Open Mobile Alliance Lightweight Machine-2-Machine (LwM2M)

and related open standards for managing sensor/actuator devices in IoT application scenarios

Francesco Doddo

IoT System Development Manager

Application Scenarios

Terminal

End-to-End View

IP based connectivity

Motion, Environmental, ToF
sensors

Generic Data Model

- Application Services
- IoT Devices Management (bootstrapping, Firmware Update, Change settings)
- Sensors Data Access
- Actuators Control

Manage Home/City Devices

Sensors Data Collection

Actuators Management

Data Access and Management of IoT Devices: Emerging Open Standards

CoAP:

- Makes each IoT device a lightweight server that exposes a REST API
- Similar to HTTP, but designed for low power devices
- Publish/Subscribe support
- Specified in RFC 7252

DTLS:

- Provides communication security by providing confidentiality, integrity and authentication
- Specified in RFC 6347 and builds on TLS 1.2

6LoWPAN:

- Adaptation layer to transport IPv6 over low-power RF links
- Specified by RFC 6282 for 802.15.4

Connectivity IETF Standards

/temperature CoAP Server

GET /temperature

200 OK "22.5 C"

CoAP Client

Protocol Stack of an IP Based IoT Device

IoT Device Management LwM2M Protocol

OMA Lightweight M2M (LwM2M):

- Management protocol for resource constrained devices (e.g. Sensor hub)
- Features: device bootstrapping (service provisioning, key management),
 firmware update, remote management (change settings, trigger actuators),
 fault management, information reporting (notification of sensors values)
- Simple and extensible Data Model
- Version 1.0 ratified in Feb. 2017

LwM2M Interfaces

Bootstrap

Client Registration

Device Management
And Service Enablement

Information Reporting

LwM2M Object Model

LwM2M Object Model:

Objects/Resources are accessed with simple URIs: /{Object ID}/{Object Instance}/{Resource ID}

Defines the object type

Instance Number (one or more)

Defines the Resource type

For example, take the case of a weather station device in your home: the access on this device/object/resource can be made at:

/home/weather/3303/0/5700

→ a reply from the device will provide a reading of the value from a **Temperature Sensor** (Object ID: 3303), **Instance #0**, **Sensor Value** (Resource ID: 5700)

/home/weather/3304/0/5602

→ a reply from the device will provide a reading of the value from a **Humidity Sensor** (Object ID: 3304), **Instance #0**, **Max Measured Value** (Resource ID: 5602)

Reusable resource and object IDs

- Common definitions
- Map to semantic terms (e.g. temperature)
- IDs uniquely defined since they are registered by the Open Mobile Naming Authority (OMNA)

LwM2M Objects (defined by OMA)

- The LwM2M v1.0 standard defines 8 objects
- Other organizations (for ex. IPSO Alliance) and vendors can define some objects
- A public repository managed by the OMA contains all the registered objects

OMA Defined Object	Object ID	Description
LwM2M Security	0	Keying material of a LwM2M client to access a specified LwM2M server
LwM2M Server	1	Data related to a LwM2M server
Access Control	2	Used to check whether the LwM2M server has access right for performing an operation
Device	3	Device related information which can be queried by the server, include device reboot and factory reset functions
Connectivity Monitoring	4	Monitoring of parameters related to network connectivity
Firmware	5	Management of firmware to be updated (FOTA)
Location	6	Information related to device location
Connectivity Statistics	7	Statistics about connectivity collected by the client

LwM2M Objects (defined by IPSO Alliance)

«IPSO Smart Objects»:

- Simple Data Model for semantic interoperability across IoT Devices
- Compliant with the LwM2M specification
- 54 standards sensors and actuator Objects already specified and inserted in the OMA public registry

LwM2M Client Device Example (with Temperature, Humidity sensors and LED actuator)

IPSO Temperature Sensor
Object (Instance: 0)

Object ID: 3303

Resource: Sensor Value

(ID: 5700)

Resource: Min Measured

Value (ID: 5601)

Resource: Max Measured

Value (ID: 5602)

IPSO Humidity Sensor
Object (Instance: 0)

Object ID: 3304

Resource: Sensor Value

(ID: 5700)

Resource: Min Measured Value (ID: 5601)

Resource: Max Measured Value (ID: 5602) IPSO Light Control
Object (Instance: 0)

Resource: On/Off (ID: 5850)

Resource: Dimmer (ID:

5851)

IPSO Smart Object Specification Examples

Object Info:

Object	Object ID	Object URN	Multiple Instances?	Description
IPSO	3303	urn:oma:lwm2m:ext:3303	Yes	Temperature sensor, example
Temperature				units = Cel

Object ID

Resources:

Resource Name	Resource ID	Access Type	Multiple Instances?	Mandatory	Type	Range or Enumeration	Units	Descriptions
Sensor Value	5700	R	No	Mandatory	Float			Last or Current Measured Value from the Sensor
Units	5701	R	No	Optional	String			Measurement Units

Definition of an IPSO Object and associated Resources

Resource ID

Allowed Access Type from Server e.g. Read (R), Execute (E)...

Object	Object ID	Object URN	Multiple Instances?	Description
IPSO Light	3311	urn:oma:lwm2m:ext:3311	Yes	Light control object with on/off and
Control				optional dimming and energy
				monitor

Resources are reusable (the same can be used in multiple object definitions)

Resources:

Object Info:

Resource Name	Resource ID	Access Type	Multiple Instances?	Mandatory	Type	Range or Enumeration	Units	Descriptions
On/Off	5850	R, W	No	Mandatory	Boolean			On/off control,
								0=OFF, 1=ON
Dimmer	5851	R, W	No	Optional	Integer	0-100	%	Proportional control,

The resource implementation - Is Mandatory or Optional

Source: IPSO Alliance

Description

IPSO Smart Object XML Version in the OMA registry

URN / Version	ObjectID / xml	LwM2M Editor	Vorto	Object Name / Specification	Owner	Description
urn:oma:lwm2m:ext:3303	3303	3303	2	Temperature Sensor	IPSO Alliance	This IPSO object should be used over a temperature sensor to report a remote temperature measurement. It also provides resources for minimum/maximum measured values and the
						more

```
▼<LWM2M xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://openmobilealliance.org/tech/profiles/LWM2M.xsd">
 ▼<Object ObjectType="MODefinition">
     <Name>Temperature</Name>
   ▼ <Description1>
      Description: This IPSO object should be used with a temperature sensor to report a temperature measurement. It also provides resources for minimum/maximum measured
      values and the minimum/maximum range that can be measured by the temperature sensor. An example measurement unit is degrees Celsius (ucum:Cel).
     </Description1>
     <ObjectID>3303</ObjectID>
     <ObjectURN>urn:oma:lwm2m:ext:3303</ObjectURN>
     <MultipleInstances>Multiple</MultipleInstances>
     <Mandatory>Optional</Mandatory>
    ▼ < Resources >
     ▼<Item ID="5700">
        <Name>Sensor Value</Name>
        <Operations>R</Operations>
        <MultipleInstances>Single</MultipleInstances>
        <Mandatory>Mandatory</Mandatory>
        <Type>Float</Type>
        <RangeEnumeration/>
        <Units>Defined by "Units" resource.</Units>
        <Description>Last or Current Measured Value from the Sensor/Description>
       </Item>
     ▼<Item ID="5601">
        <Name>Min Measured Value</Name>
        <Operations>R</Operations>
        <MultipleInstances>Single</MultipleInstances>
        <Mandatory>Optional</Mandatory>
```

<Type>Float</Type>

XML Definition of the an Object Stored in the **OMA Registry**

Example here with Object 3303: Temperature Sensor http://www.openmobilealliance.org/tech/profiles/lwm2m/3303.xml

Source: http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html

Interaction Scenarios Examples

Benefits for the IoT Scenarios

LwM2M and related standards cover the IoT needs

- Horizontal and extensible open standard
- Proven Web paradigm ("REST") applied to the IoT
- Single protocol for device and application management
- Based on efficient communication protocols, designed for low power resource constrained devices (e.g. CoAP)
- State of the art security (DTLS)
- Open source implementations for both server and client are available

STM32 ODE

Developer community and supportCompatibility with free & commercial Development Environments Cloud Tools & IDEs Connectivity Safety & Security 6 STM32 Open **Function Packs Application** Development Set of function examples for some of the most common application cases Environment Networking Sensing STM32Cube STM32Cube Expansion Middleware middleware middleware Hardware STM32Cube Expansion STM32Cube Hardware Abstraction **Abstraction Layer (HAL)** HAL 3 STM32 Nucleo expansion STM32 Nucleo Move / Actuate development boards Hardware boards (X-NUCLEO) Connect **Translate** Integrated Boards Power

