

3.6kW Totem-Pole PFC with ICL Solution

Erin WANG

Industrial Power & Energy Competence Center AP Region, STMicroelectronics

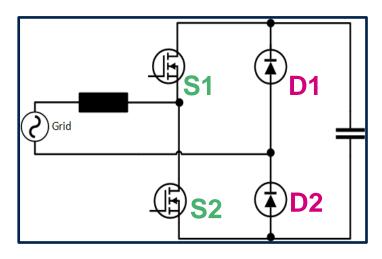
Agenda

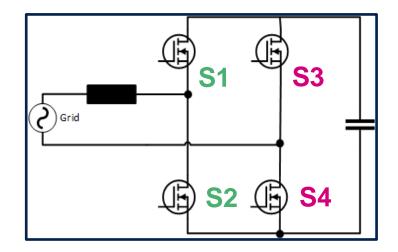
- 1 Why is Totem-Pole PFC preferred?
- Digital Power Solution for 3.6kW Totem-Pole PFC with Inrush Current Limit Control
- 3 EVM Board Performance
- 4 ST Product for Totem-Pole PFC
- 5 Summary

Why is Totem-Pole PFC preferred?

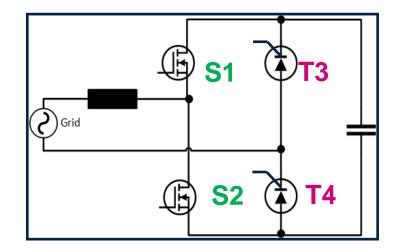
PFC topology comparison

Totem-Pole configuration is commonly used in PFC topology to achieve high efficiency and high-power density


Configuration	AC IN Cbus	AC IN L1 Cbus	AC IN Cbus		
Topology	Traditional Boost	Semi-Bridgeless Boost	CCM Totem-Pole		
Transistor	Si MOS	Si MOS	SiC / GaN FET		
Peak Efficiency	97.3%	98.0%	98.5% - 99.0%		
Pros	Well-known Technology		 Highest Efficiency High Power density Low Component Count		
Cons	• Low efficiency	• Comonicateo sensino circini	Critical PCB layoutComplicated driver circuit and control algorithm		



Totem Pole PFC configurations

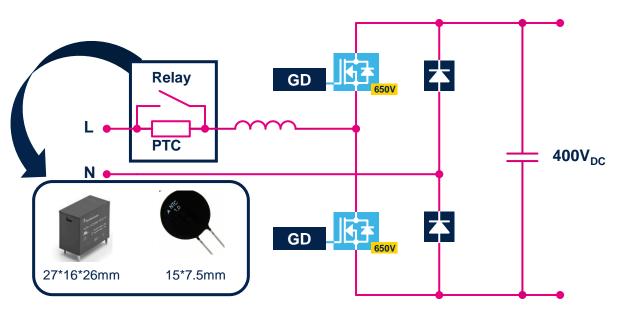

Config. 1 – Cost Orientation

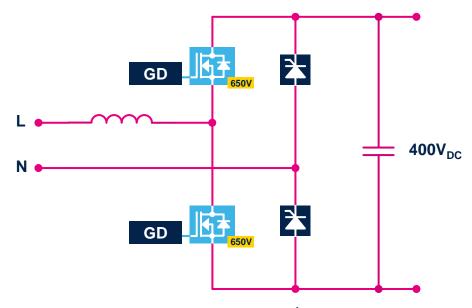
Config. 2 – Performance Orientation

Config.	3 –	Relav	/-less	Orien	tation
ooning.					tation.

Device	Technology	ST Proposal		
S1/S2	SiC MOS	SCTxxN65		
D1/D2	Rectifier	STBRxx12W		
	Driver	STGAP2S/D		
	Control	STM32		

Device	Technology	ST Proposal
S1/S2	SiC MOS	SCTWxxN65
S3/S4	SJ MOS	STxxxxN65
	Driver	STGAP2S/D
	Control	STM32


Device	Technology	ST Proposal
S1/S2	SiC MOS	SCTxxN65
T3/T4	SCR	TNxx50-12
	Driver	STGAP2S/D
	Control	STM32


Inrush current limiter with SCRs in Totem-Pole PFC

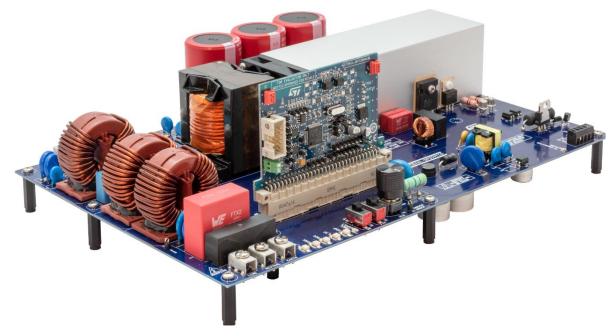
ICL with PTC and bypassing relay

- + Relay can be driven by simple circuit
- Relay cause audible noise when switching
- Relay metal contact aging
- Slower charging time

ICL with SCRs

- + Remove bulky relay and PTC/NTC
- + Remove coil and conduction loss of relay
- + Faster startup procedure
- + Active current limitation at line-drop recovery
- Need exact SCR pulse timing

Digital Power Solution for 3.6kW Totem-Pole PFC with Inrush Current Limit Control

