

Explore the intelligent sensor processing unit (ISPU)

Artificial intelligence journey

Migrating processing at the edge

MCU computing

Sensor + MCU

Intelligence in the MCU

MCU standalone or hosted in the sensor package

Standard

MCU runs the algorithms

Runs any kind of software

provided it matches the MCU specs

In-sensor AI computing

Sensor with ISPU

Intelligent sensor processing unit

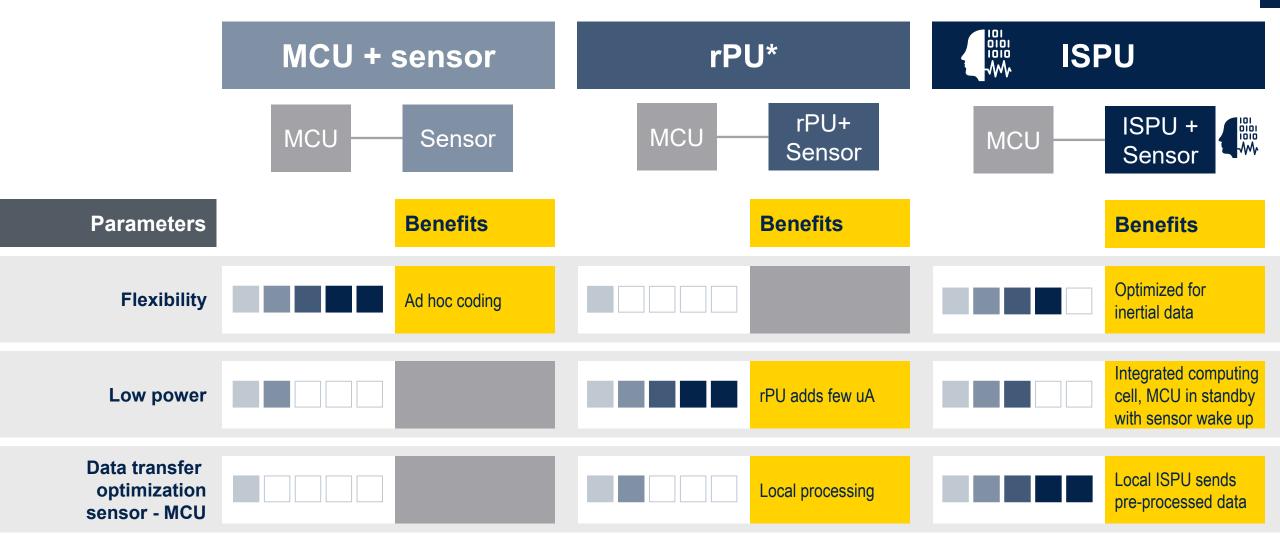
ISPU integrated in the sensor ASIC

Programmable

dedicated instruction set

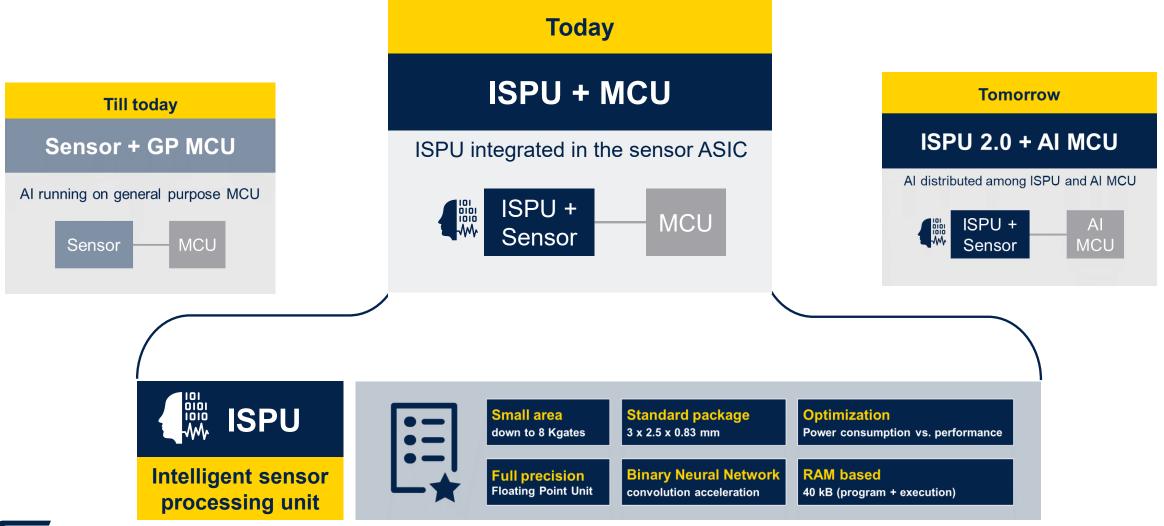
Runs several Al algorithms

Full precision to 1-bit NN



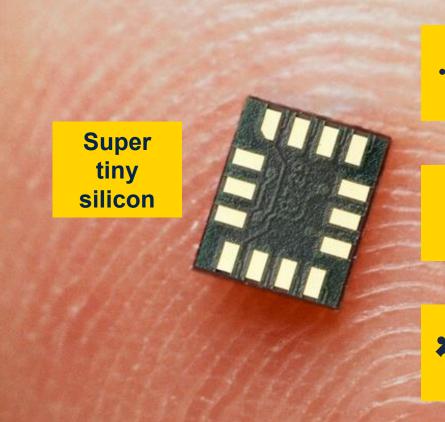
Challenges for sensors in edge Al

Ability to integrate intelligent processing in a tiny piece of silicon



One can't fit all, ISPU fits many

Evolution of system-based Al

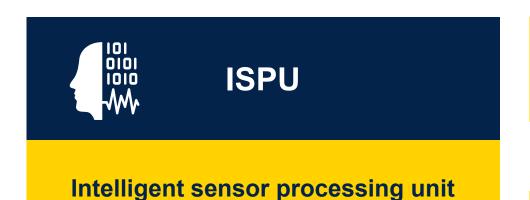


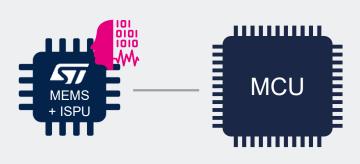
