

How sensors with machine learning core bring power-efficient Al applications to the edge

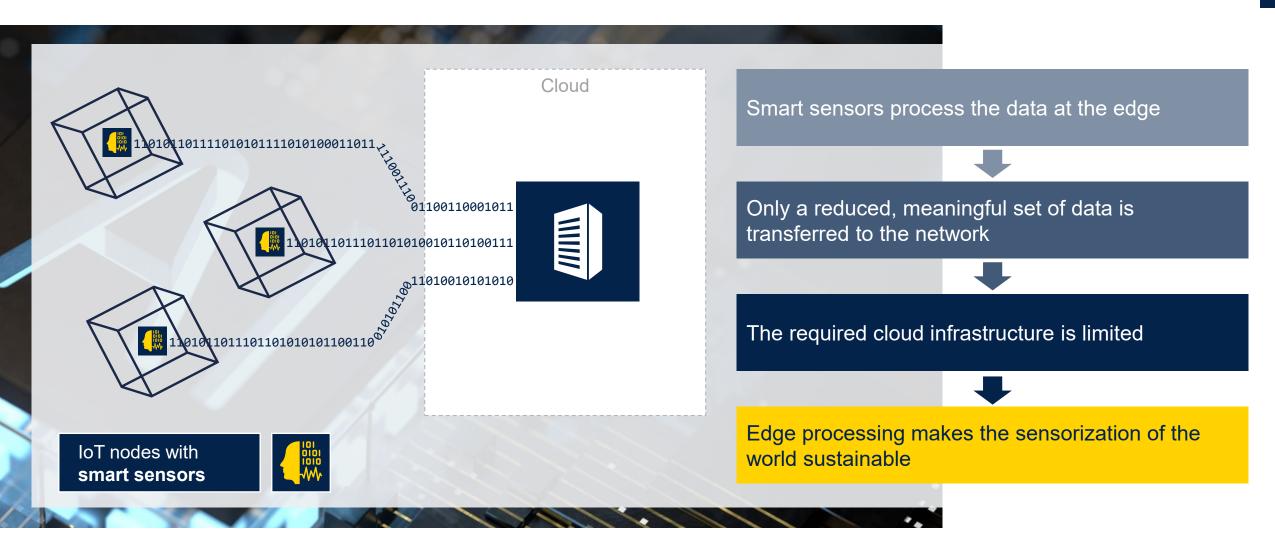
Outline

- Artificial intelligence and machine learning
 - Products with machine learning core
- Key steps behind machine learning core
- 4 Form factor tools and GUI