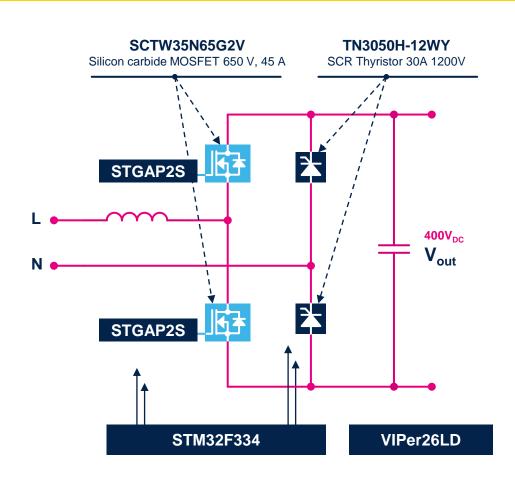

3.6 kW CCM Totem Pole PFC with ICL control

STEVAL-DPSTPFC1

Key Specs

- Input AC voltage: 85VAC up to 264VAC
- DC output voltage: 400VDC
- Maximum input current: 16A
- Switching Frequency: 72kHz
- Operation Mode: CCM
- Peak Efficiency ~ 97.7% @ 230VAC, 50% load
- iTHD < 10% @ 230VAC, >30% Load
- Digital inrush current limit control

Prototype Available

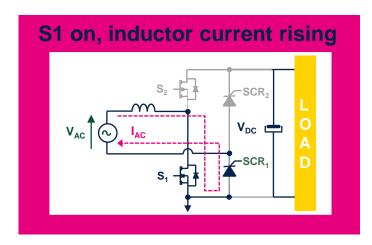


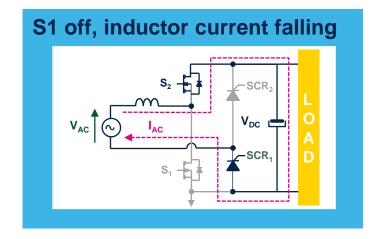
3.6 kW CCM Totem Pole PFC with ICL control

STEVAL-DPSTPFC1

Key Products:

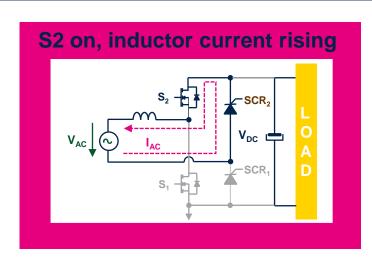
- SCTW35N65G2V (SiC MOSFET)
- TN3050H-12GY (SCR Thyristor)
- STGAP2S (Galvanic insulated gate driver)
- STM32F334 (32-bit MCU)
- VIPer26LD (converter for aux. PS)

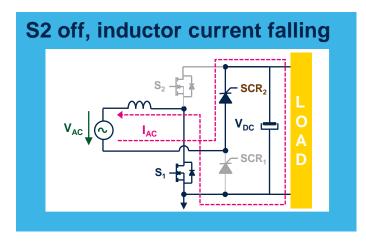




Operation mode for Totem-Pole PFC

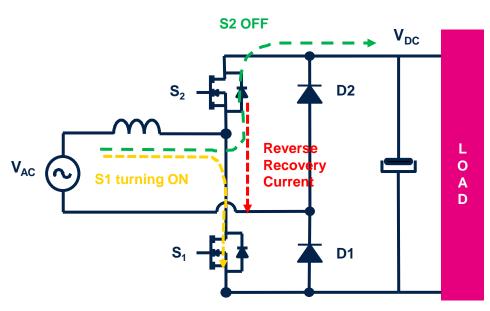
$V_{AC} > 0$


S1 controls PFC choke charging
S2 body diode is used only for discharging choke to the output
S2 can be switched on during t_{off} to reduce voltage drop of the body diode

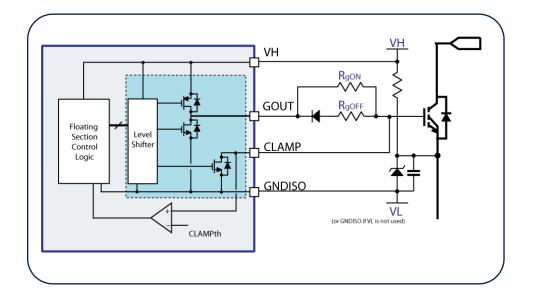


$V_{AC} < 0$

S2 controls PFC choke charging
S1 body diode is used only for discharging choke to the output
S1 can be switched on during t_{off} to reduce voltage drop of the body diode


SCRs are controlled according to the AC line polarity in PFC steady state operation

Competence Center

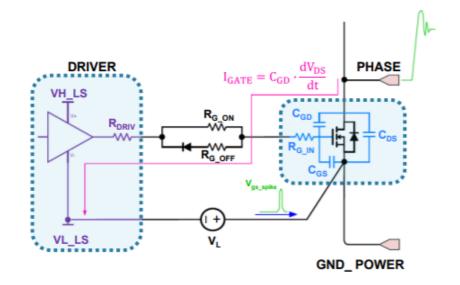

SiC MOSFET and driver IC

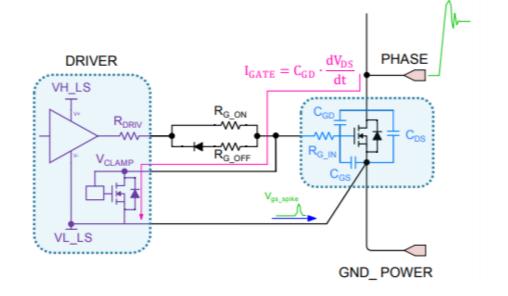
650V/1200V Gen2 SiC MOSFET

- Low body diode reverse recovery.
- Low switching loss due to outstanding figure of merit
- Low power loss at high temperature due to less temperature dependence of on resistance

Simple Isolated Driver w/wo Miller Clamp

- Positive gate drive: +18V
- Negative gate drive: -3V or -5V and / or Miller Clamp
- CMTI: ± 100 V/ns
- High current capability: 4A.

