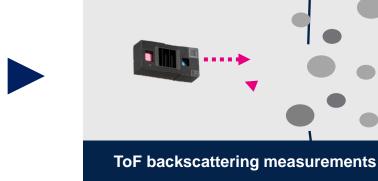
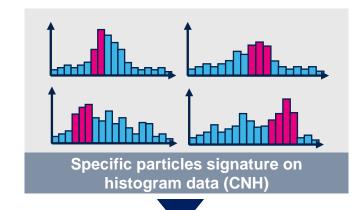


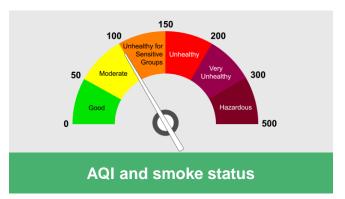
The air that we breathe

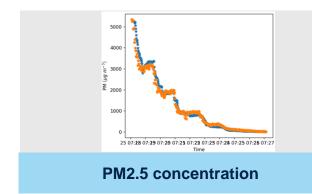
Why measuring air quality matters

- Measuring air quality has become crucial due to its direct impact on human health and the environment
- Poor air quality can lead to respiratory and cardiovascular diseases, exacerbate existing health conditions, and lead to poor sleep quality
- Monitoring air quality helps to understand pollution levels, identify sources, and takes steps to improve both public health and the environment both indoor and outdoor






Air quality measurement flow


How is it possible to measure AQI with a ToF sensor?

Embedded algorithms by Mobile Physics

Various outputs are available using Mobile Physics algorithm

Mobile Physics processing

- Gives the PM2.5 concentration in μg/m3
- Used for product evaluation
- Accuracy ±10µg/m3 or ±10%

Air Quality Index (AQI)

- Converted PM2.5 concentration to AQI using US EPA standards
- Typical use cases: air quality monitoring, environmental surveillance, home health management

Smoke status

- Evaluates the probability of smoke using PM2.5 temporal & spatial behavior
- Typical use cases: personal fire alarm, portable smoke detector

New product code: VL53L8MA

VL53L8MA: Enhanced version of VL53L8 for air quality measurements

World's first personal mobile environmental monitor

Real time air quality integrated in consumer products

Formal agreement between Mobile Physics and ST

Support legacy Time-of-Flight use-cases

VL53L8MA product 2nd gen multi-zone dToF module with on-chip processing

Half power consumption | Twice as robust to sun light Half host memory usage | ST in-house lenses | 1V2 I/O support

Mass production

Light Emitter

- 940nm VCSEL
- High peak for better performances
- Advanced ST in-house DOE
- Class1 laser [IEC 608825-1, 2014]
- Lens detach detection built in

Specification & key Features

- Uniform & robust 4m ranging across the whole FoV
- Excellent close distance linearity from 4cm
- Automated crosstalk compensation
- ToF processing embedded (32bit MCU)
- I²C & SPI interface: 1v2 & 1v8 I/O
- AVDD: 3v3 | DVDD: 1v8

ToF Receiver

- 61° diagonal square FoV covering 80% of RGB Cam FoV
- 16 & 64 zones + Simultaneous 4 x single zones output
- \checkmark 4x4 + 4 zones @ 60 fps
- √ 8x8 + 4 zones @ 15 fps

Evaluating Mobile Physics use-case

From demo to evaluation - step by step process

DEMO

- Demo presented to customer using tablet and/or EVK
- Used by marketing to explain the use case
- Simple 'Traffic light' system to monitor AQI when spray is used
- Can be run in demo or production mode
- No accuracy guaranteed, very simple demo

SIMPLE EVALUATION

- Initial customer exploration of use case. To understand how PM2.5 concentration evolves with pollutant concentration
- Operating guidelines to respect
- Any indoor space suitable for this evaluation
- EVK placed on flat surface or mounted on

FULL EVALUATION

- 3rd party laboratory confirm objective performance
- Formal comparison with competing solutions
- 2 m x 2 m x 2 m chamber recommended
- Smoke generation scheme
- Exhaust system to 'remove' pollution