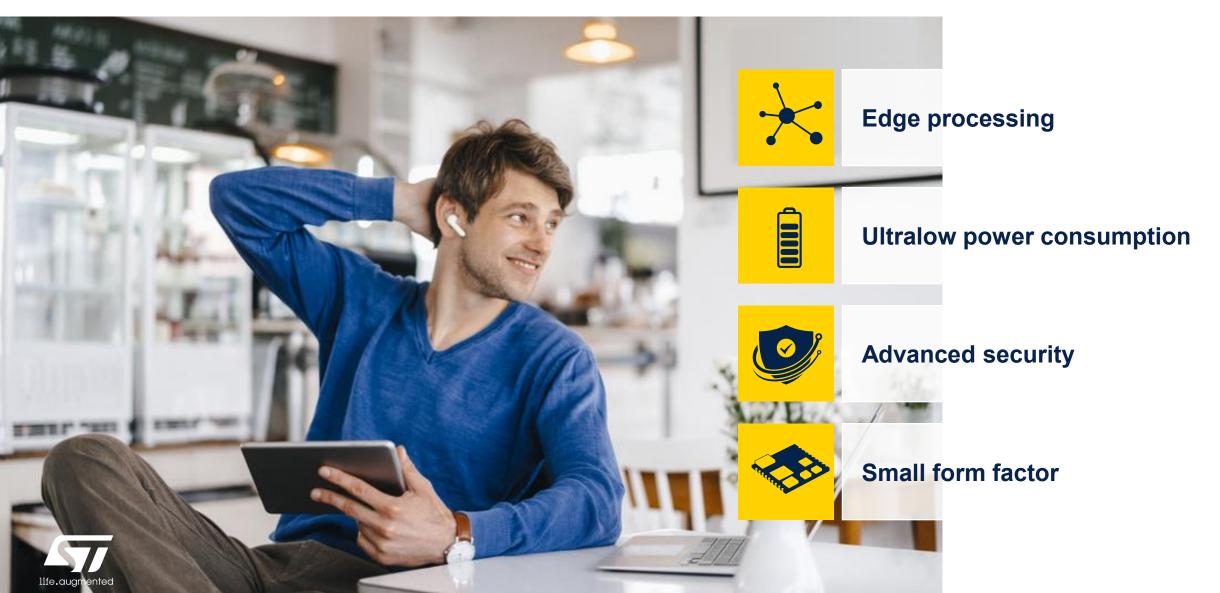
5 ST Partner: Arduino®

6 MLC application demos

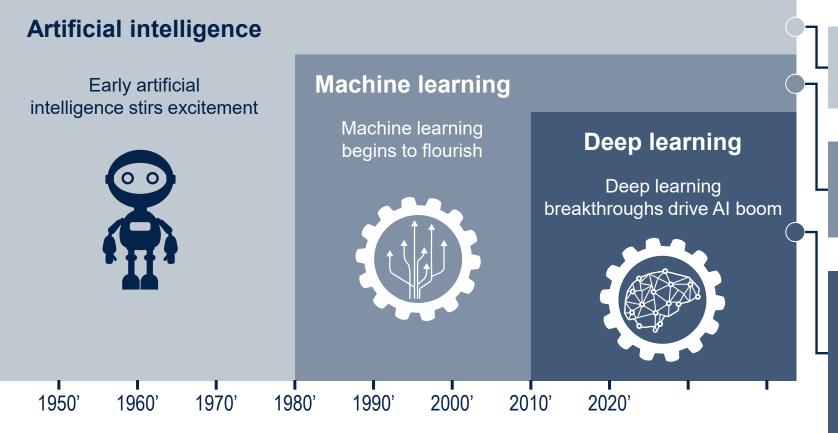
7 GitHub: MLC configuration examples


8 Resources

Artificial intelligence and machine learning



Adding intelligence to make sensorization sustainable



Smart sensors are becoming even smarter

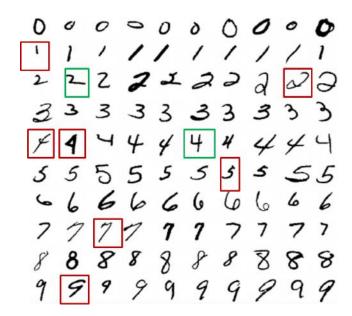
What is Al?

The evolution of Al

Any technique that enables a computer to mimic **human behavior**


Subset of Al. Algorithms and methodologies that improve over time through **learning from data**

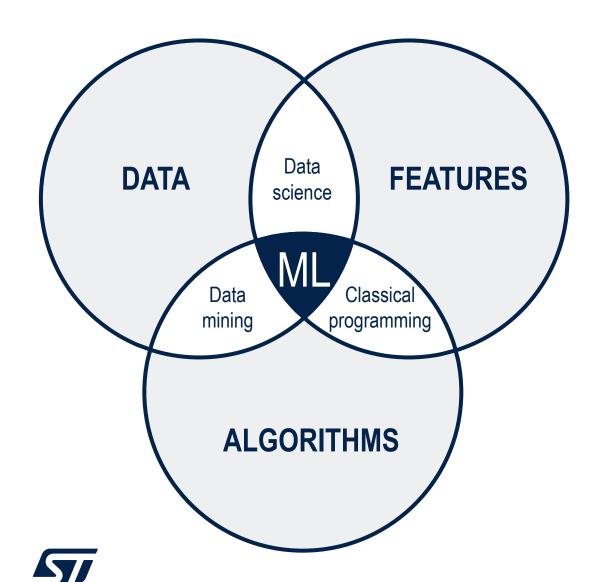
Subset of ML. Learning algorithms that derive meaning out of data, by using a hierarchy of multiple layers that mimic the neural networks of the human brain


Machine learning: why do we need it?

When a complex task or problem involves a large amount of data and lots of variables, but no existing formula or equation can solve it

An example of difficult program

- How to recognize the handwritten digits?
- Very difficult to define the rules!
- What makes all these numbers to be identifiable?
- Is there a pattern?
- What is it that makes a 2 to be identified as a 2?



Some examples from MNIST database

(Mixed standard institute for standard and technology)

Three components of machine learning

The only goal of machine learning is to predict results based on incoming data

DATA: the more diverse the data, the better the result. It's extremely tough to collect a good collection of data (usually called a dataset)

FEATURES: also known as parameters or variables.

ALGORITHMS: The most obvious part. The method you choose affects the precision, performance, and size of the final model.

Standard vs machine learning algorithm approach

Machine learning "Empirical" approach Log of input data to Desired output from

Design algorithm specific for the given problem

General ML model trained for the specific problem

the system

the system

Using AI algorithms implies two phases

Training

Al models are produced using historical **datasets** and a training engine / framework