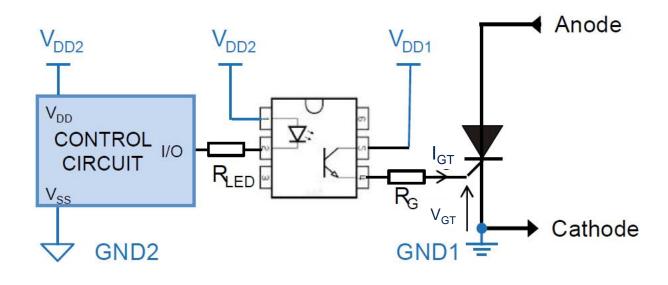



Mitigation techniques for induced G-S glitches

- SiC MOSFET can generate high slew rate dv/dt transients
- High slew rate dv/dt may generates Miller turn-on spike at gate terminal
- Active miller clamp feature minimizes Vgs glitch
- Negative turn-off bias also helps to prevent fault trigger due to Vgs glitch

Negative gate driving

Active Miller Clamp



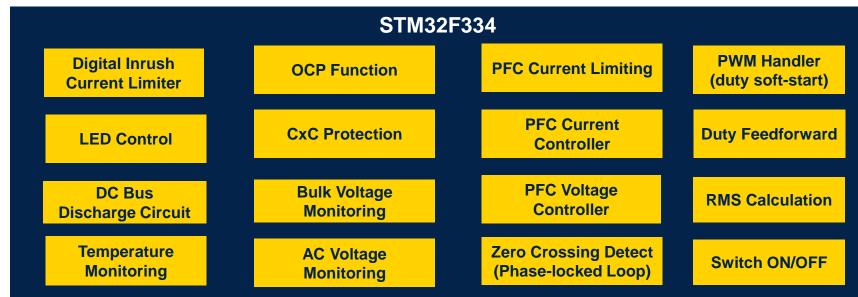
Power & Energy Competence Center

Insulated control circuit for driving SCR Thyristors

$$R_G \leq \frac{V_{DD1\; \text{min}} - V_{CE_{(Sat)}\; max} - V_{GT(Tamb\; min)}}{I_{GT(Tamb\; min)}}$$

$$R_{LED} \leq \frac{V_{DD2 \text{ min}} - V_{F \text{ max}}}{I_{\underbrace{GT(Tamb \text{ min})}_{CTR,min}}}$$

- \bullet $\;\;$ I_{GT} : Current to apply between gate and cathode to turn-on the device
- V_{GT}: The voltage to apply across gate and cathode
- Opto transistor can be used to develop the SCR triggering circuit insulated from the control unit (which is usually the MCU).
- VDD2 is the supply of the control circuit. VDD1 is the supply used to provide SCR with a gate current.
 VDD1 and VDD2 supplies have to be insulated from each other.
- VDD1 supply can easily be implemented using a secondary winding added to a flyback transformer

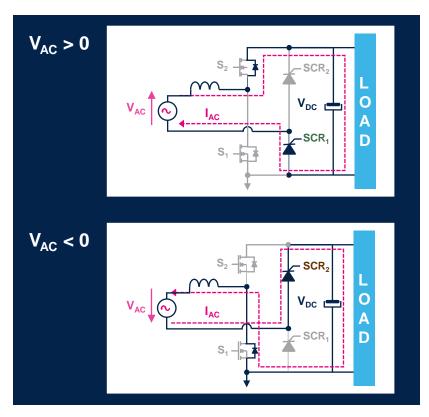

STEVAL-DPSTPFC1 digital solution

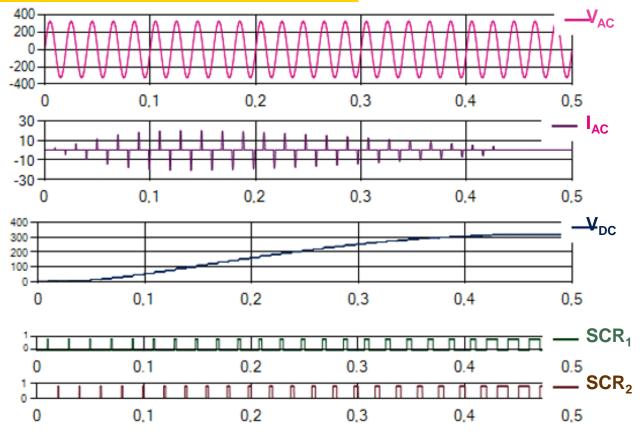
Feature rich STM32F334 MCU for digital control

72MHz Cortex-M4 with FPU and High-resolution timer (**217ps**) for precise control

Rich analog peripheral set for power conversion applications including fast ADCs (5Msps), comparators, DACs and op-amp

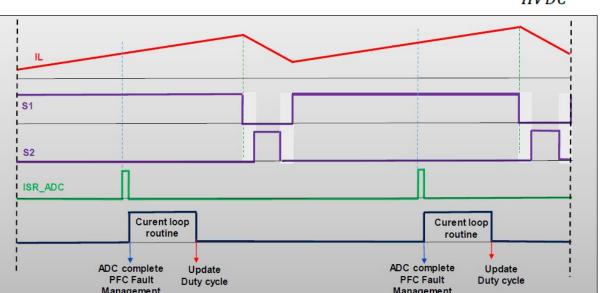
Advantages of Digital Power Control:

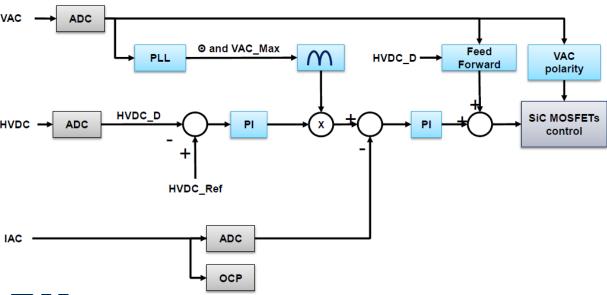

- High flexibility and good adaptability
- Reduced BOM and downsizing
- Improved time to market and customization
- Intelligent and safety
- High reliability



Digital Inrush Current Limit (ICL) control

The SCR gate signals limit the AC inrush current by progressive phase control on SCR

