m ANS275

Application note

Introduction to USB DFU/USART protocols used in STM32MP1 and STM32MP2
MPU bootloaders

Introduction

This application note describes the protocols used by the bootloader programming tools for the STM32MP1 Series and
STM32MP2 Series microprocessors. It details each USB DFU or USART command supported by the embedded software, and
the sequences expected by the STM32CubeProgrammer tool.

In this document, the term STM32 MPU is used when both the STM32MP1 Series and STM32MP2 Series microprocessors are
implied.

AN5275 - Rev 7 - December 2024 www.st.com

For further information contact your local STMicroelectronics sales office.

‘_ ANS5275
,’ Embedded programming service

1 Embedded programming service
1.1 Introduction

This document applies to the STM32MP1 Series and STM32MP2 Series Arm®-based microprocessors.
Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

It defines the protocols used by the STM32 MPU bootloaders to provide the programming service, that is, the
embedded part needed by the STM32CubeProgrammer.

This service provides a way to program the nonvolatile memories (NVM) namely, external flash memory device or
on chip nonvolatile memory (OTP).

This document describes the USB or USART protocols used by both the embedded software and the
STM32CubeProgrammer as well as the expected sequences.

1.2 Reference
[1] AN3155, Application note, USART protocol used in the STM32 bootloader
[2] AN3156, Application note, USB DFU protocol used in the STM32 bootloader
[3] UMO0412, User manual, Getting started with DfuSe USB device firmware upgrade STMicroelectronics
extension
[4] UMO0424, User manual, STM32 USB-FS-Device development kit
[5] Universal Serial Bus, Device Class Specification for Device Firmware Upgrade, version 1.1 from

https://usb.org/(")

[6] The GUID Partition Table (GPT) is a standard for the layout of partition tables, part of the Unified Extensible
Firmware Interface (UEFI) standard (https://uefi.org/)(")

[7] Signing tool in wiki.st.com/stm32mpu/wiki/Signing_tool

[8] ROM code overview in wiki.st.com/stm32mpu/wiki/Category:ROM_code

[9] FlashLayout in wiki.st.com/stm32mpu/wiki/STM32CubeProgrammer_flashlayout

[10] OTP in wiki.st.com/stm32mpu/wiki/STM32CubeProgrammer_OTP_management

[11] PMIC NVM in https://wiki.st.com/stm32mpu/wiki/STM32CubeProgrammer_PMIC_NVM_management

[12] STM32 header for binary files in wiki.st.com/stm32mpu/wiki/STM32_header_for_binary_files

[13] Chapter Serial boot in ROM code overview in wiki.st.com/stm32mpu/wiki/Category:ROM_code

[14] Firmware image package used by TF-A in wiki.st.com/stm32mpu/wiki/TF-A_overview#FIP

[15] STM32PRGFW-UTIL, an official STMicroelectronics firmware package for STM32 MPU programming in

https://wiki.st.com/stm32mpu/wiki’/STM32PRGFW-UTIL

1. This URL belongs to a third-party. It is active at document publication. However, STMicroelectronics shall not be liable for
any change, move, or inactivation of the URL or the referenced material.

AN5275 - Rev 7 page 2/38

https://usb.org/
https://uefi.org/
https://wiki.st.com/stm32mpu/wiki/Signing_tool
https://wiki.st.com/stm32mpu/wiki/Category:ROM_code
https://wiki.st.com/stm32mpu/wiki/STM32CubeProgrammer_flashlayout
https://wiki.st.com/stm32mpu/wiki/STM32CubeProgrammer_OTP_management
https://wiki.st.com/stm32mpu/wiki/STM32CubeProgrammer_PMIC_NVM_management
https://wiki.st.com/stm32mpu/wiki/STM32CubeProgrammer_PMIC_NVM_management
https://wiki.st.com/stm32mpu/wiki/Category:ROM_code
https://wiki.st.com/stm32mpu/wiki/TF-A_overview#FIP
https://wiki.st.com/stm32mpu/wiki/STM32PRGFW-UTIL

AN5275

Embedded programming service

ANS5275 - Rev 7

Overview

The programming operation consists in writing binaries initially stored on a host computer, via an interface, to any
nonvolatile memory (NVM) on the platform. This process involves the STM32CubeProgrammer tool that
communicates with an embedded programming service. This consists of the ROM code and the loaded software,
either the STM32PRGFW-UTIL [15] binary or, for OpenSTLinux BSP, the first stage bootloader (FSBL) and the
second stage bootloader (SSBL)

Figure 1. Programming operation

» NAND
STM32Cube - ROM code
Programmer UART = NOR
FSBL
1 \ » e‘MMC
SSBL
» SDCard
Layout Embedded
programming -
service | VM
Binary l
PMIC
OTP
STM32 MPU <
Host Board E

A communication protocol is defined for each serial interface (USART, USB) involving a set of commands and
some sequences that are as much compatible as possible with existing STM32 MCU devices (see [1] and [2]).

The possible NVMs are:
. An external flash memory device:
- NAND flash memory
- e*MMC
- SD card
- NOR flash memory
. An on-chip nonvolatile memory:
- STM32 MPU OTP
- NVM of a PMIC (STPMIC1 for example)

A layout file gives the list of binaries to program their type such as, binary or file system, the targeted NVM, and
the position in the NVM.

The eventual signing steps of the binary files with the STM32 header are done previously with the SigningTool
(see [7]).