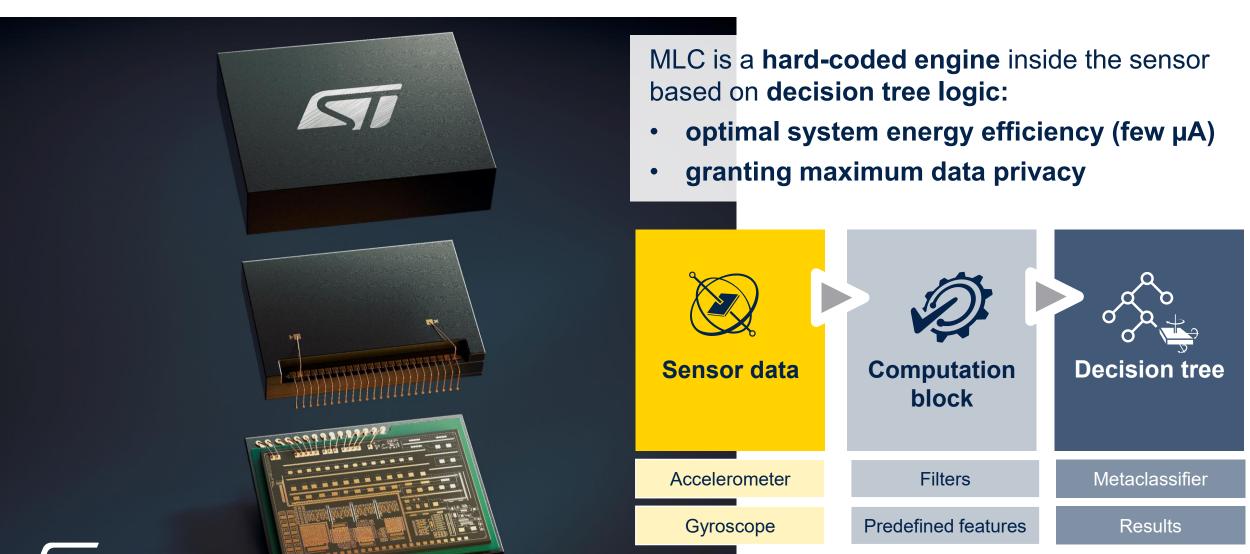
Dataset Training Model

Inference

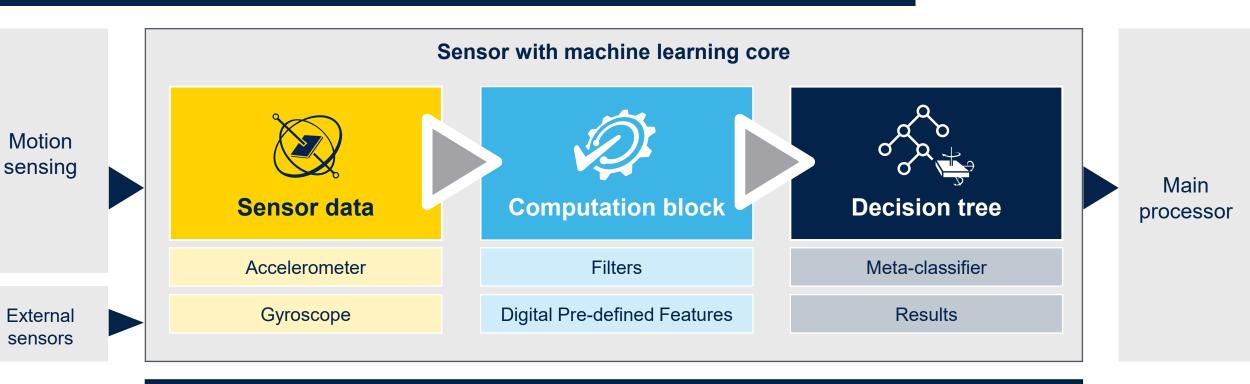
Model deployment

Inference is the process of using a trained machine learning model to make predictions or decisions based on new, unseen data.

Input data Model & engine Result


Products with machine learning core

Smart sensors


Decision-making capabilities closer to data source: sensors with machine learning core (MLC)

Machine learning core (MLC) What it is

MLC is an in-sensor classification engine based on decision tree logic

MLC is able to **increase accuracy** with a **better context detectability**, **offloading the main processor** while the built-in sensors identify motion data

Machine learning core (MLC) The blocks

Sensor data

A wide set of inputs is available:

- Accelerometer
 - \rightarrow [a_x a_y a_z], [a_v], [a²_v]
- Gyroscope
 - \rightarrow [g_x g_y g_z], [g_v], [g²_v]
- External sensor (e.g. magnetometer)
 →[m_x m_y m_z], [m_v], [m²_v]
- Magnitude

$$\rightarrow V = \sqrt{X^2 + Y^2 + Z^2}$$

Computation block

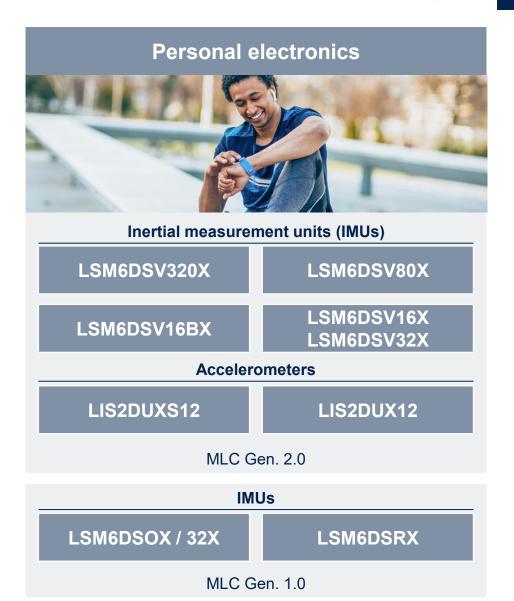
- Sensor data can be filtered with a 2nd order IIR filter
- Features are statistical parameters calculated from:
 - Input Data
 - Filtered Input Data
- Examples of features are:
 Mean, Variance, Energy,
 Peak to Peak, ...