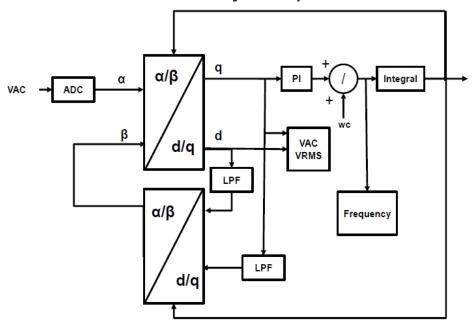


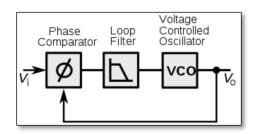


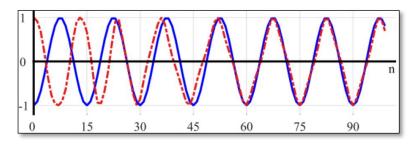
Control block diagram

PFC Control Algorithm

- Voltage (outer) loop: performed at 2 times of AC line frequency
- Current (inner) loop: performed at 72kHz
- PLL: to synchronize the phase of AC line for generation of current reference and for ICL control
- Duty-feedforward is used for PF/iTHD improvement and transient response

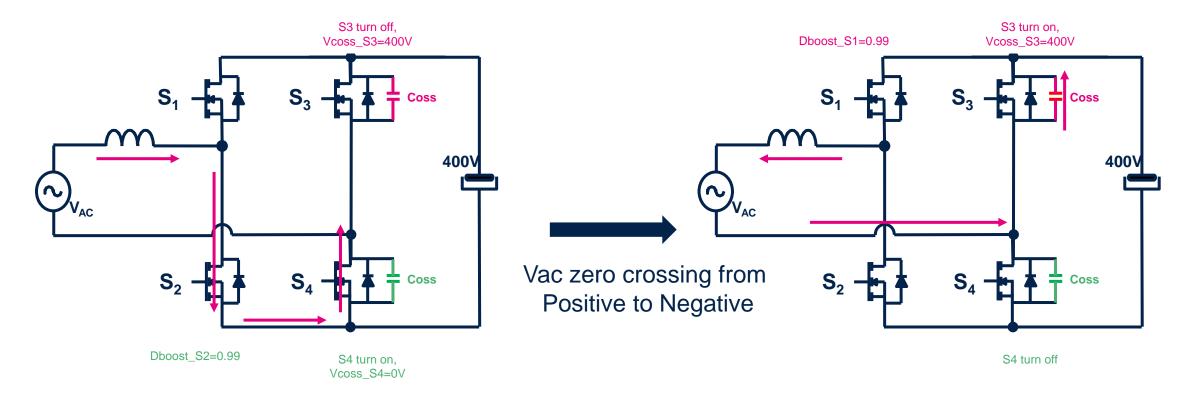





Zero Crossing Detection by PLL

PLL (phase-locked loop) - Synchronous Reference Frame (SRF)

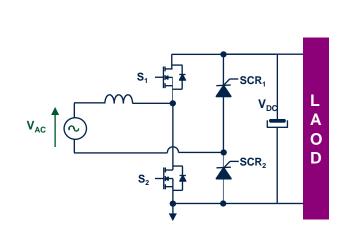
- PLL based on SRF is one of the widely used algorithms for grid synchronization
- Quick and accurate phase detection
- Better noise immunity compared to hardware ZCD circuit

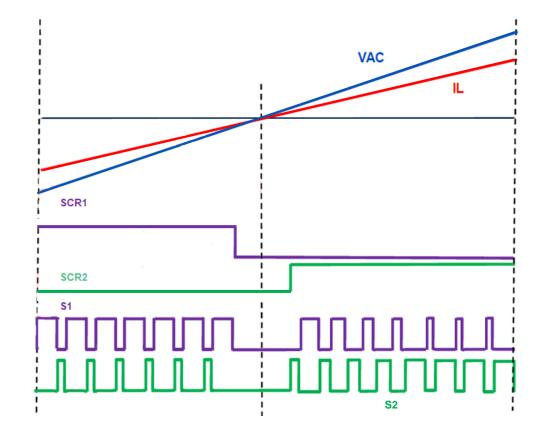


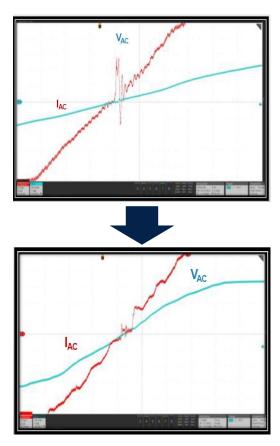
- Inverse d-q transformation for single-phase system is employed here:
 - PLL execution at 18kHz
 - Accuracy of line synchronization: +/- 55.5us
 - O is used for PFC current reference generation and for soft-start control at line zero crossing
 - To measure RMS voltage