What is ISPU?

ISPU: what and why

Highly specialized DSP* for machine learning and processing

Unique solution for TinyML with machine learning (ML), binary neural network (BNN), and processing capabilities


Lowest power consumption IoT node in the market with Al at the edge



Productivity: empowers 10M+ C language developers **Complement** STM32 MCU portfolio

Integrating brains into sensors

ISPU integrated in the sensor ASIC

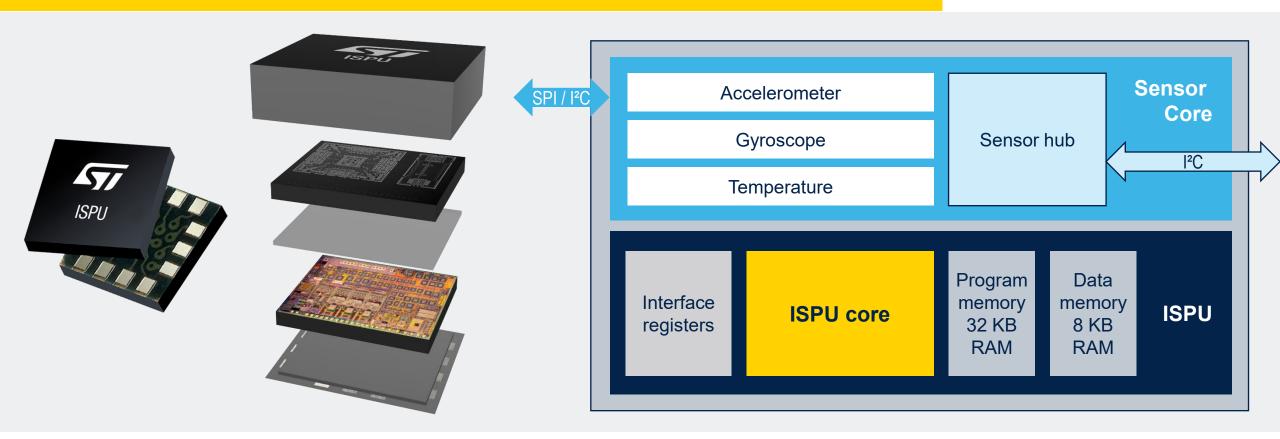
Programmable core ultralow power

Processes data from internal (accelerometer, gyroscope, temperature) & external sensors

ISPU toolchain allows developers to program in **C language**

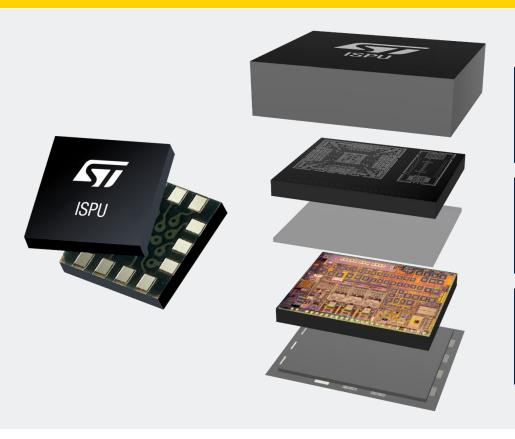
What's inside?

DSP* for real-time processing and artificial intelligence



ISPU: the architecture

DSP for real-time processing and artificial intelligence



ISPU: play with it!