The embedded programming service in the OpenSTLinux BSP is based on the ROM code, the FSBL = Arm
Trusted Firmware (TF-A) and SSBL = U-Boot. The same protocol is used for both downloading the FSBL and
SSBL in RAM and for loading the partition to be programmed in the device NVM.

page 3/38

m AN5275

Embedded programming service

The ROM code is embedded in the STM32 MPU device. Its main task is to load, verify, and execute the
STM32PRGFW-UTIL [15] or, for OpenSTLinux BSP, the first stage bootloader (FSBL) in internal RAM through
one of the available serial peripherals. In turn, after some initializations (clock and DDR), the FSBL loads the
second loader (SSBL) in DDR, verifies the signature and executes it.

1.4 Layout file format

The flash memory layout-file is a tab-separated-value (tsv) text file with one line per partition or binary to send to
the device. The complete description can be found in ST wiki [9].

1.5 Phase ID

A complete description for the phase ID can be found in the ST wiki [9]. The Ids 0x0 to 0x3 and OxF1 to OxFD are
reserved. For the other values, it is a unique identifier present in the layout file for each download phase-request
made to the STM32CubeProgrammer. This request is done either by the ROM code, by the FSBL=TF-A or by the
SSBL = U-Boot.

It is used by the embedded programming service to identify the next partition. This is, for example the TF-A and
U-Boot to be downloaded in the Get phase command answer.

Table 1. Reserved phase ID

0x00 Layout file

Image containing FSBL, TF-A BL2 for OpenSTLinux BSP or STM32PRGFW-UTIL, loaded by ROM code in

0x01 embedded RAM, file with STM32 header [12]

Image containing FSBL parameters, loaded by FSBL in internal RAM for serial boot: it is a FIP binary with
necessary "Images" required to initialize the external RAM not used for STM32MP1 series

0x02

0x03 FIP image [14](such as, embedding SSBL, OP-TEE) used by FSBL=TF-A
0xF1 to OxFD Reserved for internal purpose

0xF1 Command GetPhase

0xF2 OTP

O0xF3 Reserved for SSP

OxF4 PMIC NVM. Only supported in STM32PRGFW-UTIL

0xF5 Reserved for SSP - not used for STM32MP1 series

0xF6 Reserved for SSP - not used for STM32MP1 series

OxFE End of operation

OxFF Reset

A complete description of the special operation for OTP (0xF2) and for PMIC NVM (0xF4) can be found in the ST
wikis [10] and [11].

1.6 STM32 image header
The details of the STM32 image header can be found in the STM32 MPU wiki [12].
This header is only used for the image loaded by ROM code, the FSBL = TF-A BL2 or STM32PRGFW-UTIL.

The signature is mandatory only on closed devices. For details on the signature process see signing tools [7], for
definition of closed devices see [8].

1.7 Programming sequence

1.71 Case 1 — programming from reset

In this normal use case of the STM32CubeProgrammer, the voltage level on the boot pins is used to determine
the peripheral used for boot (USB or UART see [13]). The bootloaders are loaded by the
STM32CubeProgrammer in RAM and the SSBL U-Boot provides the programming service running in DDR.

AN5275 - Rev 7 page 4/38

AN5275

Embedded programming service

ANS5275 - Rev 7

Figure 2. Programming chart

ROM_code_Load_FSBL_in_internal_RAM

Load FSBL
Phaseld =1

Start FSBL in internal RAM

OpenSTLinux BSP

Programming_Service FSBL_Load_SSBL_in_DDR

Initialize STM32PRGFW-UTIL Initialize TF-A BL2

STM32MP1 series

Load image containing DDR Parameters
Phaseld = 2

Treat Host command
(OTP, PMIC NVM...)

Last command ?
Initialize DDR

Load image containing SSBL:U-Boot
Phaseld =3

Start SSBL in DDR

Programming_Service_in_DDR

Initialize U-Boot

Load Layout
Phaseld =0

Parse Layout file m

Treat Host command
Load and program the current
partition = GetPhase result
Phaseld = N

Last partition ?

DT63071V2

page 5/38

‘_ ANS5275
,’ Embedded programming service

For a full update, the same boot stage partitions (image containing TF-A and U-Boot) is requested twice, once for
loading and execution in RAM and once for the NVM update. However, the provided binary is not necessarily the
same.

In U-Boot, the data chunks received on UART and on USB are buffered in DDR. The size of this buffer is device
dependent.

The buffer is flushed to the NVM when it is full. Therefore, the ACK for each transferred chunk is delayed to when
this NVM update is performed.

The diagram below gives an overview of a typical programming sequence.

AN5275 - Rev 7 page 6/38

‘_ ANS5275
,’ Embedded programming service

Figure 3. OpenSTLinux programming sequence overview

«ST»

«ST» «Community_w_ST» «Community_w_ST» «Hardware»

STM32CubeProg ROM Code FSBL: TF-A BL2 SSBL: U-Boot

| Power On

i
|
|
|
|

Peripheral driver init H
|

Peripheral driver init |
i
i
!

