

Totem-pole PFC reference design with SiC technology

STMicroelectronics

STMicroelectronics powers totem pole PFC with SiC MOSFETs, thyristor SCRs and digital control

Bridgeless totem-pole PFC

Basic single phase PFC topologies for CCM

With input bridge rectifier

Simple Boost

- + Simple
- + Simple input voltage sensing
- Two diodes in series all the time

- + Higher efficiency
- Input voltage sensing requires OpAmp
- More complex
- Needs SiC MOSFETs with no \mathbf{Q}_{RR} of diode

Basic single phase PFC topologies for CCM

With input bridge rectifier

Simple Boost

junctions in series: 3

Bridgeless Totem-pole 400V

junctions in series: 2

Totem pole bridgeless PFC working in CCM totem pole PFC operation in steady-state

$V_{AC} > 0$

S1 controls PFC choke charging
S2 body diode is used only for discharging choke to the output
S2 can be switched on during t_{off} to reduce voltage drop of the body diode

$V_{AC} < 0$

S2 controls PFC choke charging **S1** body diode is used only for discharging choke to the output **S1** can be switched on during t_{off} to reduce voltage drop of the body diode

ICL with NTC and bypassing relay

- Diodes are used for returning current path
- Resistive element is inserted into current path (NTC or PTC)
- NTC is bypassed after startup by relay to decrease power losses on NTC

- SCRs are used for returning current path
- When SCR are not being switched, output capacitor is disconnected
- During startup phase, pulses to SCR are being time controlled to slowly charge output capacitor
- This method requires timing → MCU required

ICL with NTC and bypassing relay

- + Relay can be driven by simple delaying circuit
- Relay causes audible noise when switching
- Relay not usable in systems with vibration
- Relay metal contact aging
- Slower charging time (current drops every cycle):

ICL with SCRs

- + No electromechanical bouncing
- Need exact SCR pulse timing
- + Faster startup procedure (constant peak current)

But a Thyristor has a much higher voltage drop than a diode... Or does it?

SCR has almost the same voltage drop (at 150°C) compared to bridge rectifier (both 30A/1.2kV)

3.6 kW totem pole PFC solution with SiC MOSFETs, thyristor SCRs and digital control

Innovative topology for D-SMPS, EV charging and motor drives

STEVAL-DPSTPFC1 3.6 kW 1-ph totem-pole PFC

- Input AC voltage: 85 V_{AC} up to 264 V_{AC}
- Input AC frequency: 45 Hz up to 65 Hz
- DC output voltage: 400 V_{DC}
- Maximum input current: 16 A_{RMS}
- Ambient temperature: tested from 0 °C up to 45 °C
- Peak Efficiency: 97.7 % with 4.7% THD
- Compliant with:
 - EN 55015 and IEC 61000-4-11 and IEC 61000-3-3
 - IEC 61000-4-5 surge: 4 kV
 - IEC 61000-4-4 EFT burst: criteria A @ 4 kV min
- Cooling: forced air cooling with active fan
- Designed for operation with DC / DC converter
- Peak inrush current tuning

STEVAL-DPSTPFC1 3.6 kW 1-ph totem-pole PFC

Key Products:

- SCTW35N65G2V (SiC MOSFET)
- TN3050H-12GY (SCR Thyristor)
- STGAP2AS (Galvanic insulated gate driver)
- STM32F334 (32-bit MCU)
- VIPer26LD (converter for aux. PS)

97.5 % efficiency at full load

Digital bridgeless PFC with inrush limiter STEVAL-DPSTPFC1 – operation during inrush limitation

The SCR gate signals limit the AC inrush current by sweeping triggering angle backward from 180° to 0°

Digital bridgeless PFC with inrush limiter STEVAL-DPSTPFC1 – MOSFETs control

SiC MOSFETs operate in safe synchronous conduction mode to optimize efficiency

Results: efficiency & THD $V_{AC} = 230 V_{RMS} @ 50 Hz, T_{amb} = 25^{\circ}C$

High Efficiency over complete load range – Very low THD in medium / high load

Results: Load variation $V_{AC} = 230 V_{RMS} @ 50 Hz, P_{OUT} = 3.6 kW (100%)$

Excellent Transient Load Variation thanks to feed forward digital implementation

Results: power device temperatures $V_{AC} = 230 V_{RMS}$ @ 50hz, $P_{OUT} = 3.6 \text{ kW}$, $t_{amb} = 28 \,^{\circ}\text{C}$, FAN ON