DSP for real-time processing and artificial intelligence

Small area: enhanced 32-bit RISC Harvard architecture in 8 kilogates

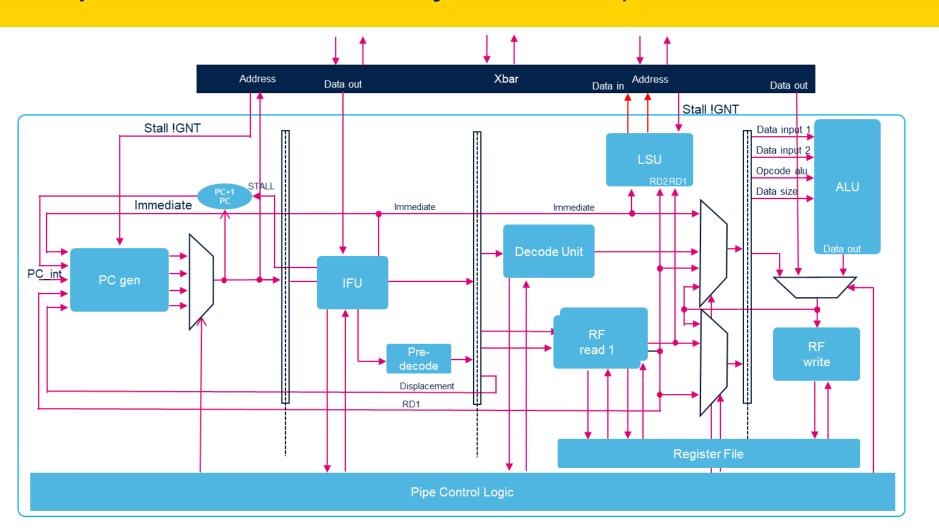
Full precision: Floating point unit

Fast interrupt response: 4 cycles vs. 15 (Cortex®)

RAM based:

40 KB (program + execution)

Binary neural network convolution accelerator: patented by ST


Frequency: 5 MHz / 10 MHz

ODR max: 6.66 kHz

ISPU core: efficient, small, and fast DSP

x2 performance / area efficiency than best competitors

	ISPU
Pipeline stage	4
Instruction/data conflicts	No Harvard architecture
Multiplier	16 >32
Tiny FPU	Yes
Area	8 KGE
Branch shadow	1 to 2
CoreMark µW/MHz	70
Clock frequency	10MHz

ISPU added value

Ultra low power consumption

- Efficiency of the embedded DSP (digital signal processing)
- Very low data exchange with external MCU (MCU stay in sleep mode most of the time)

Ultra low latency

Processing / decision taken directly in the sensor

Easily programmable with C language or with commercial or open-source Al models

Data privacy & security

Sensor data are locally processed and not provided outside

Integration / miniaturization

- MEMS mixed-signal state-of-the-art technology node
- No special purpose package

101

0101

ISPU products

Be inspired by the endless possibilities of ISPU

Personal electronics & consumer IoT

LSM6DSO16IS

- ISM330IS
- ISM330ISN*

Discover many real-world examples based on ISPU

Anomaly detection

Complex gestures

3D space orientation

Find inspiration to create your personal application

Al at the edge with ultralow power 6-axis IMU for consumer market

A completely new level of capabilities and detection accuracy in human activity recognition applications:

- Consumer health
- Gesture recognition
- Activity recognition
- Motion tracking

Gait analysis

Pose estimation

Fall detection

Carry position

Active time

Fitness activities

Activity recognition

Gesture recognition

And more...

A new way to approach the Industry 5.0

Al at the edge with ultralow power 6-axis IMU for industrial market

Higher detection accuracy, always on monitoring in anomaly detection applications

- Home alarms
- Robotics
- Condition monitoring

A completely new level of capabilities and detection accuracy in asset tracking applications

ISPU products

For real-time processing and artificial intelligence

- FS: ± 2000 dps, ± 16 g
- Idd 0.59 mA (combo mode)
- Axel noise 70µg/√Hz
- Gyroscope noise 3.8mdps/√Hz
- 10MHz clock, RAM 40 KB

