

Power Surfing

MasterGaN rides the new wave of GaN Power

Jodie Wang Technical marketing manager Power Discrete & Sub-Analog, STMicroelectronics

Agenda

- 1 Energy management trends -> GaN vs. Silicon based transistors
 - 2 Smart GaN: integrating GaN with driver
- 3 The MasterGaN* platform
- 4 The MasterGaN Ecosystems
- 5 Takeaways

Energy management trends GaN vs. Silicon based transistors

The future of energy Efficiency & power density

AC-DC adapters, USB-PD

Fast and wireless charging

Power for PC, OLED TV

Telecom / Server power

Power supply for 5G

Communication Infrastructure

Energy storage systems (UPS)

Solar DC-AC converters

HV / HEV charging stations

High power – Mini size

AC-DC adapter & Smartphone fast charger

4x smaller

3x lighter

50%

higher power density

20% lower P_{LOSS}

Solar ESS (Energy Storage System)

2x smaller

3x lighter

Fan-less

Travel adapter development

Power Level Increasing

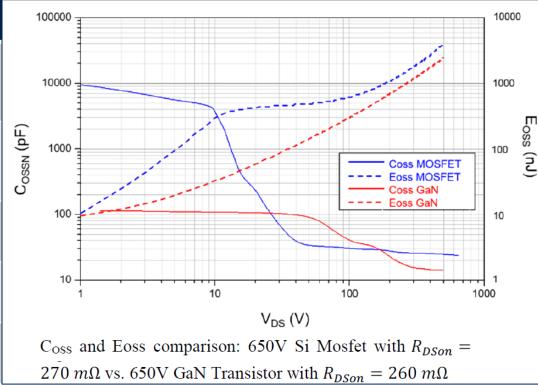
5W

120W

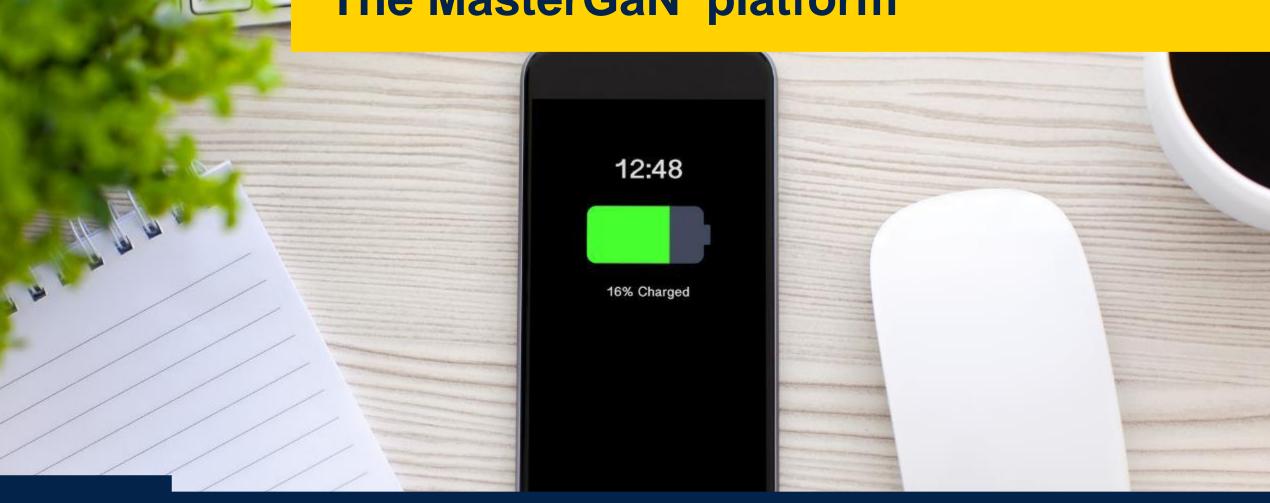
Power Density Increasing

5W/in3 → 20W/in3 →

65W


Switching frequency Increasing 60kHz → 150kHz → 350kHz

GaN vs. Silicon based transistors


GaN transistors allow higher frequencies, better efficiency and higher power density than silicon-based transistors