- The **decision tree** is a predictive model built from training data. Outputs of the computation block are inputs for the decision tree
- Each **node** is characterized by one «if-thenelse» condition. Some examples of conditions:
 - Mean on Acc_X < 0.5 g
 - Variance on Gyro_Z < 200 dps
- A decision tree can either generate a result at every sample or filter the results with a metaclassifier, to have a more robust output

Machine learning core Features & performance

Performance	Generation 1	Generation 2	New features User advantages	
MLC rates	ODR = 13, 26, 53, 104 Hz	ODR = 15, 30, 60, 120, 240 Hz	MLC rate increase to enable addressing new apps (spike detection)	
MLC with external sensor acquisition	2 bytes	2 bytes, 3 bytes	Full processing of high-resolution sensor (e.g. ST pressure sensor)	
System optimization				
MLC features / filters exportable	n.a.	Yes (available in FIFO)	Al data directly stored in FIFO and exportable	
MLC recursive features	n.a.	Yes		
Improved meta classifier	n.a.	Yes	Short-time events perfectly captured by recursive sliding windows	
MLC execution before FSM	n.a.	Yes		

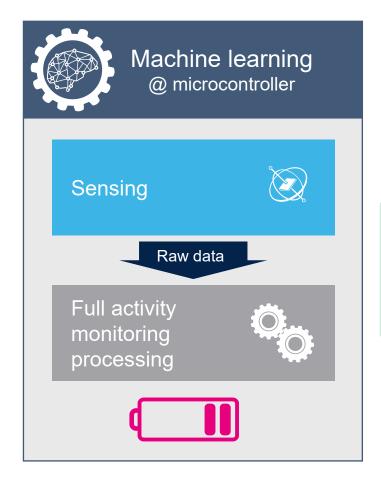
Machine learning solutions in accelerometers and IMUs

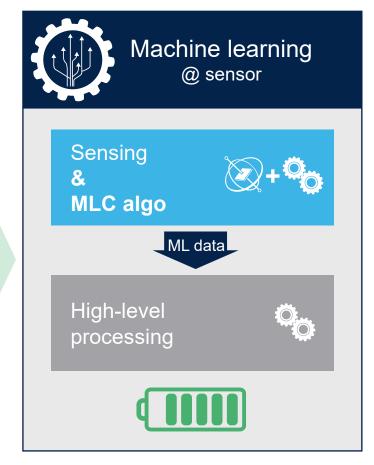

Inertial measurement units (IMUs)

ASM330LHHX ASM330LHHXG1

ASM330LHB ASM330LHBG1

MLC Gen. 2.0

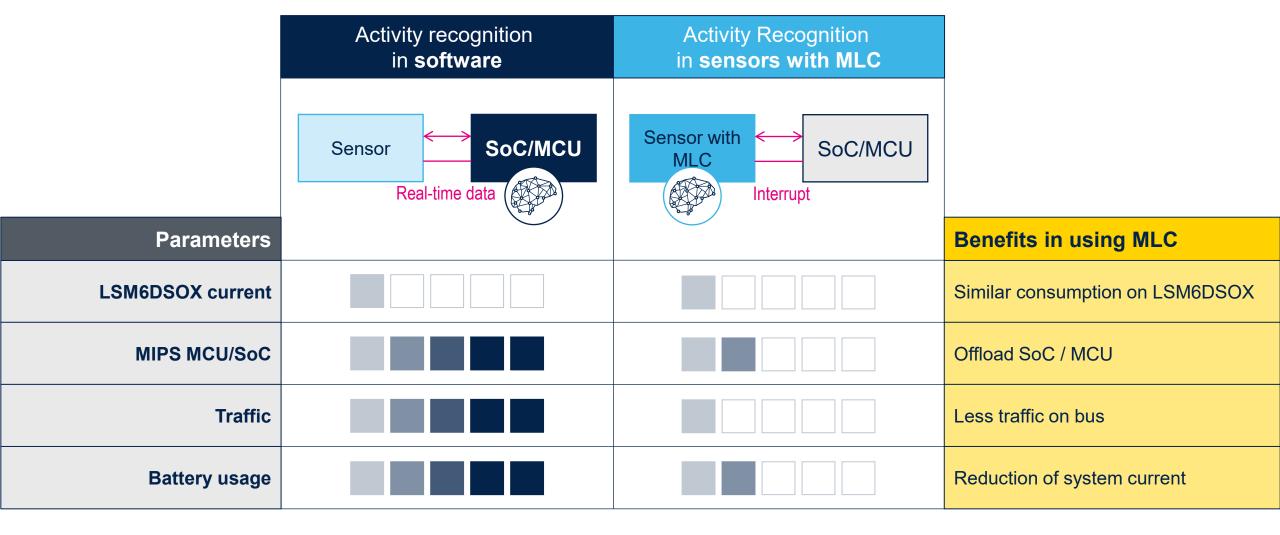




From low-power sensor to low-power system

Machine learning core (MLC) for real edge computing enables high system flexibility

Power optimization at system level



- Higher computation power at sensor level
- Lower power consumption at system level
- Cost-optimized solution

This is added value!

System level benefits using sensors with MLC

Key steps behind machine learning core

Machine learning solutions in sensors New developer model approach

Shorter development time and better accuracy with machine learning techniques (decision trees)

Machine learning core configuration Operating mode **Capture data** Label data **Build decision tree Embed decision tree** Process new data Filters Classification Accelerometer DT implementation Real time test Features Results Gyroscope External sensors

Example of sensors MLC programming

10 to 1000-time energy saving by running MLC on Sensor vs. MCU/AP Improved detecting accuracy

How it works in 5 simple steps and with an intuitive use case:

User defines classes to be recognized

Label data and select filters and features

Build the decision tree based on a wide range of software tools.