Optimization

Power consumption vs. performance

Standard package

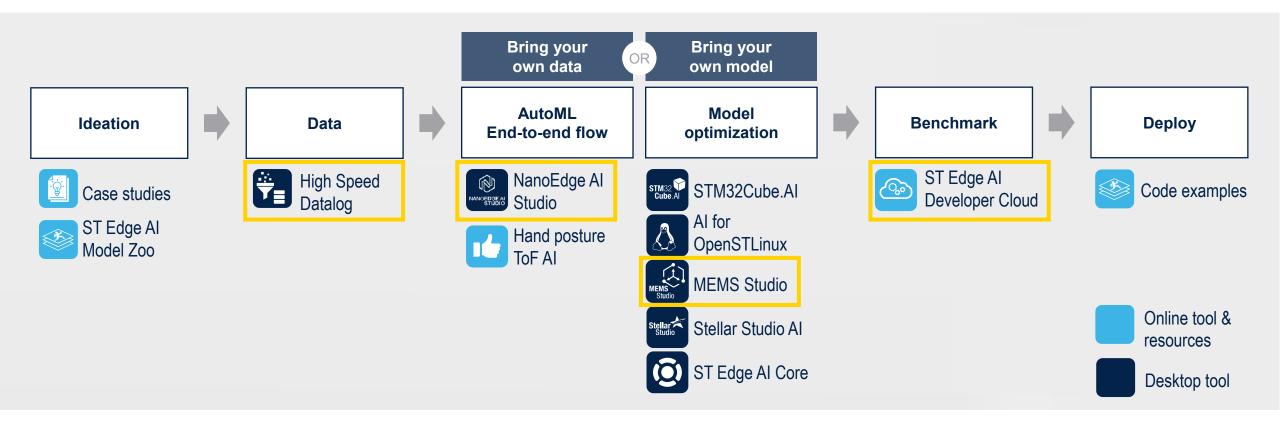
3 x 2.5 x 0.83 mm

Efficiency

Floating Point, binary NN, hybrid binary NN

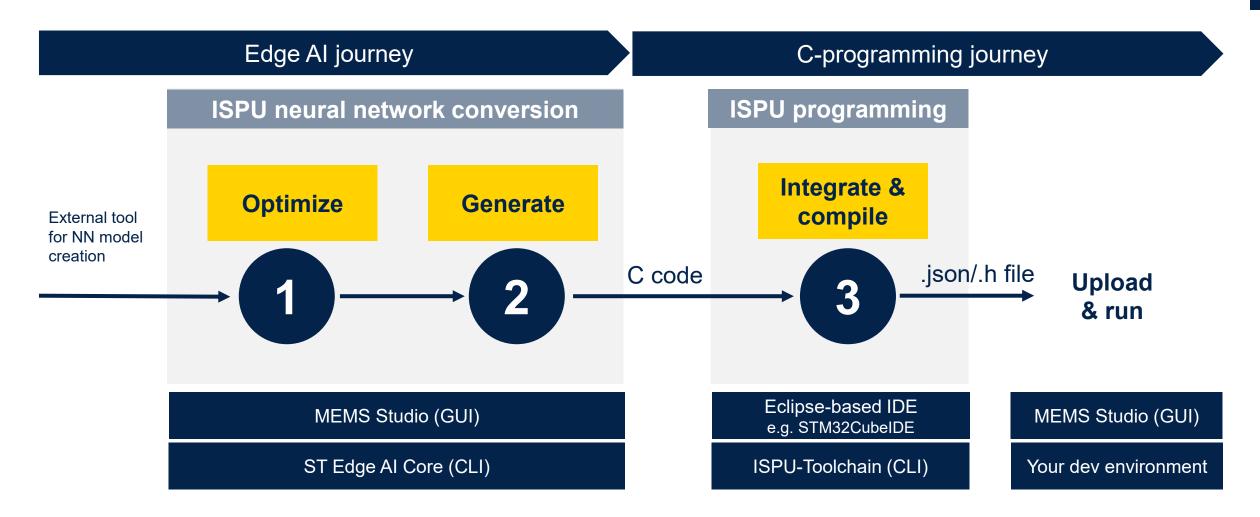
Interoperability

Machine learning and deep learning


How to program ISPU?

Free tools for smart sensors with ISPU

ISPU can be configured by different tools available in the ST Edge Al Suite



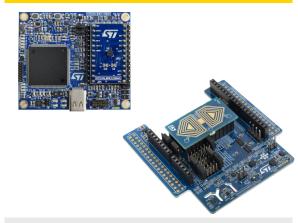
ISPU software ecosystem

Who	How	Which tool
Al expert	Command Line Interface (CLI)	ST Edge Al Core ISPU toolchain
Application developer	Desktop tool	MEMS Studio NanoEdge Al Studio NanoEdge Al Studio
Evaluation engineer	Cloud tool	ST Edge Al Developer Cloud
Take inspiration	Use cases	Model zoo in ST Edge Al Suite
Al expert, application developer	Data collection	High Speed Datalog

ISPU programming steps

C-Compiler: how to evaluate the ISPU?