Fast, affordable prototyping & development

www.st.com/stm32ode

STM32 ODE Function Packs

A set of key building blocks used in most popular application domains

Pre-packaged offer integrating functionality from several expansion boards

STM32 ODE Function Pack FP-SNS-6LPNODE1: 6LoWPAN Node

FP-SNS-6LPNODE1 Function Pack

- This firmware package allows connecting an IoT node with sensors and actuators to a 6LoWPAN network, using sub-1GHz RF communication technology
- Middleware library with Contiki OS and Contiki 6LoWPAN protocol stack 3.x
- Support for mesh networking technology through the standard RPL protocol
- Environmental, Motion MEMS and Time of Flight sensors supported
- Embedded LwM2M Client with IPSO Smart Objects representation of sensors

Latest info available at www.st.com
FP-SNS-6LPNODE1

STM32 ODE Function Pack FP-SNS-6LPNODE1: LwM2M/IPSO Objects

Object	ID	Instances	Notes
Server	1	1	
Device	3	1	
IPSO Digital Input	3200	1	The instance maps the NUCLEO board User button
IPSO Light	3311	2	The instances map the NUCLEO and X-NUCLEO-IDS01A4/5 boards LEDs

LwM2M/IPSO Objects for STM32 Nucleo Board

Object	ID	Instances	Notes
Server	1	1	
Device	3	1	
IPSO Digital Input	3200	1	The instance maps the NUCLEO board User button
IPSO Presence Sensor	3302	1	
IPSO Light Control	3311	1	The instance maps the NUCLEO board LED

Object	ID	Instances	Notes
Server	1	1	
Device	3	1	
			The instance maps the
IPSO Digital Input	3200	1	NUCLEO board User button
IPSO Temperature	3303	1	
IPSO Humitidy	3304	1	
IPSO Light			The instance maps the
Control	3311	1	NUCLEO board LED
IPSO			
Accelerometer	3313	1	
IPSO			
Magnetometer	3314	1	
IPSO Barometer	3315	1	

LwM2M/IPSO Objects for Motion & Environmental Sensors (X-NUCLEO-IKS01A2 board)

LwM2M/IPSO Objects for Proximity and ambient light Sensors (X-NUCLEO-6180XA1 board)

STM32 ODE Function Pack FP-NET-6LPWIFI1: 6LoWPAN-Wi-Fi Bridge

Gateway - STM32 ODE solution

Hardware NUCLEO-F401RE

X-NUCLEO-IDS01A4
or
X-NUCLEO-IDS01A5

X-NUCLEO-IDW01M1

Software FP-NET-6LPWIFI1

FP-NET-6LPWIFI1 Function Pack

- This firmware package provides application-level functions to bridge 6LoWPAN and Wi-Fi networks
- Middleware library with Contiki OS and Contiki 6LoWPAN protocol stack 3.x
- Support for mesh networking technology by the means of the standard RPL protocol
- Middleware library for Wi-Fi connectivity using the SPWF01SA module

STM32 ODE Solutions End-to-End Deployment Example

FP-SNS-6LPNODE1 ←→ FP-NET-6LPWIFI1 ←→ LwM2M SERVER

LwM2M Server

STM32 ODE solutions are interoperable with a public LwM2M Server

- For evaluation purpose, the sensors nodes FP-SNS-6LPNODE1 can be managed by an OMA Lightweight M2M server called "**Leshan**"
- This public server is available at: http://leshan.eclipse.org
- The server can also be installed on a local machine by the user

WHAT IS ECLIPSE LESHAN?

- Leshan provides libraries that help people develop their own Lightweight M2M server and client
- Eclipse project since 2014
- Modular Java libraries
- Based on <u>Californium</u> CoAP implementation
- Based on <u>Scandium</u> DTLS implementation
- IPSO objects support
- http://www.eclipse.org/leshan/

LwM2M Server Access

LwM2M Server Dashboard (http://leshan.eclipse.org)

Current temperature and humidity sensor values on the IoT node that are read by the server

> LED light control (e.g. ON/OFF) on the node

Available STM32 ODE Function Packs (1/2)