Program the decision tree into the MLC-enabled sensor

Run the MLC model and process incoming data in real time

Embed decision tree

Current consumption: Al in MCU vs. MLC in sensor

Only 4µA additional current consumption to run Activity Recognition with MLC

Activity recognition library (MotionAR) running in software in MCU

In this scenario, the MCU wakes up to read all new sensor data

LSM6DSOX sensor	Current consumption		
Sensor core	15 µA		
MLC (not used)	0 μΑ		

MCU	Wake-up rate	Current consumption	
MCU Core	1/16 = 63 ms		51 μΑ

Total: 66 µA

Activity recognition library (MotionAR) running **inside the LSM6DSOX sensor**

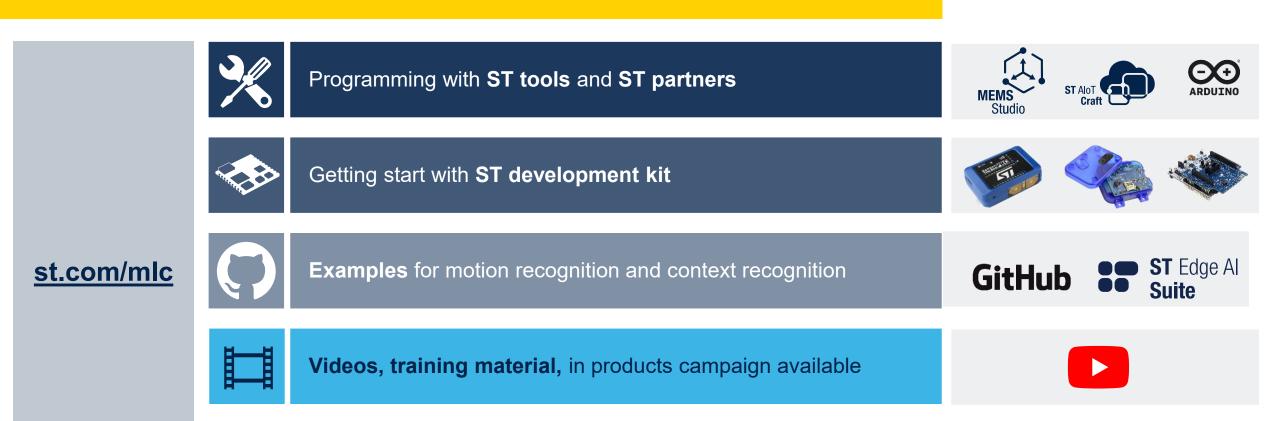
In this scenario, the MCU wakes up only when a new class is detected

LSM6DSOX sensor	Current consumption		
Sensor core	15 µA		
MLC	4 μΑ		

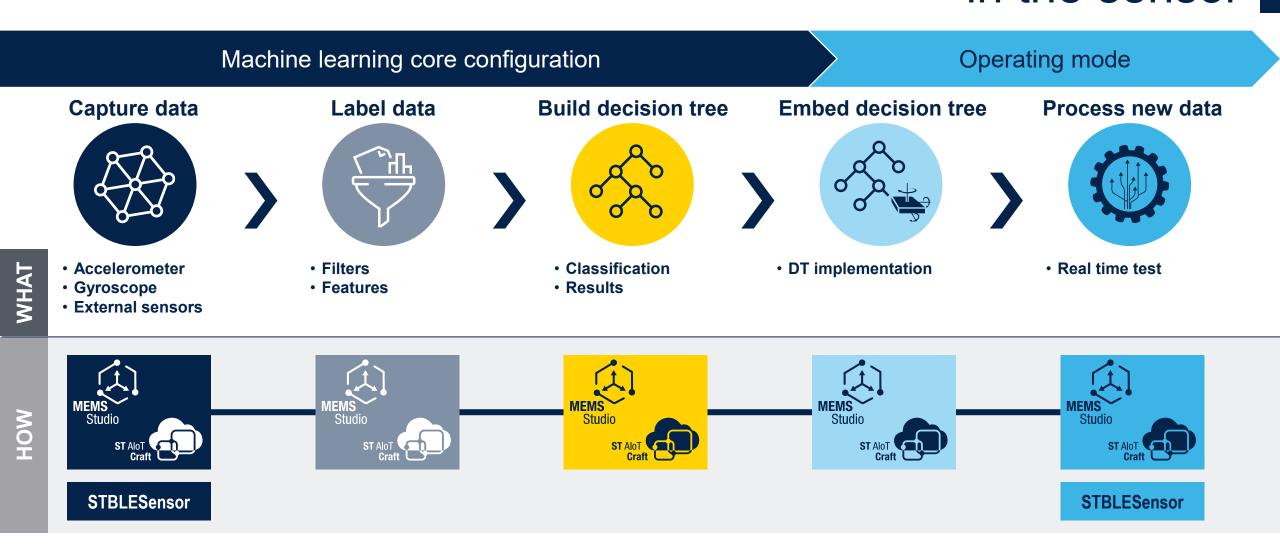
MCU	Wake-up rate	Current consumption		
MCU Core	30 s		0.65 µA	

Total: 20 µA

3 x power saving



Form factor tools and GUI


Machine learning solutions in sensors The ecosystem

A complete suite to create ML applications in sensors

MEMS & Sensor community: MEMS Machine learning & Al

ST toolbox for machine learning core (MLC) in the sensor

ST Partner: Arduino® with machine learning core

Arduino ecosystem for MLC

Arduino® RP2040

- Arduino® RP2040 mounts the LSM6DSOX 6 axis sensor with MLC
- Build the MLC with the Arduino® environment:
 - https://www.youtube.com/watch?v=hHVsLHqIN9g