Power & Energy Competence Center

Design challenge Current spike at AC zero crossing

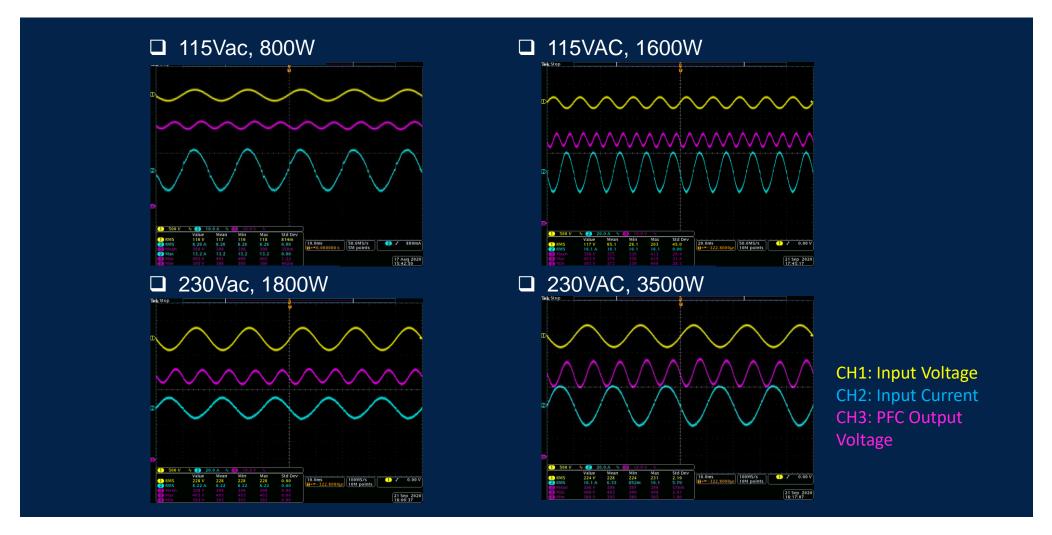

- At a zero-crossing when the AC input is going from positive to negative.
 - Before zero-crossing, Vcoss_S3=400V, Dboost=0.99 to S2, (1-Dboost)=0.01 to S1
 - After zero-crossing, Vcoss_S4=400V, Dboost=0.99 to S1, (1-Dboost)=0.01 to S2
- Right at zero-crossing, if Dboost changes abruptly, the Vcoss_S3 will cause a current spike.





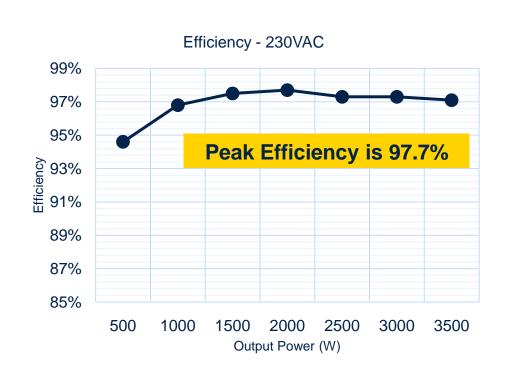
Soft duty cycle control to reduce current spike

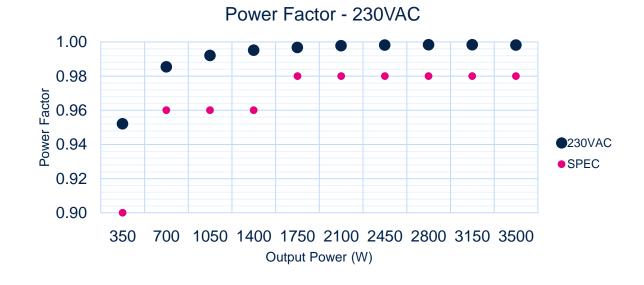
To reduce this current spike at each zero crossing of the AC line voltage, S1 or S2 active switches are controlled with a soft duty cycle.

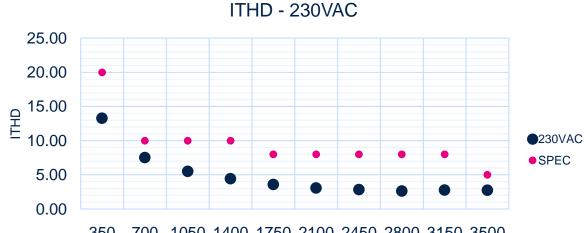


EVM Board Performance

AC input current measurement

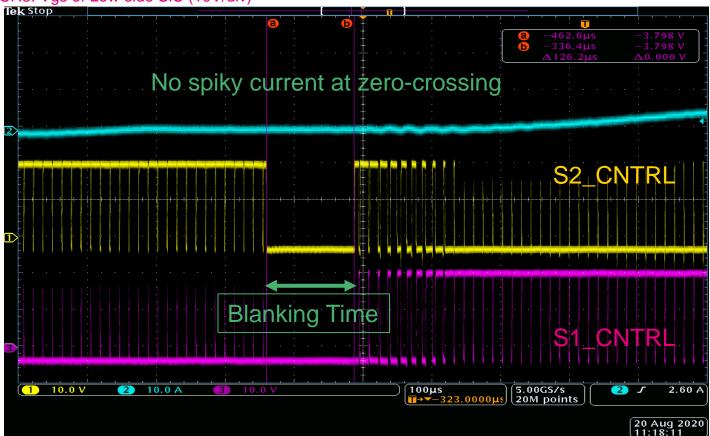



Power & Energy


Competence Center

Efficiency / ITHD / power factor

Power & Energy Competence Center



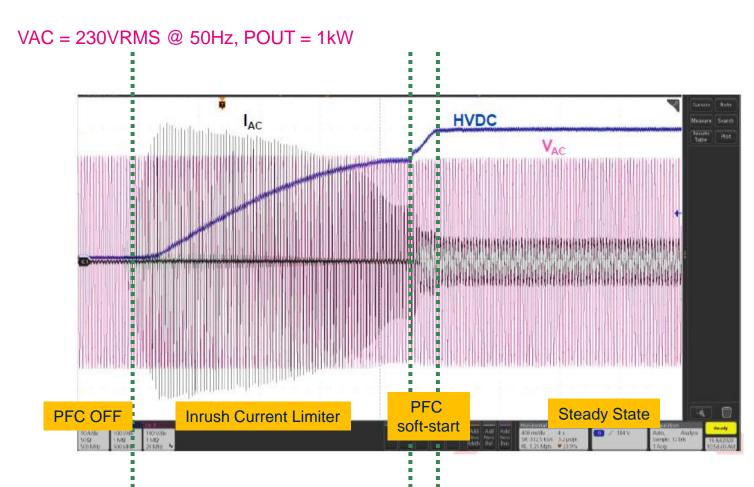
Soft duty cycle control to reduce current spike

CH1: Vgs of high-side SiC (10V/div)

CH2: Input Current (10A/div)

CH3: Vgs of Low-side SiC (10V/div)

- S1 or S2 (according to AC line polarity) starts a soft turn-on with a small pulse width and gradually increases.
- The control loop should freeze during this blanking time to avoid the integrator of the current loop generating a large PWM pulse, which can cause a large current spike.