Products


DIL 24 adapter

Eval boards & kits

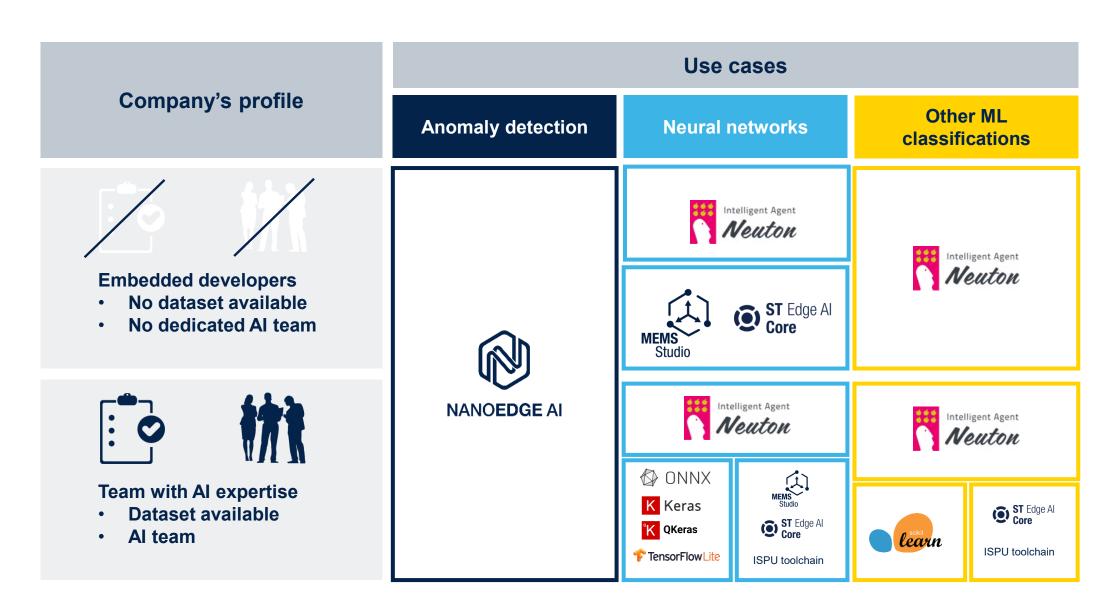
Software & package

LSM6DSO16IS and ISM330IS

DIL 24 adapter

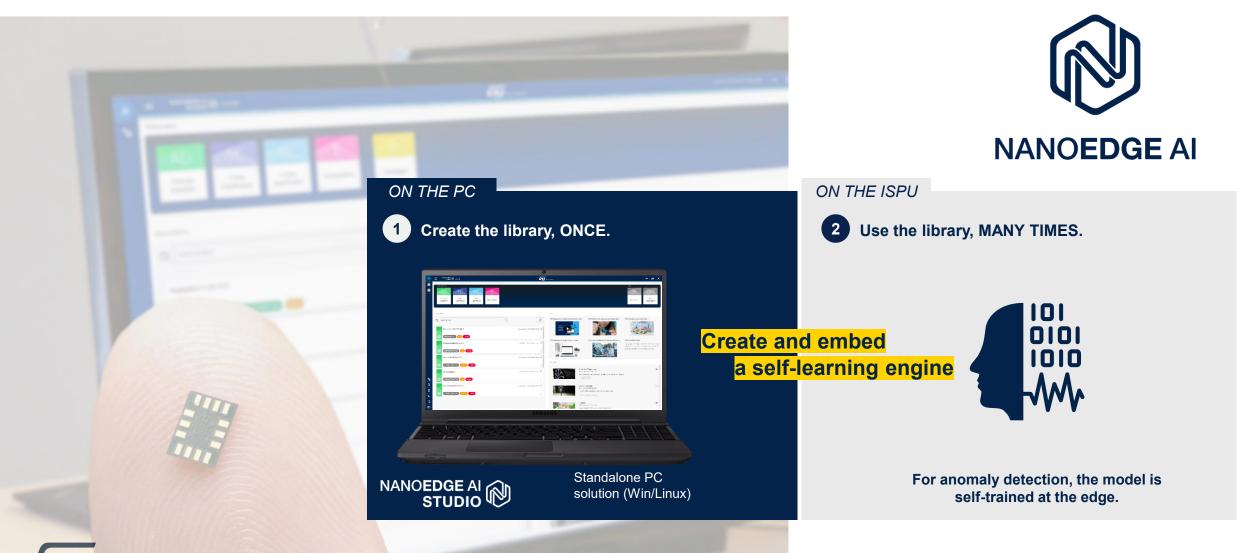
STM32 Nucleo:

- NUCLEO-F401RE
- X-NUCLEO-IKS4A1 (consumer)
- X-NUCLEO-IKS02A1 (industrial)


Professional MEMS tool:

STEVAL-MKI109D

MEMS Studio
ST Edge AI Core
ST Developer Cloud
X-CUBE-ISPU
CLI and IDE compilers



ISPU: there is an AI solution for every need

ISPU easily programmed with NanoEdge Al Studio

ST partnership for ISPU

Partnership with Neuton.Al for a tiny Al algorithm in the ISPU

Neuton.Al – No-code TinyML platform for ISPU

Neuton.Al allow to build and deploy ultra-small neural networks directly into ISPU

Fixed-point signal processing and inference engine gives 10x advantage in size and processing time when running on ISPU versus general purpose CPU