Parameter	GaN	Silicon	Comments
Qg-Gate charge	Lower	Higher	GaN has lower driver loss for higher frequency & efficiency
Coss-Output capacitance	Lower	Higher	GaN has lower switching loss for higher frequency & efficiency
Qrr-Reverse recovery charge	Lower	Higher	GaN suitable for higher frequency & efficiency
Vgs- gate voltage	Difficult	Easy	GaN needs better gate drive circuit and PCB layout
Vsd-body diode conduction	Higher	Lower	GaN needs better control of deadtime

Smart GaN: integrating GaN with driver The MasterGaN* platform

Smart GaN: Integrating GaN with driver

Higher efficiency

Reduced power losses, reduced power consumption, exceeding the most stringent energy requirements

Higher power density

Higher switching speed to reduce systems size and cost

Faster go-to-market

Packaged solution simplifies the design, with a higher level of performance

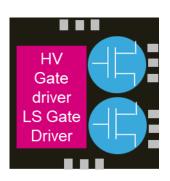
MasterGaN applications and benefits

Power Supply for 5G Communication Infrastructure

HV/HEV Charging Stations

Energy Storage Systems (UPS)

High-Density AC-DC Adapters, Fast Charging, **USB-PD**



Key benefits

- Compact system solution and simplified layout
- BOM reduction: SiP with offline driver optimized for GaN
- Robust solution: driver and GaN power transistors integration
- Package GQFN 9x9
- Flexible, easy and fast design
- Scalable p2p solution for power range 30-400 W

MasterGaN First in the market

Advanced power solution integrating a gate driver and two enhancement mode GaN transistors in half-bridge configuration

Mass production

MASTERGAN1

VDS **600 V**

 RDS_{ON} 150 m Ω

IDS_{MAX} 10 A

Compact

- Integrated power GaN
- Embedded gate driver easily supplied by the integrated bootstrap diode

Robust

- UVLO protection on both the lower and upper driving sections, preventing the power switches from operating in low efficiency or dangerous conditions, and the interlocking function avoids cross-conduction conditions
- Over temperature protection

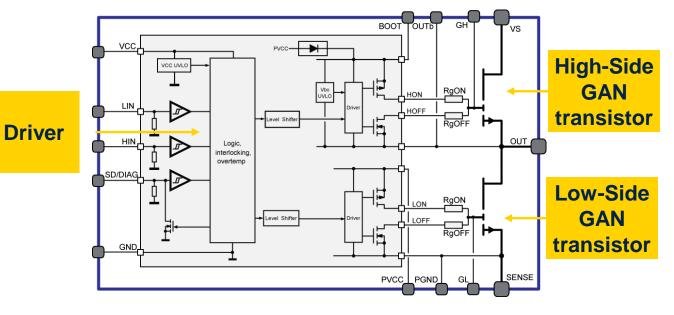
MASTERGAN2

VDS **600 V**

RDS_{ON} 150 m Ω (LS) + 225 m Ω (HS)

 IDS_{MAX} 10 A (LS) + 6.5 A (HS)

Easy Design


- Smart solution in GQFN 9x9 mm² package
- Input pins extended range -3.3 to 15 V with hysteresis and pull-down- allows easy interfacing with microcontrollers, DSP units or Hall effect sensors
- Dedicated pin for shutdown functionality
- Accurate internal timing match