Arduino® Nicla Vision

- Arduino® Nicla Vision mounts the LSM6DSOX 6 axis sensor with MLC
- Build the MLC with the Arduino® environment:
 - Webinar: Intelligent sensors for smart access monitoring – STMicroelectronics

MLC applications

Explore MLC examples and resources and get inspired

MLC examples are available online on **GitHub** and through the case studies section of the **ST Edge Al Suite**

Consumer

6D position recognition, activity recognition, gym activity recognition, head gestures

Industrial

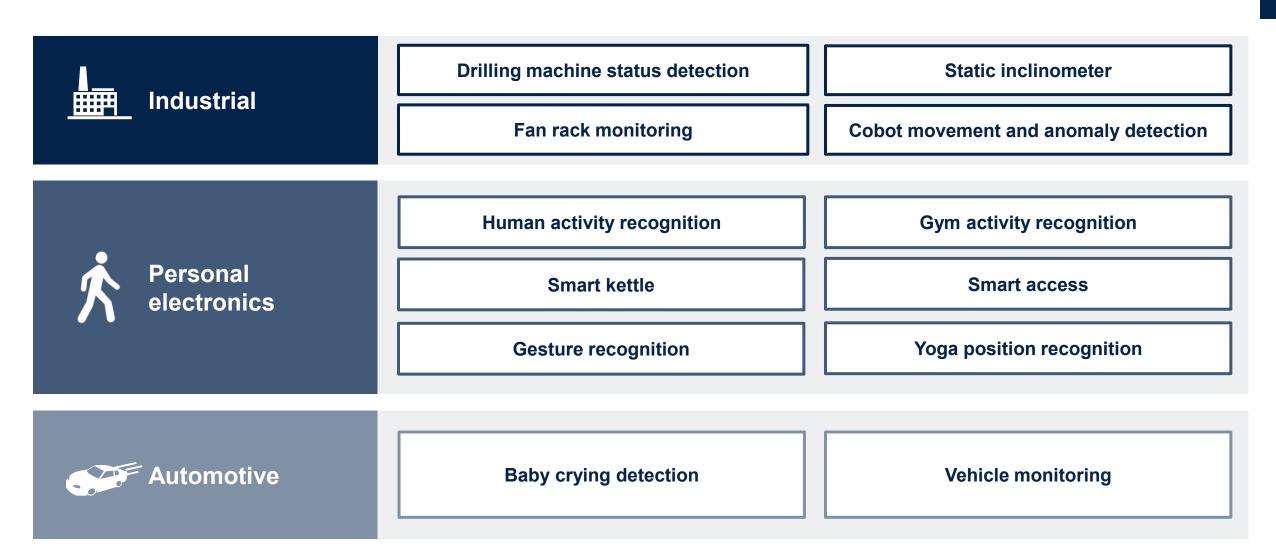
6D position recognition, motion intensity, vibration monitoring

Automotive

Vehicle stationary detection

... and more to come!

github.com/STMicroelectronics/STMems Machine Learning Core



https://www.st.com/content/st_com/en/st-edge-ai-suite/case-studies.html

Get inspired by MLC applications

LSM6DSV32X Activity recognition

Activity recognition for wrist applications

LSM6DSV32X

Use case

MLC embedded in LSM6DSV32X inertial sensor is programmed to detect 3 different classes using the MLC:

- Stationary
- Walking
- Jogging

Demo overview

- MLC with 3 classes
- MLC running on MEMS ASIC
- No pre-processing required from MCU

- Test platform: SensorTile.box PRO + STEVAL-MKI240KA
- Result output: STBLESensor
- Tutorial with MEMS Studio
- LSM6DSV32X: 6-axis IMU with 32 g accelerometer and embedded sensor fusion, AI, Qvar for high-end applications

ISM330BX Movement and anomaly detection

Movement and anomaly detection in industrial cobots

ISM330BX

Use case

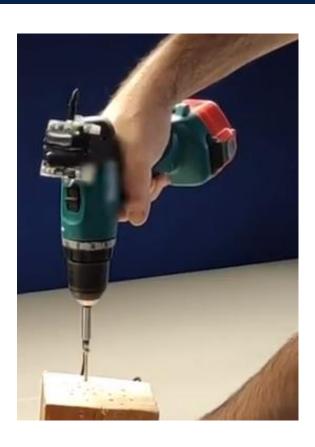
MLC embedded in ISM330BX inertial sensor is programmed to detect 3 different classes using the MLC:

- Stationary
- Pick and place
- Anomaly

Demo overview

- MLC with 3 classes
- MLC running on MEMS ASIC
- No pre-processing required from MCU

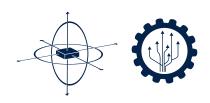
- Test platform: STWIN.box + STEVAL-MKI245KA
- Result output: FP-SNS-DATALOG2
- Tutorial with MEMS Studio
- ISM330BX: 6-axis IMU with wide bandwidth, low-noise accelerometer, embedded AI and sensor fusion for industrial applications



Industrial IMUs Drilling machine status detection

Drilling machine status detection

Use case


- MLC embedded in ISM330DHCX / ISM330BX inertial sensor is programmed to detect the status of the drilling machine.
- 3 different classes can be identified by the MLC:
 - "Idle" state
 - "Drilling" state
 - "Screw turning" state

Demo overview

- MLC with 3 classes
- MLC running on MEMS ASIC
- No pre-processing required from MCU

