A Revolution in Electronic Smart Fuses: STi²Fuse

Revolution in Automotive

Key Features and Benefits

Controller IC

Roadmap

A new approach to fuse management in modern vehicles

Electronic Smart Fuses

replacing both standard fuses and relays with advanced diagnostic and enhanced functional safety

Load Shaped: A flexible protection feature

The "Fuse" programmable curve features an intelligent circuit breaking aimed to protect PCB traces, connectors and wire harness from overheating

Electronic Smart Fuses Main Advantages

System

FAST: Reaction time / two orders of magnitude faster

FAULT TOLERANT: Remote reset, no need to access the fuse box for replacement

TINY: Replacing both fuses and relays with smart fuses reduces fuse box size

LOAD SHAPED: Cable size can be optimized based on load characteristics

Savings

Wire harness size reduction

- A mid size car has approx. 3km cable 45kg for power distribution
- An electronic Box is approx. 0.350kg lighter

Up to 20% overall weight reduction leading to CO2 saving / increased range

Enabling

- Zonal Architecture: Manage and distribute multiple sources energy
- Autonomous Driving: Fault tolerances
- Predictive maintenance: Device health monitoring

Smart fuses for power distribution with smart digital interface

State of Health -

Current Sensing

Battery µ-cut

Adding Robustness and Functional Safety

STi²Fuse keeps operating state at Functional Status A during battery µ-cuts

Autonomous Wire Harness Protection

Fast turn-off

12V Boardnet Stability

STi²Fuse guarantees power network stability reacting autonomously within 100us against overload to prevent the power network to collapse

Cap Charging

CCM – Large Capacitor

Compatibility

STi²Fuse offer compatibility with large capacitive loads through a dedicated CCM feature, avoiding SW intervention and avoiding additional parallel switches for charging

Diagnostics

Predictive

Maintenance

STi²Fuse have a complete I,V,T monitoring for system state of health supervision and predictive maintenance able to detect degradation before failures might occur

ASIL - CSensing

STi²Fuse have a full range, redundant, autonomous current sense with high speed sampling and BIST protection for ASIL applications

Immunity

maintaining seamless system operation and wire harness protection I²t Functionality

STi²Fuse ensures SW independent wire protection fully operational without uC, during POR, in failsafe condition; programmable at Tier1 or OEM assembly line

Melting fuses drawbacks

- Dimensioned on peak current, not on RMS current
 - Tripping much earlier than the cable reaching a critical temperature
 - Oversize cables, connectors and PCB traces
- Unlimited current capability for tens of milliseconds
 - Does not prevent fault propagation to the upstream power bus and o
- Service
 - Non resettable
 - Requires access
 - Prone to user error

An ST invention for an absolute protection I²t programmable curve

Whatever the electrification level or power train architecture

The concept The advantages

- Smaller and fault tolerant
- Dimensioned on RMS load current and current limited
- CO₂
- Simplified, lighter and cheaper wire harness
- Reduced stand-by consumption

- Helps increasing the overall safety and reliability level with benefits for autonomous driving too:
 - SW Reset of HW fault
 - Faster Fault reaction time (<100us)
 - Real time diagnostic of critical modules and switch itself

Active stand-by ON

- Reduced stand-by consumption in sleeping modules (e.g. parking functions)
- Standby Switch Normally-ON with low quiescent current
- Up to 600mA current capability
- Fast self wake up
- Device configuration saved during standby

STi²Fuse controller: VNF1048F

STi²Fuse controller: VNF1048F

Block Diagram

Main Features

- Controller with eFuse functionality for 12/24/48V applications
- Operating supply voltage range 6V 60V (AMR 70V)
- Operating Temperature Range -40°C 150°C
- Gate drive for an external MOSFET(s) in high side configuration
- 2 stage Charge Pump for low-voltage operation
- Active standby ON (200mA current capability), low standby current (<70uA)
- 32-bit ST-SPI interface compatible with 3V/5V CMOS level
- Input for a NTC resistor for external MOSFET temperature monitoring
- External MOSFET desaturation detection (V_{DS} monitoring)
- High accuracy unidirectional digital current sense via SPI through an external high side shunt resistor
- Integrated ADC for Tj, V_{NTC}, V_{OUT} and V_{DS} conversion
- Small QFN 5x5

Protections:

- I²t curve configurable via SPI (eFuse functionality)
- Hard short circuit latch-off configurable via SPI
- Battery under-voltage shut down
- Device Over-Temperature shutdown
- External MOSFET Over-Temperature shutdown
- External MOSFET desaturation shutdown configurable via SPI
- Advanced fail-safe features (built in self test, registers lock), ISO26262 ASILB ready

QFN32L5x5

Standby monitoring Standby **Switch**

VNF1048F eFuse functionality

eFuse simulator tool and evaluation kit with GUI available

STi2Fuse Portfolio & Roadmap

Qualification Schedule

Date: December 2022

VIPower for Power Distribution STi²Fuse roadmap

Application Segment

Electronic Smart Fuses

replacing both standard
fuses and relays with
advanced diagnostic and
enhanced functional safety

A flexible protection feature

The "Fuse" programmable curve features an intelligent circuit breaking aimed to protect PCB traces, connectors and wire harness from overheating

Products Roadmap

Monolithic devices in QFN 6x6

M0-9 SPI technology

Double ch

Quad ch

VNF9D5F

VNF9Q20F

Qualified by: H2 2023

Hybrid devices in PowerQFN 7x8.5

First two products qualified in 2024

Single ch

Double ch

VNF9S0M7Q

VNF9D1M5Q

VNF9S1M5Q

VNF9D3Q

VNF9D2Q

Controller + Ext. MOSFET – 12V, 24V, 48V

1st release in production

2nd release in development

VNF1048F

Single channel

VNF1248F

Single channel