{ Loading Prog ing Service in DDR |

Init communication on peripheral (uart or usb)

GetPhase = 1

Load phase 1 = TF-A

Authenticate TF-A

OK

[Jump to TF-A in SYSRAM

Init clock

Peripheral driver init

Init communication on peripheral (uart or usb)

alt STM32MP2 series]
GetPhase = 2

Load phase 2 = FIP containing DDR firmware (in SRAM)

Init DDR

GetPhase =3

Load phase 3 = image containing U-Boot & start (in DDR)

Authenticate image

OK
Jump to U-Boot in DDR
]
C ing Service initialization (U-Boot in DDR) |
T T
1 1 Peripheral driver init
| |
I I
Init communication on peripheral (uart or usb) l |
GetPhase =0 | |
T T
Load phase 0 = FlashLayout & start (in DDR) | |
T T
OK | |
H i
{ Running Prog ing Service in DDR |
T T
| | Parse FlashLayout
' '
| |
. . alt ofly for e*MMC or SD card and for omplete update]
. . Write MBR and GPT .
' ' s
' ']
Init communication on peripheral (uart or usb) ' ' .
]] '
: Loop : Write each selected partition N : :
]
]] '
GetPhase =N N N .
]] '
Load phase N ! ! .
]] '
: : Write partition N by chunk !
' ']
Start phase N ' ' !
i " Check checksum i
' ' '
' ' '
ok ! ! !
i
]] i
i — i i
i i i
GetPhase = END | | i
]] i
i i Reboot i
i i ey i
i i i
I I I

AN5275 - Rev 7 page 7/38

‘_ ANS5275
,’ Embedded programming service

1.7.2 Case 2 — OpenSTLinux programming from U-Boot for a programmed device
In this code update use case, the NVM is already programmed with a valid boot chain and selected by the boot
pins (see [13]).
The expected sequence is:
1. The user switches on the board
2. The bootloaders are loaded from NVM and executed in RAM

3. The user interrupts the platform boot and starts U-Boot in programmer mode (UART or USB). Several
solutions are possible:

- Key press detection to enter in programming mode for example with the user button on the
STMicroelectronics board

- The user launches the download command in U-Boot console (command stm32prog)
- Programmer mode requested by Linux via reboot mode

4. The user starts STM32CubeProgrammer on PC

Then the programming service runs in the DDR exactly as in the previous case.

AN5275 - Rev 7 page 8/38

‘— ANS5275
,’ UART/USART

2 UART/USART

2.1 UART/USART protocol
The UART/USART protocol follows as much as possible the STM32 MCU behavior described in [1].
The figure below highlights the differences and details the expected sequence.

AN5275 - Rev 7 page 9/38

‘_ AN5275
,’ UART/USART

Figure 4. USART programming sequence description - 1

«ST» «Hardware»

«Community_w_ST» «Community_w_ST»
STM32CubeProg

FSBL: TF-A BL2 SSBL: U-Boot

Flash

1 1 1 W‘ 1 1

1\ Power On

<
<

Serial driver init

Peripheral boot init

Device boot notification

<

Get()

Supported list of command

Getld()

Y

Chip ID

GetVersion()

Y

Boot ROM version

GetPhase()

: Loading Programming Service

Phase = 0x1, TF-A

Download(lenght, payload)

ACK

Start()

Authenticate(TF-A)

ACK

Branch to TF-A

GetPhase()

Y

Drivers init

| NACK

GetPhase() : Resent

\4

ACK

1
alt STM32MP2 series] :
Phase = 0x2, image containing DDR parameters

Download(lenght, payload)

\4

Start()

\4

Authenticate image

ACK

GetPhase()

ACK

DDR init

1
Phase = 0x3, image containing W-Boot

Download(lenght, payload) :

\4

Start()

\4

Authenticate image

ACK

Branch to U-Boot

GetPhase()

AN5275 - Rev 7 page 10/38

‘_ AN5275
,’ UART/USART

Figure 5. USART programming sequence description - 2

«ST» «ST» «Community_w_ST» «Community_w_ST» «Hardware»
STM32CubeProg ROM Code FSBL: TF-A BL2 SSBL: U-Boot

: i ['
- : Programming Service : Init and load Layout : :
' T '
, , Reset uart ,
1 1 1
1 1 1
NACK | | '
1 1 1
GetPhase() : Resent \ | > i
1 1 1
ACK A A i
1 1 1
Get() : : > :
1 1 - 1
Supported list of command |) ,
1 1 1
Getld() ! ! o !
1 1 - 1
Chip ID ! ! !
1 1 1
GetVersion() ' ' o !
U-Boot version i | |
1 1 1
Phase = 0x0, Flash Layout | | |
T T 1
Download(lenght, payload) | | o |
T T > 1
Start() | | - |
1 1 Ll 1
H H Verify checksum H
: : :
ACK ' ' '
T T 1
| | Parse flash layout, nb partitions i
| | |
1 1 1

i i alt only for e*MMC or SD card and for complete/ update]
H H Write MBR and GPT, nb partitions |
| | Lt
GetPhase() [retry after NACK] 1 | R E
Phase =N ' | |
| h :
: Programming Service : Repetition on each partition N=1 to nb : :
1
1 1 1
Write 256 bytes chunck of payload (repeated until lenght) ! o !
1 1 1
! ! Bufferize the chunck !
1 1 1
1 1 1
. . Write full buffer in partition N o
ACK | | |
1 1 :
Start() ' ' !
| | Verify checksum i
| | |
1 1 1
ACK 1 1 1
B) '
1 1 1
GetPhase() ! ! !
Phase =N+ 1 | | |
1 1 :
" : Programming Service : End : "
1 1
1 1 1
GetPhase() ! ! ,
1 1 - 1
Phase = OxFE, End of Operatior] ! !
1 1 1
Start() ! ! o !
1 1 - 1
ACK ' ! '
i i |
i i Reset i
1 1 1 1
1 1 1
Close | | | .
] : : : :
' ' ' '

AN5275 - Rev 7 page 11/38

AN5275
UART/USART

2.3

ANS5275 - Rev 7

UART/USART configuration
The configuration is set by the ROM code ([13]) with the following settings:

baudrate = 115200 baud
8-bit data

EVEN parity

1 start bit

1 stop bit

UART/USART connection

Once the serial boot mode is entered (see boot pin in [13]), all the UART/USART instances are scanned by the
ROM code, monitoring for each instance the USARTx_RX line pin, waiting to receive the 0x7F data frame (one
start bit, Ox7F data bits, none parity bit and one stop bit).

page 12/38

r AN5275
,’ UART/USART

24 UART/USART main loop

Figure 6. Main UART/USART sequence

?