- Test platform: STWIN evaluation kit
- Result output: Unicleo / MEMS Studio
- Training data acquired using Unicleo / MEMS Studio
- ISM330DHCX / ISM330BX: inertial sensor with 3-axis accelerometer + gyroscope

ISM330DHCX Drilling machine status detection

Drilling machine status detection

Use case

- MLC embedded in ISM330DHCX inertial sensor is programmed to detect the status of the drilling machine.
- 3 different classes can be identified by the MLC:
 - "Idle" state
 - "Drilling" state
 - "Screw turning" state

Demo overview

- MLC with 3 classes
- MLC running on MEMS ASIC
- No pre-processing required from MCU

- Test platform: STWIN evaluation kit
- Result output: Unicleo
- Training data acquired using Unicleo
- ISM330DHCX: inertial sensor with 3-axis accelerometer + gyroscope

IIS2ICLX Static inclinometer

TO TEARS A COMMITMEN

IIS2ICLX

Use case

- MLC embedded in IIS2ICLX inertial sensor is programmed to detect the truck bed positioning
- 3 different classes can be identified by the MLC:
 - "Closed" truck bed
 - "Moving" truck bed
 - "Fully opened" truck bed

Demo overview

- MLC with 3 classes
- MLC running on MEMS ASIC
- No pre-processing required from MCU

- Test platform: IIS2ICLX adapter board with ProfiMEMS tool motherboard for sensor interaction
- Result output: UNICO-GUI SW for Win/Mac
- Training data acquired using ProfiMEMS motherboard and adapter board

LSM6DSOX – LSMDSV16X / 32X Human activity recognition

Human activity recognition

LSM6DSOX

Use case

- MLC embedded in LSM6DSOX inertial sensor is programmed to detect Human Activity Recognition in different scenario
- The MLC identifies 5 scenarios:
 - "Stand up" scenario
 - "Walking" scenario
 - "Running" scenario
 - "Cycling" scenario
 - "Car driving" scenario

Demo overview

- MLC with 5 classes
- MLC running on MEMS ASIC
- No pre-processing required from MCU

- Test platform: SensorTile.box evaluation kit
- Result output: STBLESensor (Android/iOS)
- Training data acquired using ST BLE app
- LSM6DSOX: inertial sensor with 3-axis accelerometer + gyroscope

LSM6DSOX – LSMDSV16X / 32X Gym activity recognition

Gym activity recognition

LSM6DSOX

Use case

- MLC embedded in LSM6DSOX inertial sensor is programmed to detect gym activity by identifying 4 common actions
- The MLC identifies 4 scenarios:
 - "No activity" scenario
 - "Bicep curls" scenario
 - "Lateral raises" scenario
 - "Squats" scenario

Demo overview

- MLC with 4 classes
- MLC running on MEMS ASIC
- No pre-processing required from MCU

- Test platform: any board with LSM6DSOX
- Result output: MLC value
- Training data acquired using Sensortile.box
- LSM6DSOX: inertial sensor with 3-axis accelerometer + gyroscope

LSM6DSOX – LSMDSV16X / 32X Smart kettle

Smart kettle

LSM6DSOX

Use case


- MLC embedded in LSM6DSOX inertial sensor is programmed to detect the status of a boiling kettle
- The MLC identifies 2 stats scenarios:
 - "Idle" state
 - "Boiling" state

Demo overview

- MLC with 3 classes
- MLC running on MEMS ASIC
- No pre-processing required from MCU

- Test platform: SensorTile.box evaluation kit
- Result output: STBLESensor (Android/iOS)
- Training data acquired using ST BLE app
- LSM6DSOX: inertial sensor with 3-axis accelerometer + gyroscope

LSM6DSOX Smart access

Smart access

LSM6DSOX

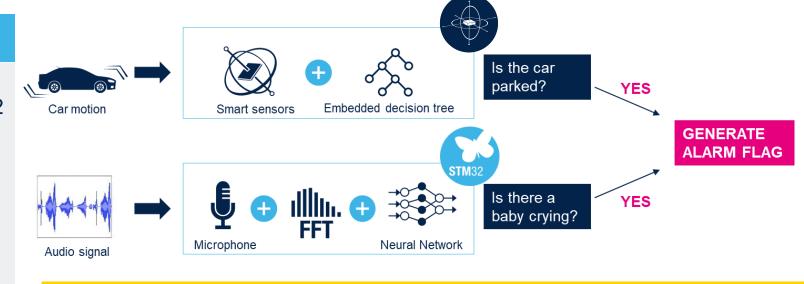
Use case

- MLC embedded in LSM6DSOX inertial sensor is programmed to detect the check a safety box status
- The MLC identifies 4 stats scenarios:
 - "Steady" state
 - "Gear" state
 - "Door Opening" state
 - "Burglar" state

Demo overview

- MLC with 4 classes
- MLC running on MEMS ASIC
- No pre-processing required from MCU

- Test platform: Arduino Nicla Vision
- Result output: MLC value
- Training data acquired using Arduino Nicla Vision
- LSM6DSOX: inertial sensor with 3-axis accelerometer + gyroscope


SensorTile.box Baby crying detection

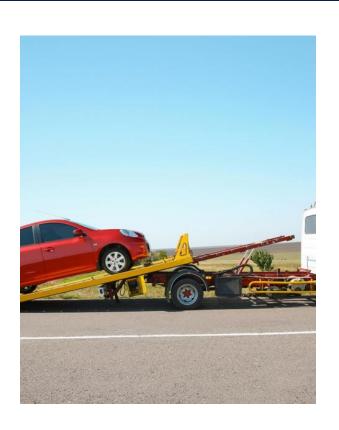
Baby crying detection

Use case

MLC for vehicle detection combined with fusion of ST MEMS microphones and STM32 Al to create a fully-trained neural network detecting if there is a baby crying in the room.