End-to-end machine learning based services from data collection to production

Solutions leveraging Neuton.Al

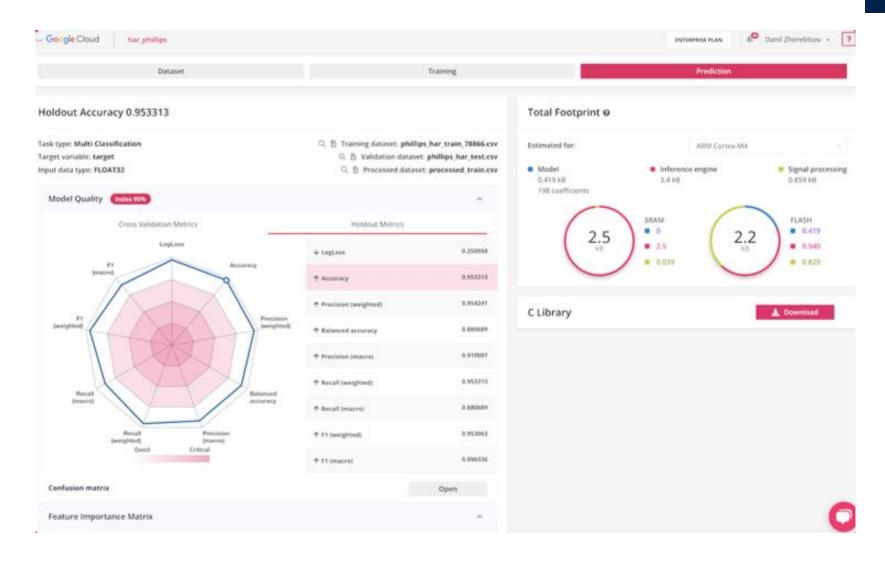
Gesture recognition

Human-machine interface

Human activity recognition

Machine fault classification

Asset tracking and monitoring



3 simple steps to make an Al-driven ISPU

Import .csv file of data collected from ISPU

Build automatically tiniest neural networks

Generate compiled library for ISPU and run inference on sensor

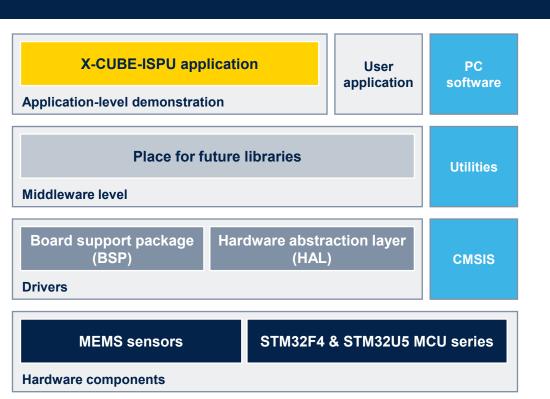
Neuton.Al business model with ST

Evaluation → Zero gravity

- Use of ML platform is free of charge (user to cover GCP services)
- Only compiled library as output of the online tool

Production → **Enterprise plan**

- End-to-end machine learning based services from data collection to ISPU deployment
- Use case-based pricing
- No royalties or licensing fees
- Unlimited number of devices



ISPU: application examples

X-CUBE-ISPU

Include libraries, source code examples and templates

Calibration algorithm
Sensor fusion
Wrist activity detection
Man down
Wrist tilt

Examples

Modify & rebuild examples

ISPU project folder output folder:
.h, .json


Template

Write your own C code

.json file can be created from a .json file example

ISPU application libraries

Accelerometer calibration

Gyroscope calibration

Magnetometer calibration

Sensor fusion

Sensor fusion 6x

Sensor fusion 9x

Solutions for wearable

Fall detection

Wrist tilt

Wrist - Activity recognition

Pedometer

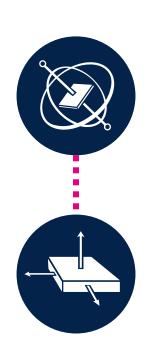
Industrial solutions

Cyclic redundancy check

Sliding discrete Fourier transform

Vibration severity

Easily enhance your application with ISPU


	Current consumption
Accelerometer calibration	11 µA
Gyroscope calibration	26 μΑ
Magnetometer calibration	21 μΑ
Wrist tilt	4 μΑ
Man down	14 µA
Wrist - human activity recognition	27 μΑ
Sensor fusion - 6 axis	226 μΑ
Sensor fusion - 9 axis	370 μA

ISPU Sensor fusion

Sensor fusion - 6 axis

226 µA
Power consumption

Use case

The inertial sensors with ISPU (LSM6DSO16IS / ISM330IS) can be used for 6-axis sensor fusion

Configuration & power

- Accel. @104 Hz, 8 g, high-perf. mode
- Gyro. @104 Hz, 2000 dps, high-perf. mode
- Library power consumption (no sensor):
 226 μΑ

Demo overview

- Sensor fusion algorithm running on the ISPU
- No processing required from MCU

- Test platform: Nucleo board + expansion board (IKS01A3)
 - DIL24 adapter with LSM6DSO16IS / ISM330IS: inertial sensors with 3-axis accelerometer + 3-axis gyroscope embedding ISPU
- Result output: MEMS Studio

ISPU Sensor fusion

Sensor fusion - 9 axis

370 μAPower consumption

Use case

LIS2MDL is connected to the sensor hub of the inertial sensors with ISPU (LSM6DSO16IS / ISM330IS). It can be programmed for 9-Axis sensor fusion

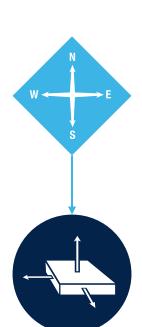
Configuration & power

- Accel. @104 Hz, 8 g, high-perf. mode
- Gyro. @104 Hz, 2000 dps, high-perf. mode
- Mag. @100 Hz high-resolution mode with offset cancellation
- Power consumption:
 - 370 µA when calibrated
 - 380 µA when calibration ongoing