(OX7F received on USARTx RX pin)

USART selected

Wait Command

Download

yes, write

y
(Get cmd) (Get version) (Get ID) (Get phase) (Read Memory) (Read Partition) no, NACK (SRR, and ACK

. Packet ‘
Y
Something went wrong?
yes, phase = OxFF

(Get phase with error message)

Get phase
(O

X

No, Flush data and
et next Phase

Unrecoverable error
<7

X

The device supports the following commands set:

. Get cmd (to get the bootloader version and the allowed commands supported by the current version of the
bootloader)
. Get version (to get the software version)

. Get ID (to get the chip ID)

. Get phase!?) (to get the phase ID: the partition that is going to be downloaded)
. Download (to download an image into the device)

. Read Memory (to read SRAM memory)

. Read Partition(")

. Start (to go to user code)

(*) STM32MP1 Series specific commands

Figure 6 illustrates the device code execution during the different download phases. The host starts by the get
cmd command then the get phase command and depend the Phase ID the host sends the adequate data.

The device returns an error when there is a corruption of data. In case of NACK error the system restarts the
operation. In case of ABORT error the system reboots after the next GetPhaseld with the answered value RESET
(OxFF).

AN5275 - Rev 7 page 13/38

‘_ AN5275
,’ UART/USART
Figure 7. STM32CubeProgrammer download sequence
(Get phase id = <ID>)
< Reset(0xFF) >
(Display error message) < EndOfOperation(0xFE) >
(Download <ID>) A A

ANS5275 - Rev 7

Success

4
Get phase id '

Error
Start <ID>

The abort response is used to inform the host in case of a major issue (error during the signature check or error
during writing). The only way to recover is to perform a system reset and to restart communication. The
downloaded image is discarded immediately after the Abort response. The device forces a system reset after the
next GetPhaseld with the answered value RESET (OxFF).

last packet

Abort response

page 14/38

r AN5275
S /4 UART/USART

2.5 UART/USART command set

The supported commands are listed in the table below. Each command is further described in the following
sections.

Table 2. USART commands

Gets the version of the running element and the allowed commands

Get 0x00 supported.

Get version 0x01 Gets the version

Get ID 0x02 Gets the device ID

Get phase 0x03 S;Lsgt?:é):gzile?;;gz;dentifier of the partition in the layout file that is
Read memory ox11 ’I;eea;?plljiz a:302r156 bytes of memory starting from an address specified by
Ortz | et 1o 25 btes ofpriton oot specte by e applcatr
Start (Go) 0x21 j:?;pli ttﬁéh:oﬁ\s,z';a?ﬁglﬁzﬁn?;r}llocated in the RAM or flush the received
Download (Write Memory) 0x31 Download the image

Erase 0x43 Existing in USART protocol v3, not used in STM32 MPU

Extended erase 0x44 Existing in USART protocol v3, not used in STM32 MPU

Special 0x50 Existing in USART protocol v3, not used in STM32 MPU

Extended special 0x51 Existing in USART protocol v3, not used in STM32 MPU

Write protect 0x63 Existing in USART protocol v3, not used in STM32 MPU

Write unprotect 0x73 Existing in USART protocol v3, not used in STM32 MPU

Readout protect 0x82 Existing in USART protocol v3, not used in STM32 MPU

Readout unprotect 0x92 Existing in USART protocol v3, not used in STM32 MPU

Get checksum O0xA1 Existing in USART protocol v3, not used in STM32 MPU

Communication safety

All communications from STM32CubeProgrammer (PC) to the device are verified as follows:
. The UART/USART even parity is checked.
. For each command the host sends a byte and its complement (XOR = 0x00).

. The device performs a checksum on the sent/received datablocks. A byte containing the computed XOR of
all previous bytes is appended at the end of each communication (checksum byte). By XORing all received
bytes, data + checksum, the result at the end of the packet must be 0x00. A timeout must be managed in
any waiting loop to avoid any blocking situation.

Each command packet is either accepted (ACK answer), discarded (NACK answer) or aborted (unrecoverable
error):

. ACK = 0x79
. NACK = 0x1F
. ABORT = 0x5F

AN5275 - Rev 7 page 15/38

r AN5275
S /4 UART/USART

251 Get command (0x00)

The Get command returns the bootloader version and the supported commands. When the device receives the
Get command, it transmits the version and the supported command codes to the host, as described in Figure 6.
The commands not supported are removed from the list.

The device sends the bytes as described in the table below.

Table 3. Get command response

1 ACK
N = the number of following bytes — 1 (except current and ACKs) with:
. N = 8 for U-Boot, which support all these commands

2 . N = 7 for ROM code STM32MP15x

. N = 6 for ROM code STM32MP13x
. N =7 for ROM code STM32MP25x

UART/USART bootloader version (0 < version < 255)
3 example: 0x10 = version 1.0
On STM32MP1 Series, the USART protocol version is V4.0, so the value is 0x40

4 0x00: Get command
5 0x01: Get version
6 0x02: Get ID
7 0x03: Get phase ID
8 0x11: Read memory command (only supported by the STM32MP15x ROM code)
9 0x12: Read partition command (not supported by the STM32MP1 ROM code)
10 0x21: Start command
11 0x31: Download command
Last ACK
2.5.2 Get ID command (0x02)

The Get ID command is used to get the version of the device ID (identification). When the device receives the
command, it transmits the device ID to the host.