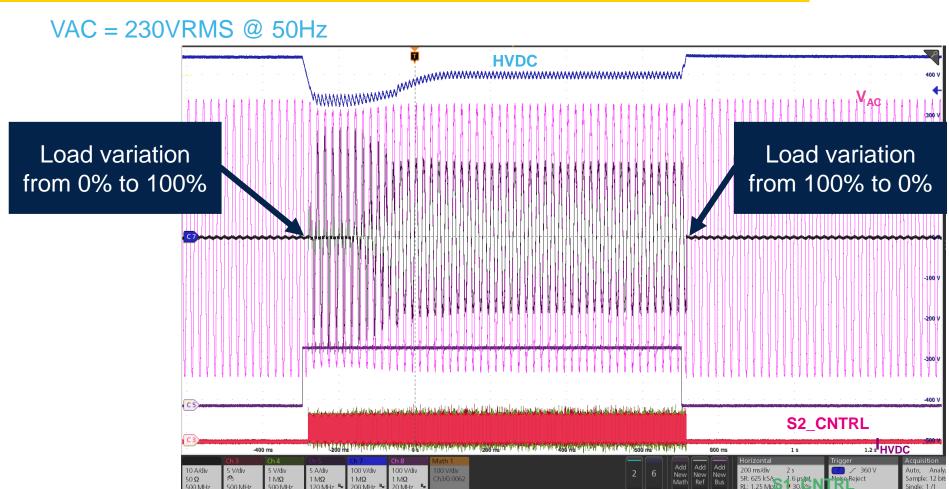


Power & Energy Competence

Center

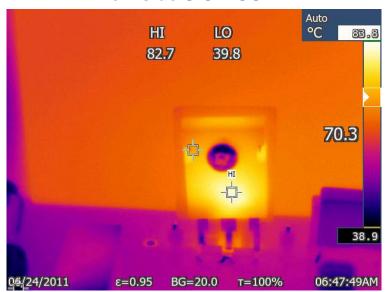
Inrush Current measurement

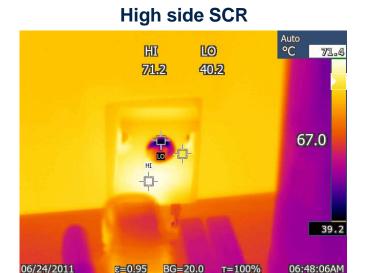
To ensure a smooth PFC start-up, a soft start routines has been implemented on the MCU firmware:


- Inrush current limiter: SCRs are controlled with a progressive phase control and the output capacitor can be smoothly up to the AC line peak voltage.
- **PFC soft start**: The output voltage reference is controlled from AC line peak voltage to 400V dc with a smoothly voltage ramp.

Load variation

Excellent transient load variation thanks to feed forward digital implementation





Power device temperatures

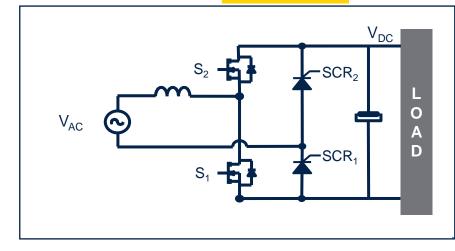

The board is equipped with overtemperature protection mounted on the heatsink

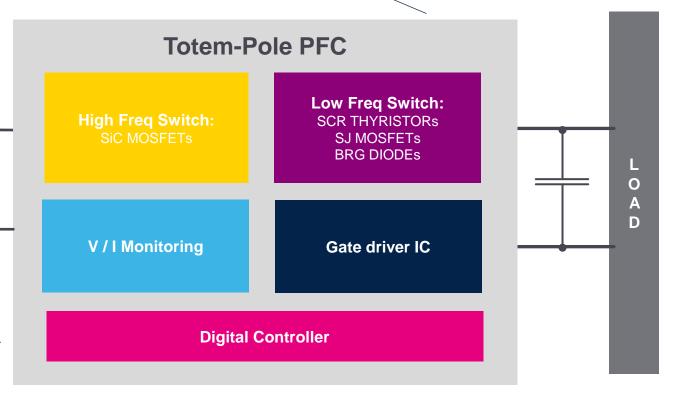
Low side SiC MOSFET

VAC = 230VRMS @ 50Hz
Pout = 3600W @ 28C ambient
High side SiC MOSFET

ST Product for Totem-Pole PFC

Power & Energy


Competence Center



AC

N

ST product for Totem-Pole PFC

Power & Energy Competence Center

SiC MOSFETs

STPOWER SiC MOSFET: 650 V Gen2

				Package			
Part Number	V _{DS} (V)	R _{DS(ON)} Typ @ 25° C (Ω)	I _D (A)	HiP247	HiP247-LL	HiP247-4LL	H2PAK-7L
					T _J MAX= 200°C		T _J MAX= 175°C
SCTx35N65G2V		0.55	45	Х	Х		
SCTWA35N65G2V-4*						Х	
SCTH35N65G2V-7	650						Χ
SCTW35N65G2VAG*				Х			
SCTH35N65G2V-7AG							Х
SCTx90N65G2V		0.018	119	Χ	Х		
SCTWA90N65G2V-4*						Χ	
SCTH90N65G2V-7	650						Χ
SCTW100N65G2AG		0.020	100	Χ			
SCTH100N65G2-7AG							Χ

STPOWER SiC MOSFET: 1200 V Gen2

		R _{DS(ON)} Typ @ 25° C (Ω)	I _D (A)	Package			
Part Number	V _{DS} (V)			HiP247	HiP247-LL	HiP247-4LL	H2PAK-7L
				T _J MAX= 200°C			T _J MAX= 175°C
SCTW40N120G2VAG	1200	0.075	33	Χ			
SCTW40N120G2V*		0.070	45	Χ			
SCTWA40N120G2V-4*						Х	
SCTW60N120G2AG		0.045	60	Χ			
SCTW70N120G2V		0.025	95	Χ			
SCTWA70N120G2V-4*						Х	