Demo overview

- Sensor fusion algorithm running on the ISPU
- No processing required from MCU

- Test platform: Nucleo board + expansion board (IKS01A3 using LIS2MDL)
 - DIL24 adapter with LSM6DSO16IS / ISM330IS: inertial sensors with 3-axis accelerometer + 3-axis gyroscope embedding ISPU
- Result output: **MEMS Studio**



Accelerometer calibration

Accelerometer calibration

11 µA
Power consumption

Use case

The inertial sensors with ISPU
 (LSM6DSO16IS / ISM330IS) can be
 programmed to calibrate the accelerometer

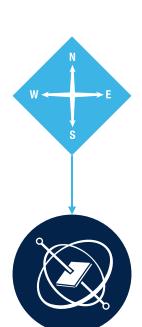
Configuration & power

- Accel. only @52 Hz, 8 g, high-perf. mode
- Library power consumption (no sensor):
 - 11 µA when device is moving
 - 19 μA when device is steady

Demo overview

- Calibration algorithm running on the ISPU
- No processing required from MCU

- Test platform: Nucleo board + expansion board (IKS01A3)
 - DIL24 adapter with LSM6DSO16IS / ISM330IS: inertial sensors with 3-axis accelerometer + 3-axis gyroscope embedding ISPU
- Result output: MEMS Studio



ISPU Gyroscope calibration

Gyroscope calibration

26 μAPower consumption

Use case

The inertial sensors with ISPU (LSM6DSO16IS / ISM330IS) can be programmed to calibrate the gyroscope

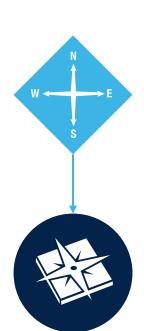
Configuration & power

- Accel. @52 Hz, 8 g, high-perf. mode
- **Gyro. @52 Hz, 2000 dps**, high-perf. mode
- Library power consumption (no sensor):
 - 26 μA when device is moving
 - 67 µA when device is steady

Demo overview

- Calibration algorithm running on the ISPU
- No processing required from MCU

- Test platform: Nucleo board + expansion board (IKS01A3)
 - DIL24 adapter with LSM6DSO16IS / ISM330IS: inertial sensors with 3-axis accelerometer + 3-axis gyroscope embedding ISPU
- Result output: **MEMS Studio**



Magnetometer calibration

Magnetometer calibration

21 µA
Power consumption

Use case

LIS2MDL is connected to the sensor hub of the inertial sensors with ISPU (LSM6DSO16IS / ISM330IS). It can be programmed to calibrate the magnetometer

Configuration & power

- Accel. @52 Hz, 8 g, high-perf mode
- Mag. @50 Hz, high-resolution mode with offset cancellation enabled
- Library power consumption (no sensor):
 - 15 µA when calibration not started
 - 21 µA when calibration completed
 - 40 μA when calibration ongoing

Demo overview

- Calibration algorithm running on the ISPU
- No processing required from MCU

- Test platform: Nucleo board + expansion board (IKS01A3 using LIS2MDL)
 - DIL24 adapter with LSM6DSO16IS / ISM330IS: inertial sensors with 3-axis accelerometer + 3-axis gyroscope embedding ISPU
- Result output: **MEMS Studio**

ISPU Wrist tilt

Wrist tilt

4 μAPower consumption

Use case

- The inertial sensors with ISPU
 (LSM6DSO16IS / ISM330IS) can be
 programmed to detect the wrist movement.
- 2 different events can be identified by the ISPU:
 - Wrist up
 - Wrist down

Configuration & power

- Accel. only @26 Hz, 16 g, low-power mode
- Power consumption: 4 μA

Demo overview

- Wrist tilt algorithm running on the ISPU
- No processing required from MCU

- Test platform: Nucleo board + expansion board (IKS01A3)
 - DIL24 adapter with LSM6DSO16IS / ISM330IS: inertial sensors with 3-axis accelerometer + 3-axis gyroscope embedding ISPU
- Result output: MEMS Studio

ISPU Fall detection

Fall detection

14 μA
Power consumption

Use case

LPS22HH is connected to the sensor hub of the inertial sensors with ISPU (LSM6DSO16IS / ISM330IS). It can be programmed to detect a Fall detection event

Configuration & power

- Accel. @104 Hz, 16 g, low-power mode
- Pressure sensing @10 Hz low-current mode with ODR / 20 bandwidth
- Power consumption: 14 μA

Demo overview

- Fall detection algorithm running on the ISPU
- No processing required from MCU

- Test platform: Nucleo board + expansion board (IKS01A3 using LPS22HH)
 - DIL24 adapter with LSM6DSO16IS / ISM330IS: inertial sensors with 3-axis accelerometer + 3-axis gyroscope embedding ISPU
- Result output: **MEMS Studio**