The device sends the bytes as follows:

Table 4. Get ID command response

1 ACK
2 N =1 = the number of following bytes — 1 (except current and ACKs)

Device identifier as defined in STM32 MPU reference manual, for example:
. 0x0500 for STM32MP15x

3-4
. 0x0501 for STM32MP13x
. 0x0505 for STM32MP25x
Last ACK

AN5275 - Rev 7 page 16/38

AN5275
UART/USART

253

254
Note:

ANS5275 - Rev 7

Get version command (0x01)

The Get version command is used to get the version of the running component. When the device receives the
command, it transmits the version to the host.

The device sends the bytes as follows:

Table 5. Get version command response

1 ACK
) Bootloader version => software version (ROM code/TF-A/U-Boot)
(0 < version < 255), example: 0x10 = version 1.0
3 Option byte 1: 0x00(")
4 Option byte 2: 0x00(")
Last ACK

1. Option byte keeps the compatibility with generic bootloader protocol see [Ref1].

Get phase command (0x03)
This command is STM32 MPU specific.

The Get phase command enables the host to get the phase ID, in order to identify the next partition that is going
to be downloaded.
When the device receives the Get phase command, it transmits the partition ID to the host as follows:

Table 6. Get phase command response

1 ACK
2 N = the number of following bytes -1 (except current and ACKs, 0 < N < 255)
3 Phase ID
4-7 Download address
8 X = the number of bytes in additional information (X = N-5)
X X bytes of additional information
Last ACK

The download address, when present, provides the destination address in memory. A value of OxFFFFFFFF
means than the partition is going to be written in NVM.

Phase ID = OxFF corresponds to an answered value Reset, in this case the information bytes provide the cause of
the error in a string just before executing the reset.

ROM code

The ROM code sends phase = TF-A

. Byte 1: ACK
. Byte 2N =6
. Byte 3: phase ID (file containing FSBL = TF-A, 1)
. Byte 4-7:

- 0x2FFC2400 on STM32MP15x

- 0x2FFDFEOO0 on STM32MP13x

- 0x24000000 for STM32MP25x
. Byte 8: X =1
. Byte 9: O: reserved

page 17/38

r AN5275
,’ UART/USART

« Byte10:ACK

TF-A

The TF-A sends:
. Byte 1: ACK
. Byte 2N =5
. Byte 3: phase ID (file containing SSBL = U-Boot, 3)
. Byte 3: phase ID:
- 3 for file containing SSBL = U-Boot
- 2 for FIP with DDR settings on STM32MP2 Series
. Byte 4-7: load address of FIP in DDR, for example:
- 0xC8000000 for STM32MP1 serie,
- 0xOE000000 (PhaselD = 2) or 0x87000000 (PhaselD=3) for STM32MP2 series
. Byte 8: X =0
. Byte 9: ACK

U-Boot

The U-Boot sends the bytes as follows when no additional information is provided by U-Boot (N = 5, X = 0).
. Byte 1: ACK

. Byte 22N =5

. Byte 3: phase ID (next partition to program)

. Byte 4-7: OXFFFFFFFF or load address in DDR

. Byte 8: X =0

. Byte 9: ACK.

For example, with layout (phase = 0)

. Byte 1: ACK

. Byte 22N =5

. Byte 3: phase ID = layout (0)

. Byte 4-7: Load address of layout file in DDR, CONFIG_SYS_LOAD_ADDR by default
. Byte 8: X =0

. Byte 9: ACK

For example, with TF-A

. Byte 1: ACK

. Byte 22N =5

. Byte 3: phase ID = identifier of FSBL1 partition in layout file
. Byte 4-7: OXFFFFFFFF

. Byte 8: X =0

. Byte 9: ACK

For the error case, U-Boot sends the bytes as follows:

. Byte 1: ACK

. Byte 2: N = X-5

. Byte 3: phase ID = Reset (0xFF)

. Byte 4- 7: OXFFFFFFFF

. Byte 8 X= string size

. X bytes: string in ascii (Max 250 bytes): the cause of error
. Last byte: ACK

AN5275 - Rev 7 page 18/38

AN5275
UART/USART

2.5.5

Note:

ANS5275 - Rev 7

Download command (0x31)

The download command is used to download a binary code (image) into the SRAM memory or to write a partition
in NVM.

Two types of operations are available:

. Normal operation: download current partition binary to the device. For initialization phase the partitions
are loaded in SRAM, otherwise for writing phase the partition are written in NVM.
. Special operation: download non-signed data to non-executable memory space.

A Start command is necessary to finalize these operations after the download command.

The Packet number is used to specify the type of operation and the number of the current packet. The table below
gives the description of the packet number.

Table 7. Packet number

0x00 Normal operation: write in current phase
0xF2 Special operation: OTP write
3 O0xF3 Special operation: Reserved
O0xF4 Special operation PMIC: NVM write
Others Reserved

0-2 - Packet number, increasing from 0 to OXFFFFFF (*)

Packet number it is not an address as on STM32 MCU with only memory mapped flash, but the index of the
received packet. The offset of the packet N the offset in the current partition/phase is N* 256 bytes when only full
packets are used.