KEY FEATURES

- Very low switching losses
- Low power losses at high temperatures
- Higher operating temperature (up to 200 °C)
- Body diode with no recovery losses
- Easy to drive

KEY BENEFITS

- Smaller form factor and higher power density
- Reduced size/cost of passive components
- Higher system efficiency
- Reduced cooling requirements and heatsink size

Isolated gate drive for SiC MOSFET

1700 V Galvanic isolated Single & Dual channel

STGAP2S STGAP2SC

STGAP2D

6000 V Galvanic isolated Single & Dual channel

STGAP2HS STGAP2HSC

STGAP2SiCSC STGAP2SiCSC

Galvanic isolated, up to 1700 V high voltage rail

Extreme Transient Immunity
up to
± 100 V / ns

Galvanic isolated, up to 6000 V high voltage rail

up to ± 100 V / ns

3

Fast Switching Frequency (Tp 80ns only)

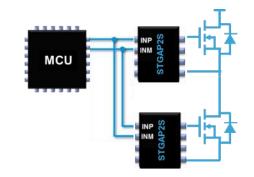
High current capability
4A Isink / Isource

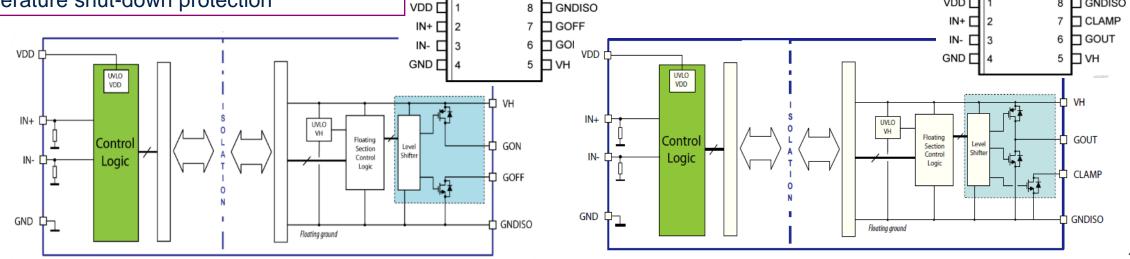
Fast Switching Frequency (Tp 80ns only)

High current capability
4A Isink / Isource

Power & Energy

Competence Center




STGAP2S, STGAP2SC

1700 V, 4A isolated gate drivers

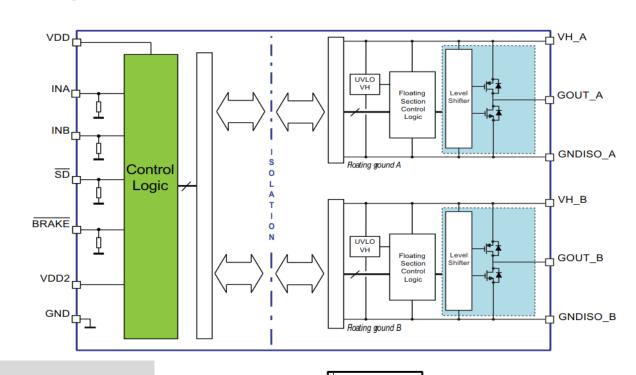
- 3V3 / 5 V logic inputs (logic thresholds 1/3, 2/3 of VDD)
- Up to 26 V supply voltage
- 4 A Sink/Source current capability
- Short propagation delay: 80 ns
- UVLO Function
- Stand-by function
- 100 V/ns CMTI
- High voltage rail up to 1700 V
- Temperature shut-down protection

- Active High & Active Low input pins, for HW interlocking
- **STGAP2S**: Separated Outputs option for easy gate driving tuning
- **STGAP2SC**: Miller CLAMP pin option to avoid induced turn-on
- Negative gate drive ability
- SO8 Package

8 GNDISO

Power & Energy

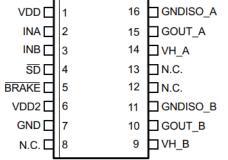
Competence Center



STGAP2D

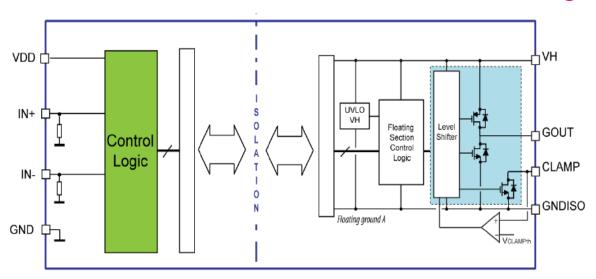
1700 V, 4A isolated gate drivers

- 3V3 / 5 V logic inputs (logic thresholds 1/3, 2/3 of VDD)
- Up to 26 V supply voltage
- 4 A Sink/Source current capability
- Short propagation delay: 80 ns
- UVLO Function
- Stand-by function
- 100 V/ns CMTI
- High voltage rail up to 1700 V
- Temperature shut-down protection
- Single input pin, in phase with output
- Shut-Down SD pin, with integrated pull-down
- BRAKE pin
- Interlocking
- · Negative gate drive ability
- SO16 Package



KEY APPLICATIONS

- Motor control
- Factory automation
- Industrial drives and fans
- DC-DC converters
- Induction heating
- Welding


Power & Energy Competence

Center

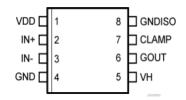
STGAP2SiCS, STGAP2SiCSC

6k Galvanic isolated single channel, 4 A gate driver for SiC

KEY APPLICATIONS

- Motor control
- Factory automation
- Industrial drives and Fans
- DC/ DC converters
- Welding