MasterGaN block diagram & Key features

High power density half-bridge 650V GaN with embedded driver

Features

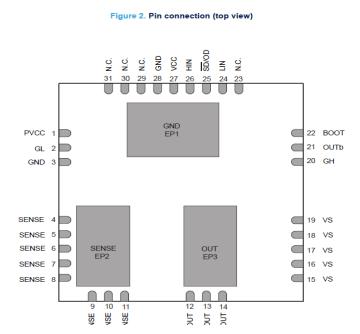
- Power system-in-package integrating half-bridge gate driver and highvoltage GaN transistors:
 - BVDSS = 650 V
 - $-RDS(ON) = 150 \text{ m}\Omega$
 - -IDS(MAX) = 10 A
- Reverse current capability
- Zero reverse recovery loss
- UVLO protection on low-side and high-side
- Internal bootstrap diode
- Interlocking function
- Dedicated pin for shutdown functionality
- Accurate internal timing match
- 3.3 V to 15 V compatible inputs with hysteresis and pull-down
- Overtemperature protection
- Bill of material reduction
- Very compact and simplified layout
- Flexible, easy and fast design

MasterGaN Gate drive logic inputs

Gate drive logic inputs truth table

	Input pins			GaN transistors status	
	SD/OD	LIN	HIN	LS	HS
Disabled input port	L	X	X	OFF	OFF
	Н	L	L	OFF	OFF
Normal Operation Configurations	Н	L	Н	OFF	ON
	Н	Н	L	ON	OFF
Interlocking	Н	Н	Н	OFF	OFF

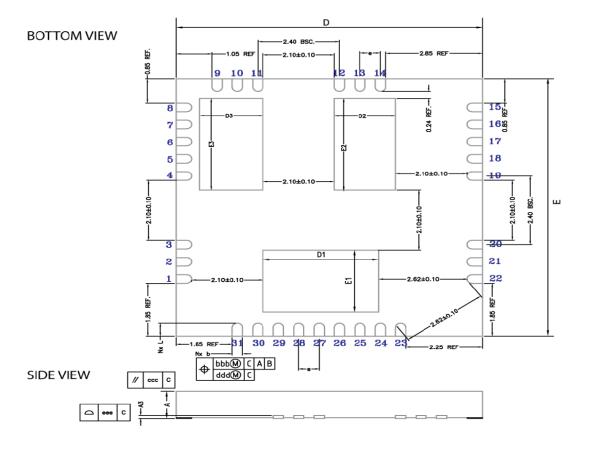
1. X: Don't care



life.augmented

MasterGaN pinout

MasterGaN pinout



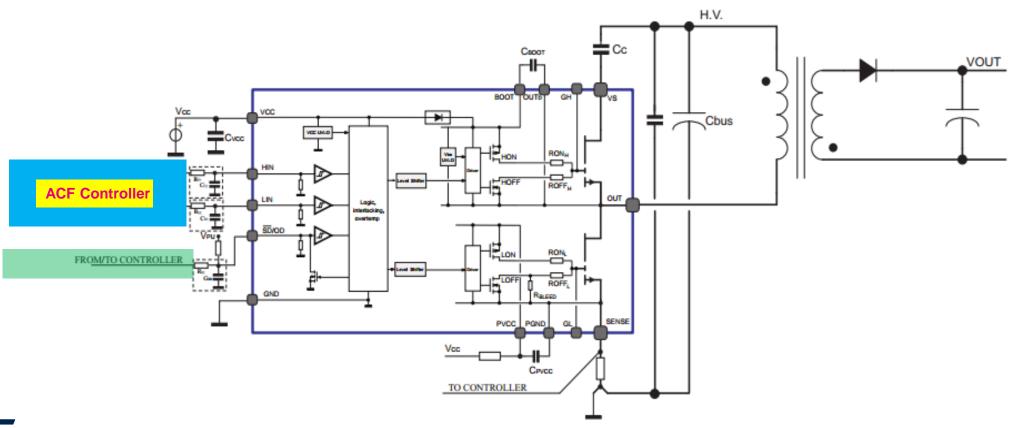
Pin Number	Pin Name	Туре	Function
15, 16, 17, 18, 19	VS	Power Supply	High voltage supply (high-side GaN Drain)
12, 13, 14, EP3	OUT	Power Output	Half-bridge output
4, 5, 6, 7, 8, 9, 10, 11, EP2	SENSE	Power Supply	Half-bridge sense (low-side GaN Source)
22	BOOT	Power Supply	Gate driver high-side supply voltage
21	OUTb	Power Supply	Gate driver high-side reference voltage, used only for Bootstrap capacitor connection. Internally connected to OUT.
27	VCC	Power Supply	Logic supply voltage
1	PVCC	Power Supply	Gate driver low-side supply voltage
28, EP1	GND	Power Supply	Logic ground
3	PGND	Power Supply	Gate driver low-side driver reference. Internally connected to SENSE.
26	HIN	Logic Input	High-Side driver logic input
24	LIN	Logic Input	Low-Side driver logic input
25	SD/OD	Logic Input-Output	Driver Shutdown input and Over-Temperature
2	GL	Output	Low-Side GaN gate.
20	GH	Output	High-Side GaN gate.
23, 29, 30, 31	N.C.	Not Connected	Leave floating