. Examples:

- Packet number = 0x00603102
Operation = normal operation, packet number = 0x603102

- Packet number = 0xF200000N: send Nth OTP part
Operation = OTP write, OTP part number

The host sends the bytes to the device as shown in the table below.

Table 8. Download command

1 0x31 = download (write memory)
2 0xCE = XOR of byte 1
- Wait for ACK or NACK

3-6 Packet number, as described in Table 7
7 Checksum byte: XOR (byte 3 to byte 6)
- Wait for ACK or NACK

8 Packet size (0 < N < 255)
9-(Last-1) N+1 data bytes (max 256 bytes)
Last Checksum byte: XOR (byte 8 to Last-1)

- Wait for ACK or NACK

page 19/38

AN5275
UART/USART

2.5.6

ANS5275 - Rev 7

Read memory command (0x11)
The Read memory command is used to read data from any valid memory address in the system memory.

When the device receives the read memory command, it transmits the ACK byte to the application. After the
transmission of the ACK byte, the device waits for an address (4 bytes) and a checksum byte, then it checks the
received address. If the address is valid and the checksum is correct, the device transmits an ACK byte,
otherwise it transmits a NACK byte and aborts the command.

When the address is valid and the checksum is correct, the device waits for N (N = number of bytes to be
received -1) and for its complemented byte (checksum). If the checksum is correct the device transmits the
needed data (N+1 bytes) to the application, starting from the received address. If the checksum is not correct, it
sends a NACK before aborting the command.

To read memory mapped content, the Host sends bytes to the device as follows:

Table 9. Read memory command

1 0x11 = read memory
2 OxEE = XOR of byte 1
- Wait for ACK or NACK
3-6 Start address
7 Checksum byte: XOR (byte 3 to byte 6)
- Wait for ACK or NACK
8 Number of bytes to be received — 1 (N = [0, 255])
9 Checksum byte: XOR (byte 8)
- Wait for ACK or NACK

page 20/38

r AN5275
S /4 UART/USART

257 Read partition command (0x12)
Note: This command is STM32 MPU specific.

The Read command is used to read data from any valid offset in one partition as the device associated with
phase is not memory mapped.

When the device receives the read memory command, it transmits the ACK byte to the application. After the
transmission of the ACK byte, the device waits for a partition ID, an offset (4 bytes) and a checksum byte, then it
checks the received address. If the address is valid and the checksum is correct, the device transmits an ACK
byte, otherwise it transmits a NACK byte and aborts the command.

When the address is valid and the checksum is correct, the device waits for the number of bytes to be transmitted
— 1 (N bytes) and for its complemented byte (checksum). If the checksum is correct it then transmits the needed
data (N bytes) to the application, starting from the received address. If the checksum is not correct, it sends a
NACK before aborting the command.

To read partition in NVM, the Host sends bytes to the device as shown in the table below.

Table 10. Read Partition command

1 0x12 = Read Partition
2 OxED = XOR of byte 1
- Wait for ACK or NACK

3 partition ID = value
4-7 offset address
8 Checksum byte: XOR (byte 3 to byte 7)

- Wait for ACK or NACK

9 Number of bytes to be received — 1 (N = [0,255])
10 Checksum byte: XOR (byte 9)

- Wait for ACK or NACK

2.5.8 Start command (0x21)
The Start command is used:

. To execute the code just downloaded in the memory or any other code by branching to an address
specified by the application. When the device receives the Start command, it transmits the ACK byte to the
application. If the address is valid the device transmits an ACK byte and jumps to this address, otherwise it
transmits a NACK byte and aborts the command.

. To finalize the last download command, when the host indicates the address = OxFFFFFFFF. The Host
sends bytes to the device as shown in the table below.

Table 11. Start command

1 0x21 = start
2 0xDE = XOR of byte 1
- Wait for ACK or NACK
3-6 Start address or OXFFFFFFFF
7 Checksum byte: XOR (byte 3 to byte 6)

- Wait for ACK or NACK

AN5275 - Rev 7 page 21/38

‘,_l ANS5275

3 usSB

3.1 DFU protocol
The embedded programming service uses the DFU protocols v1.1 (see [5] for details).
The only difference with DFU v1.1 protocol is: DFU_DETACH is acceptable in dfulDLE state and get back to
runtime mode applIDLE.

Note: This behavior is already supported in U-Boot DFU stack, in STM32Programmer (with option '-detach’) and in
dfu-utils (with -e Option).
In dfulDLE state, the device expects a USB reset to continue the execution. In the following sections, only the
STM32 MPU specificities are presented.

Caution: The STMicroelectronics extensions on DFU standard used in STM32 MCU are not supported in neither the
STM32MP1 Series nor the STM32MP2 Series. These extensions are also named DFUSE; the DFU version to
v1.1a when these extensions are used (see [2] for details).