Key benefits & features



High performance for SiC

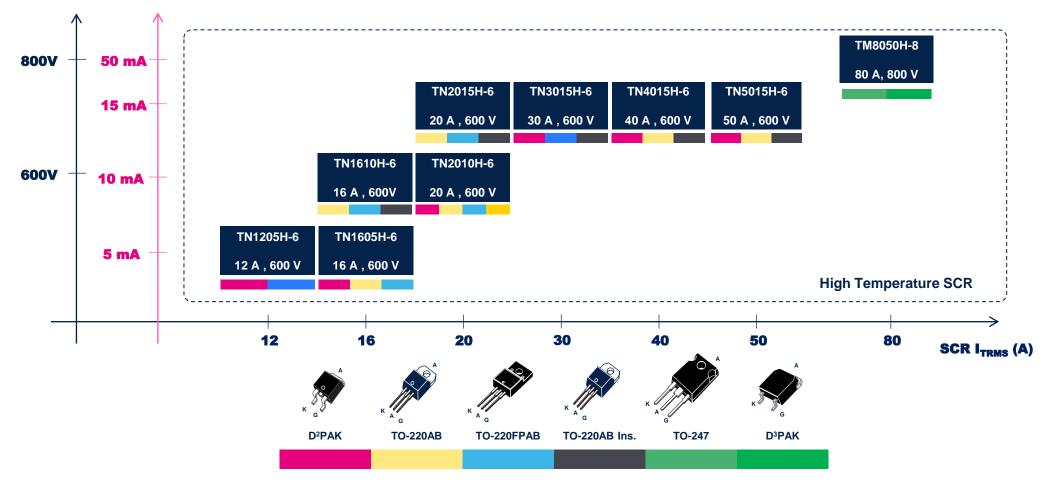
- Galvanic isolated up to 6kV
- 4 A sink / source driver current capability
- > 100 V / ns transient immunity
- 3.3 to 5 V TTL/ CMOS inputs with hysteresis
- **Propagation delay 80ns**

Robustness

- **UVLO** optimized for SiC
- Miller Clamp
- Thermal Protection

Minimum footprint and lightweight

Compact and simplified layout SO8W package



Power & Energy

Competence Center

600V - 800V SCR Thyristors

Power & Energy Competence Center

1200V SCR Thyristors

Versatile and robust devices for EV OBC, charging stations, UPS Fast and controlled inrush current limitation

TO-247 Long Lead

Part Number	I _{TRMS}	I _{TAV}	I _{TSM}		Pacl	kage		App Power	I _{AC RMS}
	(A)	(A)	(A)	TO-247	D ² PAK	TOP3I	A-SMIT	(kW)	(A) 16 24 32
TN3050H-12Y	30	20	300	•	•			3.7	16
TN5050H-12	50	30	450	In dev		•		6	24
TN6050HP-12Y	60	40	600	•			In dev	7.4	32
TN8050H-12	80	50	720	Next		Next		10	45

150°C reliability with over time stability

High switching life expectancy

Enable system to resist 6kV surge

Robustness against inrush currents

High speed power up / line drop recovery

IE3 Motor Starters

Charging Stations

Power & Energy Competence Center

STM32F334 MCU

The STM32F334 product line is ideal for digital power conversion applications like D-SMPS, lighting, welding, inverters for solar systems and wireless chargers

72MHz Cortex-M4 with FPU and High-resolution timer (217ps) for precise control

Rich analog peripheral set for power conversion applications including fast ADCs (5Msps), comparators, DACs and op-amp

MAIN APPLICATIONS

Flash size (bytes)/RAM size (bytes)

STM32F334K8

STM32F334K6

STM32F334K4

32-pin QFN/LQFP

STM32F334C8

STM32F334C6

STM32F334C4

48-pin LQFP

49-pin CSP

STM32F334R8

64-pin LQFP

UPS & Data center Charging station Power supply

→ Pin count

64 K / 16 K

32 K / 16 K

16 K / 16 K

Digital Power Supply and PFC Design Workshop with STM32 MCUs in collaboration with the company partner Biricha (from Q4 2019)

BIRICHA DIGITAL

System Power supply

1.8 V regulator

POR/PDR/PVD

Xtal oscillators 32 kHz + 4 to 32 MHz Internal RC oscillators 40 kHz + 8 MHz Clock control RTC/AWU 1x SysTick timer 2x watchdogs (independent and window) 25/37/51 I/0s Cyclic redundancy check (CRC) Touch-sensing controller 18 keys

Control

1x 16-bit (144 MHz) motor control PWM Synchronized AC timer 1x 32-bit timers 4x 16-bit timers 10 ch. HRTIM (217 ps)

64-Kbyte Flash memory Up to 12-Kbyte SRAM 20 bytes backup data

4-Kbyte CCM-SRAM

Connectivity

1x SPI 1x I2C 1x CAN 2.0B 2x USART + 1 UART LIN, smartcard, IrDA modem control IR transmitter

Analog

3x 12-bit DAC with basic timers 2x 12-bit ADC 21 channels / 5 MSPS 3x Comparators (25 ns) 1x Programmable Gain Amplifiers (PGA) Temperature sensor

72 MHz

ARM® Cortex®-M4

CPU

Floating Point Unit

(FPU)

Nested Vector

Interrupt

Controller (NVIC)

Memory Protection Unit

(MPU)

JTAG/SW debug/ETM

7-channel DMA

Summary

Summary

- This evaluation board focuses on Totem-Pole PFC converter, which increases the efficiency by eliminating the diode bridge loss.
- Using SCRs operating at low frequency leg to allow inrush current limit control and also to help remove bulky NTC/Relays.
- ST provides the latest technologies (SiC/STGAP/SCR/STM32) for high power and high efficiency solutions on Totem-Pole PFC.
- This reference design offers:
 - Digital power solution for totem-pole PFC converter
 - Peak efficiency is about 97.7%
 - iTHD distortion lower than 5% at maximum load
 - Inrush-current limitation is based on a soft-start procedure of the SCRs controlled.

Thank you

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