		STM32 Nucleo	X-NUCLEO	STM32 ODE Funct	ion Pack
Function	Application case	Develop. board	Expansion board	Software	Apps iOS/ Android
	An IoT node with Wi-Fi and sensors, securely connected to Microsoft Azure cloud	NUCLEO-F401RE	X-NUCLEO-IDW01M1 X-NUCLEO-IKS01A2 X-NUCLEO-NFC01A1	FP-CLD-AZURE1	-
Local and cloud connectivity	An IoT node with Wi-Fi, NFC and sensors, securely connected to IBM Bluemix cloud	NUCLEO-F401RE	X-NUCLEO-IDW01M1 X-NUCLEO-IKS01A2 X-NUCLEO-NFC01A1	FP-CLD-WATSON1	-
	An IoT node with Wi-Fi and sensors, securely connected to Amazon AWS IoT	NUCLEO-F401RE	X-NUCLEO-IDW01M1 X-NUCLEO-IKS01A2	FP-CLD-AZURE1 FP-CLD-WATSON1 FP-CLD-AWS1 FP-SNS-FLIGHT1 ST FP-SNS-ALLMEMS1 ST FP-SNS-MOTENV1 ST FP-SEC-BLENFC1 ST	-
	An IoT node with BLE Connectivity, sensors and NFC for simple and secure Bluetooth BLE pairing	NUCLEO-F401RE NUCLEO-L476RG	X-NUCLEO-IDB05A1 X-NUCLEO-IKS01A2 X-NUCLEO-NFC01A1 X-NUCLEO-6180XA1	FP-SNS-FLIGHT1	ST BlueMS
Sensing	An IoT node with BLE connectivity and with sensors for temperature, humidity, pressure, motion, and digital microphone	NUCLEO-F401RE NUCLEO-L476RG	X-NUCLEO-IDB05A1 X-NUCLEO-IKS01A2 X-NUCLEO-CCA02M1	FP-CLD-AZURE1 FP-CLD-WATSON1 FP-CLD-AWS1 FP-SNS-FLIGHT1 FP-SNS-ALLMEMS1 FP-SNS-MOTENV1 FP-SEC-BLENFC1	ST BlueMS
	An IoT node with BLE Connectivity and with and 4 sensors sensors for temperature, humidity, pressure and motion	NUCLEO-F401RE NUCLEO-L476RG NUCLEO-L053R8	X-NUCLEO-IDB05A1 X-NUCLEO-IKS01A2	FP-SNS-MOTENV1	ST BlueMS
Safe and	An IoT node with secure BLE network pairing through NFC	NUCLEO-F401RE NUCLEO-L053R8	X-NUCLEO-IDB05A1 X-NUCLEO-NFC01A1	FP-SEC-BLENFC1	ST BlueMS
security	An IoT node with secure Wi-Fi network pairing through NFC	NUCLEO-F401RE	X-NUCLEO-IDW01M1 X-NUCLEO-NFC01A1	FP-SEC-WIFINFC1	ST M24SR

Available STM32 ODE Function Packs (2/2)

		STM32 Nucleo	X-NUCLEO	STM32 ODE Funct	ion Pack
Function	Application case	Develop. board	Expansion board	Software	Apps iOS/ Android
	A BLE star network connected via Wi-Fi bridge to IBM Bluemix cloud	NUCLEO-F401RE NUCLEO-L476RG NUCLEO-L053R8	X-NUCLEO-IDW01M1 X-NUCLEO-IDB05A1 (X-NUCLEO-IKS01A2)	FP-NET-BLESTAR1	ST SensNet
	A bridge to connect 6LoWPAN IoT nodes connected to smartphones via BLE interface	6LoWPAN IoT nodes hones via RI F interface NUCLEO-F401RE X-NUCLEO-IDS01A (X-NUCLEO-IDS01A	X-NUCLEO-IDS01A4 (X-NUCLEO-IDS01A5) X-NUCLEO-IDB05A1	FP-NET-6LPBLE1	-
Network infrastructure	6LowPAN SPIRIT connectivity and bridge to Wi- Fi connectivity	NUCLEO-F401RE	X-NUCLEO-IDB05A1 X-NUCLEO-IDS01A4 (X-NUCLEO-IDS01A5)	FP-NET-6LPWIFI1	-
	6LowPAN SPIRIT nodes based on the LwM2M standard	NUCLEO-F401RE	X-NUCLEO-IDS01A4 (X-NUCLEO-IDS01A5) (X-NUCLEO-6180XA1) (X-NUCLEO-IKS01A2)	FP-SNS-6LPNODE1	-

Questions?