AN5275 - Rev 7 page 22/38

‘,_l AN5275

The DFU states are described in the interface state transition diagram (see figure below, source: chapter A.1 of

(51):

Figure 8. Interface state transition diagram

4]
1
applDLE : appDETACH
Application Program Mode
DAY Program Mode
LISE Reset
State
2,3569 Ay status except OK
ﬁuﬂ'\
DFU_ABORT ,_—.,mmf; o T
DFU_UPLOWAD
m DFU_UPLOAD DFU_GETSTATUS { blodk in -
¢ {BECanlioad=1) progress)
2 4
diuUPLOAD-
IDLE dfuDMBLISY
DFU_UPLDAD (Short Frame) L - Status Poll Timeout

DFU_GETSTATUS
(block complete) DFU_DNLOAD

DFU_GETSTATUS (manifestation {wiength > 0}

comgiete, and
bitManifestation Tolerant=1)
Status Poll Timeout, State
hitManifestationTolerant=1 progress) 0,1,2, 3,5, 0,1,2.59
6,9, 10 10

8
7
HFUMANIFEST- fUMANIFEST
WAIT-RESET Status Poll Timeout,
bitMarifestation Tolerant=0 DU GETSTATE DFU_GETSTATUS

AN5275 - Rev 7 page 23/38

<71 AN5275
) /4 UsB

3.2 USB sequence

Since the USB description is shared by TF-A and by the STM32MP15x ROM code, a new enumeration is not
required after TF-A manifestation for STM32MP15x. As a consequence the STM32MP15x ROM code must
present the alternate settings used by TF-A, even if they are not supported in the ROM code.

For other STM32 MPU, with the exception of the STM32MP15x, the USB controller is disconnected in ROM code
before manifestation on FSBL phase, even if the USB PHY is not reset, a new enumeration is required in
FSBL=TF-A.

The DFU application, STM32CubeProgrammer of dfu-util, supports the download of several partitions with
alternate settings. Therefore all the DFU stack in ROM code TF-A and U-Boot must indicate it is manifestation-
tolerant, (bitMainfestationTolerant = 1 in DFU attributes).

When re-enumeration is required, between ROM code and TF-A on the STM32 MPUs except for the
STM32MP15x devices or between TF-A and U-Boot, a DFU_DETACH is requested with the following sequence:

1. Host request state, device answer is dfuldle (state 2)

Host request DFU_UPLOAD (GetPhase)

Device indicates the same phase 0x0 but with the “need detach” flag in additional information bytes.
The host sends command DFU_DETACH and DFU is in dfuldle mode on device:

The Host reset the USB

Figure 9 presents the complete USB sequence in more details.

o~ N

AN5275 - Rev 7 page 24/38

<71 AN5275
) /4 UsB

Figure 9. USB sequence - 1

Init drivers (including DDR for STM32MP1 series)

USB driver init

«ST» «ST» «Community_w_ST» «Community_w_ST» «Hardware»
STM32CubeProg ROM Code FSBL: TF-A BL2 SSBL: U-Boot
I I | I I
' ' — ' '
' |_Power On ' ' '
' ' ' '
M | | |
USB driver init H H H
i i i
Peripheral boot init : : :
| | |
I I I
USB enumeration = DFU v1.1 I ' '
. . .
' ' '
Loading P ing Service with DFU v1.1 } . .
i
j I
Get() ! !
' '
Supported list of command : :
DFU Upload Phase = 0x1, SSBL i i
I I
DFU Download(lenght, payload) [alternate for 1] i i
I I
DFU mani ion [alternate for 1] : :
I I
DFU GetStatus i |
' '
Authenticate(TF-A) i i
i i
OK / dfuMANIFESTSYNC i i
' '
I
alt STM32MP15x] !
Stop USB, stall mode !
.
Tother STM3% MPU] |
DFU Upload Phase = 0x0, Need DFU detach [alternate for OxF1] :
I
DFU_DETACH () i
|
Issue a USB reset i
I
USB disconnect i
.
|
Branch to TF-A . .
I
I
.
'
I
I
I
I
I
.
'
I

alt STM32MP15x]
DFU GetStatus (reemission / lost as USB is not ready, stall mode)

Start USB, same USB descriptors than ROM code

Tother STM3% 1PU]
USB enumeration = DFU v1.1

DFU GetStatus

OK / dfuMANIFESTSYNC

alt STM32MP2 series] T
DFU Upload Phase = 0x2, SSBL [alternate for 0xF 1] 1
T
.

DFU Download(lenght, payload) : FIP containing DDR parameters [alternate for 2]

DFU manifestation [alternate for 2]

DDR init

DFU GetStatus

OK / dfuMANIFESTSYNC

DFU Upload Phase = 0x3, SSBL [alternate for OxF1]

DFU Download(lenght, payload) : FIP containing U-Boot [alternate for 3] !

DFU manifestation [alternate for 3] !

DFU GetStatus '

OK / dfuMANIFESTSYNC

DFU Upload Phase = 0x0, Need DFU detach [alternate for OxF1]

DFU_DETACH ()

USB disconnect

Branch to U-Boot

i
i
T
I
i
T
i
!

Issue USB reset |
T
!
i
i
i
i
!
!
!
i
|
i

K

AN5275 - Rev 7 page 25/38

‘_ ANS5275
Y/ usB
Figure 10. USB sequence - 2

«ST» «ST» «Community_w_ST» «Community_w_ST» «Hardware»
STM32CubeProg ROM Code FSBL: TF-A BL2 SSBL: U-Boot Flash

Service : Init and load Layout f

USB driver init

USB enumeration = DFU v1.1 (only Flashlayout and fixed alternate)

DFU Upload Phase = 0x0, Flash Layout [alternate for OxF1]

DFU Download(lenght, payload) [alternate for 0x0]

DFU manifestation [alternate for 0x0]

Parse the received flash layout file
Build partitions list for reenumeration

OK / dfuMANIFESTSYNC

DFU Upload Phase = 0x0, Need DFU detach [alternate for 0xF1]

DFU_DETACH ()

Issue USB reset

Write MBR and GPT (only for SDcard and eMMC)

USB enumeration = DFU v1.1

]
.
I
I
'
I
I
I
'
T
I
\
T
I
.
T
I
.
i
I
I
I
|
.
DFU GetStatus !
]
I
!
!
I
]
T
I
I
.
'
I
I
I
|
List the new USB alt settings = one by partition 1
I

I

!