MasterGaN Footprint

Footprint with >2 mm creepage between HV and LV pads

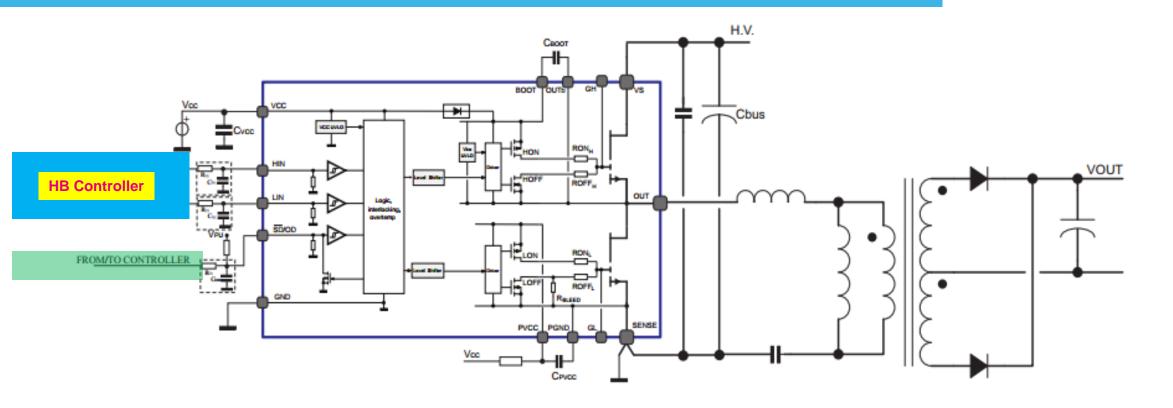
Key features

- Creepage distance >2 mm between HV and LV pads
- 3 exposed pads for thermal dissipation



Typical application diagram

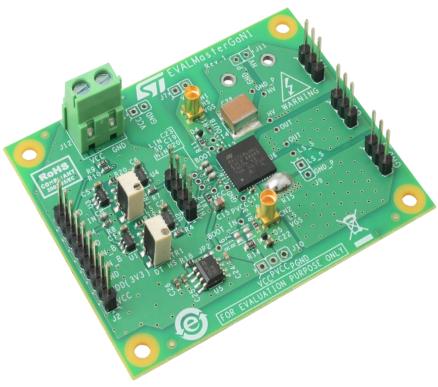
Active clamp flyback Topology



Typical application diagram

LLC Resonant Topology

The MasterGaN Ecosystems


MasterGaN1 - Ecosystem

Evaluation board & ecosystem available at www.st.com/mastergan

Key applications

- Switch-mode power supplies
- Chargers and adapters
- High-voltage PFC
- DC-DC and DC-AC converters
- UPS systems
- Solar power