- Detect a baby crying in car left unattended in a parking lot.
- By detecting the baby crying and the idle state of the car, the application can ideally raise an alarm flag by a system to communicate the dangerous situation to the outside world.

This demonstration running on the **SensorTile.box** can be used as a starting point for more complex solutions involving child safety.



ASM330LHHX – ASM330LHHXG1 Vehicle monitoring

Vehicle monitoring

ASM330LHHX

Use case

- MLC embedded in ASM330LHHX inertial sensor is programmed to detect different vehicle scenario
- The MLC identifies 4 stats scenarios:
 - "Still" state
 - "Moving" state
 - "Front & lateral jack up" state
 - "Crash" state

Demo overview

- MLC with 4 classes
- MLC running on MEMS ASIC
- No pre-processing required from MCU

- Test platform: Profi MEMS with ASM330LHHX
- Result output: MLC value
- Training data acquired using Profi MEMS
- LSM6DSOX: inertial sensor with 3-axis accelerometer + gyroscope

LSM6DSOX Yoga position detection

Yoga position detection

LSM6DSOX

Use case

MLC embedded in LSM6DSOX inertial sensor is programmed to detect 13 different classes using the MLC:

- Boat pose
- Bow pose
- Bridge
- Child's pose
- Cobra pose
- The tree
- Downward-facing dog
- Meditation pose

- Plank
- Seated forward bend
- Upward plank
- Standing in motion
- Standing still
- The extended side angle
- Plank
- Seated forward bend

Demo overview

- MLC with 13 classes
- MLC running on MEMS ASIC
- No pre-processing required from MCU

- Test platform: SensorTile.box
- Result output: STBLESensor
- Decision tree generated with Unico
- LSM6DSOX: inertial sensor with 3-axis accelerometer + gyroscope

ISM330DHCX Fan rack monitoring

Fan rack monitoring

ISM330DHCX

Use case

MLC embedded in ISM330DHCX inertial sensor is programmed detect 3 states:

- "Fan_on" state
- "Fan off" state
- "Fan fault" state

Demo overview

- MLC with 3 classes
- MLC running on MEMS ASIC
- No pre-processing required from MCU

- Test platform: STWIN
- Result output: STBLEApp
- Decision trees generated with Unico GUI
- ISM330DHCX: inertial sensor with 3-axis accelerometer + gyroscope

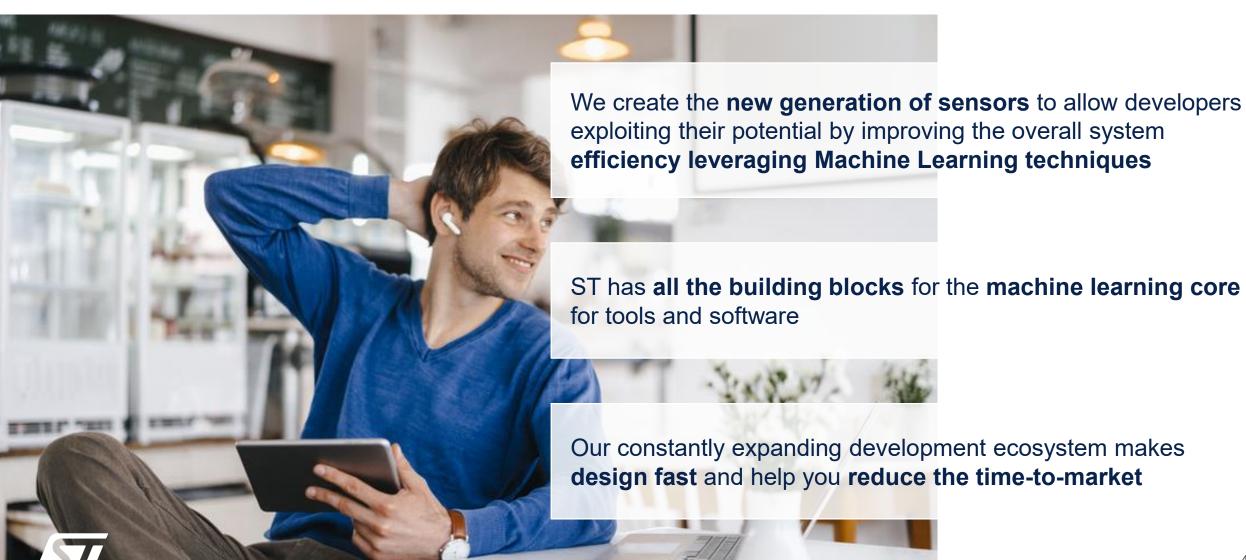
Resources

Resources

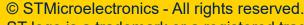
MEMS sensors ecosystem for machine Learning

MEMS sensors community

Design Tips for Machine Learning algorithms generation


Automatic filters and features selection for Machine Learning Core in MEMS Studio

Deploy in-sensor AI in your IoT infrastructure with a cloud-based tool



Takeaways

Our technology starts with You

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

