SBC)


Motor Control

STEVAL-PTOOL1V1 Low voltage solution for power tools

Key products

- STSPIN32F0B: Arm Cortex®-M0 MCU + 3-phase gate driver 0.6 A
- **STL180N6F7:** 60 V 1.9 mΩ MOSFET F7 series

Key features

- 6-step single shunt with Hall sensor inputs
- Designed for 2S-6S pack of LiPo batteries
- Max operating ratings: 45 V, 15 A_{RMS}
- Very low standby power consumption
- Trigger, direction, and speed inputs are available
- Speed control potentiometer available
- · Over current protection: programmable VTH
- Mounting options for:
 - Field oriented control, sensorless / sensored
 - BEMF detection circuitry
- · Ready-to-use dedicated 6-step firmware package
- Heatsink option

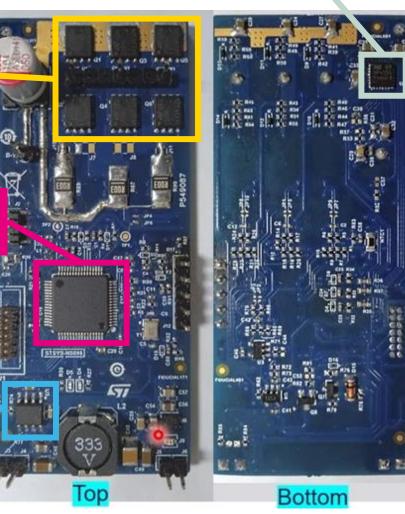
STDES-PTOOL3A low voltage solution

____ 35 mm ____

STDRIVE101 75 V, 0.6 A 3-phase

STL220N6F7

60 V, $1.2 \text{ m}\Omega \text{ MOSFET}$


STM32G431RBT6

(M4+core @170 MHz)

L6981NDR

(38 V, 1.5 A, DC-DC converter)

Key products

- STM32G431: Arm Cortex®-M4 MCU @ 170 MHz
- STDRIVE101: 3-phase gate driver. 75 V, 0.6 A
- **STL220N6F7:** 60 V 1.2 mΩ MOSFET F7 series
- L6981NDR: 38 V, 1.5 A, DC-DC converter

Key features

- · Field oriented control, three/single shunt
- ZeST firmware for torque maximization at very low speed
- Designed for 5S-6S pack of LiPo batteries
- Max operating ratings: 38 V, 18 A_{RMS}
- · Very low standby power consumption
- Trigger, direction, and speed inputs are available
- VDS protection

80

- · Over current protection
- Mounting options for:
 - 6-Step sensor less control (cycle-by-cycle CL)
 - BEMF detection circuitry
- 1 UART, 1 I²C, and 1 SPI interface for debugging, I/O expanders, Bluetooth Low Energy, LCD, GNSS, MEMS
- Heatsink (optional)

ST Public

STEVAL-PTOOL4A Low-medium voltage solution

35 mm —

STM32G473CB (M4+core @170MHz)

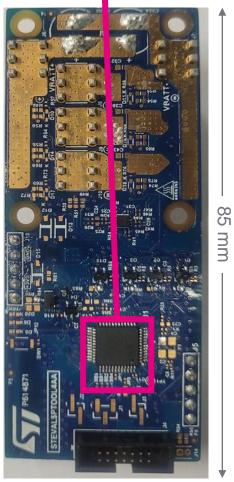
60 V, 1.2 mΩ MOSFET

STDRIVE101

75 V, 0.6 A 3-phase

L6981NDR

(38 V, 1.5 A, DC-DC converter)

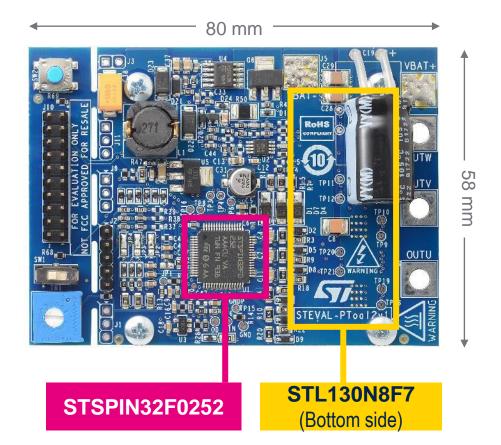

OR

L7987L

(61 V, 2 A, DC-DC converter) daughterboard

Key products

- STM32G473: Arm Cortex®-M4 MCU@170Mhz
- STDRIVE101: 3-phase gate driver. 75 V, 0.6A
- **STL220N6F7:** 60 V 1.2 mΩ MOSFET F7 series
- L6981NDR 38V, 1.5A, DC-DC converter, option for L7987L 61V, 2A


Key features

- Field oriented control, three/single shunt
- ZeST firmware for torque maximization at very low speed
- Designed for 5S-6S pack of LiPo batteries
- Max operating ratings: 48 V, 18 A_{RMS}
- · Very low standby power consumption
- Trigger, direction, and speed inputs are available
- VDS protection
- Over current protection
- Mounting options for:
 - 6-Step sensor less control (cycle-by-cycle CL)
 - BEMF detection circuitry
- 1 UART and 1 SPI interface for debugging, I/O expanders, Bluetooth Low Energy, LCD, GNSS, MEMS
- Heatsink (optional)

ST Public

STEVAL-PTOOL2V1 High-voltage solution

Key products

- STSPIN32F0252: Arm Cortex®-M0 MCU + 3-phase gate driver 250 V
- STL130N8F7: 80 V 120 A STripFET F7 series

Key features

- Implementing a 6-step voltage mode algorithm. 6-step single shunt with Hall sensor inputs
- Designed for 8S-15S pack of LiPo batteries
- Max operating ratings: 80 V, 15 A_{RMS}
- Very low standby power consumption
- Trigger, direction, and speed inputs are available
- Speed control potentiometer available
- · Over current protection
- Mounting options for:
 - Field oriented control, sensor less / sensored
 - BEMF detection circuitry
- Ready-to-use dedicated 6-step firmware package
- Heatsink (54 x 54 x 20 mm)

Our technology starts with You

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