Low side SiC MOSFET

High side SiC MOSFET

The board is equipped with Over Temperature Protection mounted on the heatsink

Key power product families

A real boost for efficient high power designs

High reliability and heatsink reduction

Very high temperature handling capability (max. TJ = 200 °C for SiC MOSFETs, max TJ = 150°C for SCRs)

Higher system efficiency

The most innovative SCR thyristor portfolio

High performance characteristics

V_{DRM}: 600 V to 1200 V

 I_{GT} : 5 μ A to 50 mA

I_{TRMS}: 12 A to 80 A

T_J: 150°C

1200V thyristor SCRs range

Reliable and compact designs in new AC / DC functions

Commercial Part	Current (A _{RMS})		Trigger (mA)	dV/dt (V/µs)	Package						
Industrial Grade 1200 V,125°C											
TYN1212RG	12	120	15	200	TO-220						
TN2540-12G	25	300	40	1500	D ² PAK						
TYN1225RG	25	300	40	1500	TO-220						
TN4050-12PI	40	400	50	500	TOP3-I						
BTW69-1200N	50	700	50	1000	TOP3						
TN6050-12PI	60	700	50	1000	TOP3-I						
Automotive Grade 1200V , 150°C											
TN3050H-12GY	30	300			D ² PAK						
TN3050H-12WY	30	300			TO-247						
TN5050H-12WL	50	400	50	1000	TO-247LL						
TN6050HP-12WY	80	600			TO-247						
TN8050H-12WL	80	720			TO-247LL						
NEW = Light Blue			•		•						

Renewable

IE3 Motor Drives

TO-247

TOP3 Insulated

Gen2 650V SiC MOSFET product range

Part Number					Package							
	V _{DS} [V]	R _{DS(on)} Typ _@ 25 ºC [Ω]	ld [A]	HiP247	HiP247-LL	HiP247-4LL	H2PAK-7L					
		- 02 (- 1	_@ 25 ºC [Ω]		Tj max= 200°C			Tj max= 175°C				
650 Gen2 (Vgs=18V) series												
SCTW90N65G2V		Ì	0.018	119	х							
SCTWA90N65G2V						Х						
SCTWA90N65G2V-4							Х					
SCTH90N65G2V-7		650						Х				
SCTW100N65G2AG	(-	650	0.020	100	Х							
SCTWA100N65G2AC	3					Х						
SCTWA100N65G24A	G						Х					
SCTH100N65G2-7A0	;							Х				
SCTW35N65G2V			0.55	45	Х							
SCTWA35N65G2V	_					Х						
SCTWA35N65G2V-4							Х					
SCTH35N65G2V-7		CEO.						Х				
SCTW35N65G2VAG		650			Х							
SCTWA35N65G2VA		")				Х						
SCTWA35N65G2V4A	.G						Х					
SCTH35N65G2V-7A0	3							Х				

Key Features

- Enales new technology platform with outstanding Figure Of Merit
- Excellent system efficiency and reduced cooling requirements
- Very low on-state resistance
- 200°C maximum junction temperature
- Very fast and robust intrinsic body diode
- Industrial and Automotive Grade qualified

Typical Applications

- Charger Stations and On-Board Chargers
- PFC SMPS for Industrial, Telecom & Class-D Audio Amplifiers
- · Traction inverters in HEV and BEV
- Motor drives
- DC-DC converters

Isolated Gate Drivers STGAP2S & STGAP2D

Different flavors for different needs

Renewable

STGAP2S

- 1.7 kV Isolation
- 4 A sink and source current
- Single channel
- Active Miller Clamp or G_{ON}/G_{OFF} pins

- 4 A sink and source current
- Dual channel
- Compact layout
- Industrial grade

STGAP2S 1700V, 4A isolated gate driver

- 3V3 / 5 V logic inputs (logic thresholds 1/3, 2/3 of VDD)
- Up to 26 V supply voltage
- 4 A Sink/Source current capability
- · Short propagation delay: 80 ns
- UVLO Function
- Stand-by function
- 100 V/ns CMTI
- High voltage rail up to 1700 V

- Active High & Active Low input pins, for HW interlocking
- STGAP2SM: Separated outputs option for easy gate driving adjustment
- STGAP2SCM: Miller CLAMP pin option to avoid induced turn-on
- Negative gate drive ability
- SO8 Package

Thank you

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