EVALMASTERGAN1

MasterGaN2 - Ecosystem

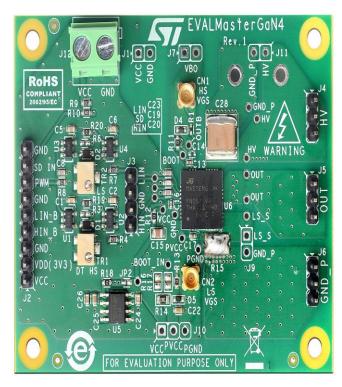
Evaluation board & ecosystem available at www.st.com/mastergan

Key applications

- Switch-mode power supplies
- Chargers and adapters
- High-voltage PFC
- DC-DC converters

EVALMASTERGAN2

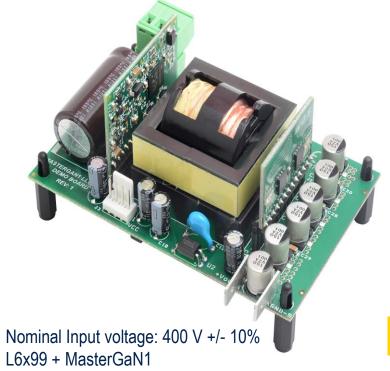
MasterGaN4 - Ecosystem


Evaluation board & ecosystem available at www.st.com/mastergan

Key applications

- Switch-mode power supplies
- Chargers and adapters
- High-voltage PFC
- DC-DC converters
- DC-AC converters

EVALMASTERGAN4


MasterGaN1 – 250W Resonant Ecosystem

Evaluation board & ecosystem available at www.st.com/mastergan

Key applications

- Switch-mode power supplies
- Chargers and adapters
- Industrial DC-DC applications
- Consumer SMPS

Vout=24V

100 x 60 x 35 (W x H) mm.

EVLMG1-250WLLC

MasterGaN solutions under development

MasterGaN solutions to address a variety of application

65W STOne Compact Board

STOne + MasterGaN1 USB-PD RM8 Transformer

Power density: 30W/in³ (uncased)

CUSTOMERS

AVAILABLE FOR SELECTED

AVAILABLE FOR SELECTED CUSTOMERS

65W STOne Evaluation Board

STOne + MasterGaN1 USB-PD RM8 Transformer Customizable board to specific customer requirements

UNDER DEVELOPMENT (Q2'21)

200W TM PFC+LLC Board

Gaming NoteBook STCMB1 + MasterGaN1

UNDER DEVELOPMENT (Q2'21)

65W STOne Planar Compact Board

for TA charger STOne + MasterGaN2 USB-PD Planar Transformer

Takeaways

MasterGaN family roadmap QFN 9x9 mm² pin-to-pin scalable

One driver, many standard transistors for HB configuration

From 45 up to 400 W

MasterGaN1

Symmetrical

150 + 150 mΩ

Mass production

MasterGaN2

Asymmetrical

150 + 225 mΩ

Mass production

MasterGaN3

Asymmetrical

225 + 450 mΩ

Development

MasterGaN4

Symmetrical

 $225 + 225 \,\mathrm{m}\Omega$

Mass production

MasterGaN5

Symmetrical

 $450 + 450 \text{ m}\Omega$

Development

Whole product family to be released by H1 2021

MasterGaN End applications

MasterGaN solutions to address a variety of application Switch-mode power supplies from 65 to 400 W in high-end, high-efficiency topologies

Active Clamp Flyback/ Forward

65 W

Smartphone ultra-fast and wireless chargers, USB-PD compact adapters for pc and gaming

Totem-pole PFC, Resonant

100 W

Industrial power supplies like solar-energy storage systems, uninterruptible power supplies (UPS)

Totem-pole PFC,
Resonant

400 W

High-end OLED TVs, server cloud

MasterGaN rides the new wave of GaN Power

Increasing efficiency & power density is a clear trend

GaN HEMT make a quantum leap in power conversion

Smart GaN ICs maximize the benefits of the new technology

MasterGaN[®] takes the challenge first

Smart GaN innovation leverages ST leadership in power conversion

Please Scan the QR Codes and Stay Tuned with Us.

PDSA Wechat Subscription

Power & SPIN Microsite

Thank you

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