Wrist - Human activity recognition

Wrist - human activity recognition

27 μAPower consumption

Use case

- The inertial sensors with ISPU
 (LSM6DSO16IS / ISM330IS) can be
 programmed for wrist HAR
- The ISPU identifies 8 classes: "Stationary", "Standing", "Sitting", "Laying", "Walking", "Fast walking", "Jogging", "Other"

Configuration & power

- Accel. @ 26 Hz, 8 g, high-perf. mode
- Power consumption: 27 μA

Demo overview

- Wrist HAR algorithm running on the ISPU
- No processing required from MCU

- Test platform: Nucleo board + expansion board (IKS01A3)
 - DIL24 adapter with LSM6DSO16IS / ISM330IS: inertial sensors with 3-axis accelerometer + 3-axis gyroscope embedding ISPU
- Result output: **MEMS Studio**

ISPU Pedometer

Pedometer

16 μA
Power consumption

Use case

- The inertial sensors with ISPU
 (LSM6DSO16IS / ISM330IS) can be
 programmed to count the number of steps
 performed by the user having the device on
 the wrist.
- False positives rejection (FPR) block included

Configuration & power

- Accel. only @26 Hz, 16 g, low-power mode
- Power consumption: 16 μA

Demo overview

- Pedometer algorithm running on the ISPU
- No processing required from MCU

- Test platform: Nucleo board + expansion board (IKS01A3)
 - DIL24 adapter with LSM6DSO16IS / ISM330IS: inertial sensors with 3-axis accelerometer + 3-axis gyroscope embedding ISPU
- Result output: **MEMS Studio**

ISPU Sliding DFT

Sliding discrete Fourier transform

7 to 913 μA
Power consumption

Use case

The inertial sensors with ISPU (LSM6DSO16IS / ISM330IS) can be programmed to decompose a signal into its frequency components in real-time using the sliding discrete Fourier transform

Configuration & power

- DFT window: 32 samples
- Accel. @1667 Hz, 8 g, 10 MHz ISPU clock
 - Power consumption: 913 μA
- Accel. @12.5 Hz, 8 g, 5 MHz ISPU clock
 - Power consumption: **7 μA**

Demo overview

- Pedometer algorithm running on the ISPU
- No processing required from MCU

- Test platform: Nucleo board + expansion board (IKS01A3)
 - DIL24 adapter with LSM6DSO16IS / ISM330IS: inertial sensors with 3-axis accelerometer + 3-axis gyroscope embedding ISPU
- Result output: **MEMS Studio**



Vibration severity

Vibration severity as per ISO10816

680 μAPower consumption

Use case

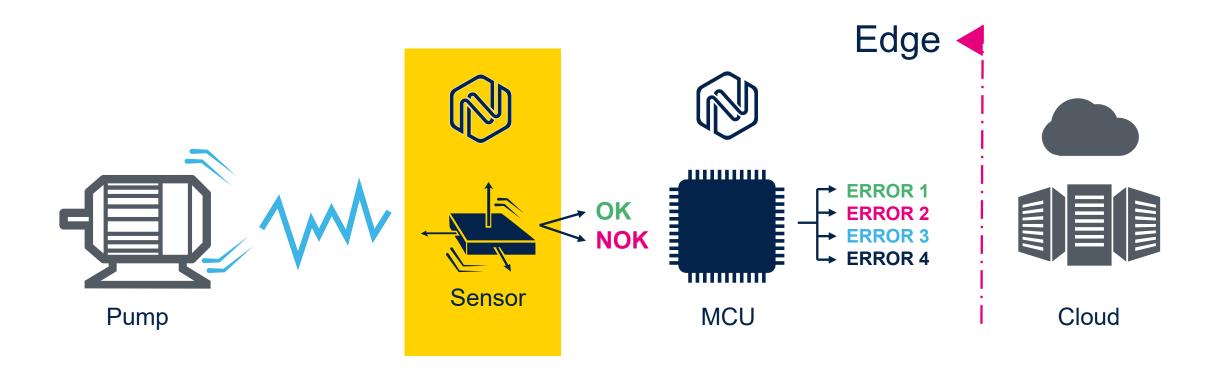
The inertial sensors with **ISPU** (**ISM330IS**) can be programmed to filter one accelerometer axis according to **ISO10816** and compute the velocity and the velocity RMS in mm/s

Configuration & power

- Accel. @6667 Hz, 2 g, high perf. mode
- Power consumption:
 - BP filter 2-1000 Hz: **680 μA**
 - BP filter 10-1000 Hz: 640 μA

Demo overview

- Vibration severity algorithm (ISO10816) running on the ISPU
- No processing required from MCU


- Test platform: Nucleo board + expansion board (IKS01A3)
 - DIL24 adapter with ISM330IS: inertial sensor with 3-axis accelerometer + 3axis gyroscope embedding ISPU
- Result output: **MEMS Studio**

Anomaly detection with NanoEdge Al

Possibility to divide the tasks between the sensor and the MCU

Our technology starts with You

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