T
'
'
'
'
'
'
T
'
I
T
'
I
I
'
L
|
'
'
I
'
'
'
'
i
'
'
'
'
|
T
'
'
'
'
'
'
I
'
'
'
'
'
I
'

1 ing Service : ition on each partition N=1 to nb f

DFU Upload Phase = N [alternate for OxF1]

DFU Download(lenght, payload) [alternate for N]

Bufferize the received data

Write buffer in partiton N

DFU mani ion [alternate for N]

DFU GetStatus

OK / dfulDLE

'
'
L
|
'
|
'
'
I
'
'
'
'
'
|
'
'
'
|

1P ing Service : End f

DFU Upload Phase = OxFE, End of Operation [alternate OxF1]

DFU GetStatus

DFU_DETACH ()

Reset

]
.
I
I
'
I
I
I
I
I
I
'
I
I
I
I
I
.
'
I
I
I
I
I
.
'
I
I
I
I
I
.
'
I
I
I
I
I
.
'
I
l
I
I
.
'
I
I
I
I
!
]
I
I
I
I
I
.
'
I
I
I
I
I
]
]
I
I
I
I
I
.
'
I
I
'
.
.
'
I
I
I
I
I
.
I
I
I
I
I
I
.
Close '
|
I
I

'
'
L
|
'
|
'
'
I
'
'
'
'
'
|
'
'
'
I
I
|
'
'
L
|
I
|
'
i
'
I
'
'
'
'
'
'
'

|
'
L
|
I
|
'
i
'
I
'
'
'
'
'
'
'

3.3 DFU enumeration and alternate settings
During the USB enumeration, the STM32 device information is present in the DFU mode device descriptor:
. idVendor = 0x0483 for "STMicroelectronics"
. idProduct = 0xdf11 for "STM Device in DFU Mode"

. iSerial = string build from Unique device ID
. iProduct = the Product string, with STMicroelectronics encoding to provide all the remaining STM32
informations:

<Info>@Device ID /<DevId>, @Revision ID /<RevId> [, @Name /<DevName>]

with
- <Info> = information on used USB stack, for example: DFU in HS Mode in ROM code or TFA USB
download gadget in U-Boot
- <Devld> = Device identifier as defined in reference manual, for example:
° 0x500 for STM32MP15x
° 0x501 for STM32MP13x
° 0x505 for STM32MP25x
— <Revld>= Silicon revision
- <DevName> = the device name build with Device Part Number (RPN), not provided by ROM code

Each partition to load in RAM for ROM code and TF-A or to be program in NVM for U-Boot is available with
alternate settings of the DFU profile.

AN5275 - Rev 7 page 26/38

G AN5275
’l usB

. The Phase ID is aligned with the alternate setting identifier.
. The device support GetPhase with UPLOAD on a specific alternate setting (the last one).
. The name of the alternate setting string descriptor respects the description of [4] chapter 10.

@Target Memory Name/Start Address/Sector(l) Count*Sector(l) Size
Sector (1) Type,Sector (2) Count*Sector (2) SizeSector(2) Type, ...
...,Sector (n) Count*Sector (n) SizeSector(n) Type

Since the partitions for STM32MP1 are not memory mapped, the “Start Address” is replaced by partition IDs (0x +
2 digits for phase ID).

The partitions have only one sector and the size is computed from the layout file. Only two types of partitions are
supported for STM32 MPU:

. a (0x41): readable for partition not selected in layout file.

. e (0x45): readable and writeable for partition expected to be updated.

Some virtual partitions (not directly linked to memory on NVM) are added and use reserved phase ID:
. 0xF1 = partition ID reserved for command GetPhase.

. 0xF2 = partition ID reserved for OTP

. 0xF4 = partition ID reserved for PMIC NVM

3.31 The virtual command partitions 0xF1 (GetPhase/SetOffset/Start)
The virtual partition 0xF1 is used for the following commands:
. DFU_UPLOAD: the GetPhase command
. DFU_DOWNLOAD: the SetOffset and Start command (jump to an address in memory)

3.3.1.1 DFU download
This is only supported in U-Boot. The format of SetOffset command is given below.

Table 12. DFU SetOffset command
1 Phase ID: normal partition between 0x00 to OxFO

2-5 Offset in the partition

When the SetOffset is received, the current Phase ID is updated (for GetPhase) and the offset is used for the next
upload/download on the selected partitions

The format of Start command, to execute the code loaded in the memory, is given below.

Table 13. DFU Start command

1 OxFF

2-5 Memory address to jump in

AN5275 - Rev 7 page 27/38

AN5275
usB

3.3.1.2

3.4

3.41

ANS5275 -

Rev 7

DFU upload
The content of the upload on this alternate setting is GetPhase command result:

Table 14. DFU GetPhase command response

1 Phase ID
2-5 Download address
6-9 Offset
10-Last Additional information optional, size: 0 up to 250 bytes

The download address, when present, provides the load address in memory. A value of OXFFFFFFFF means that
the partition identified by phase ID is going to be written in NVM.

The offset field provides the current offset used in partition operation, it is 0 by default.
The content of the additional information is determined by the phase ID value:
. Phase ID = OxFF, the cause of the error which causes the reset request in a string
. Phase ID = 0x0, for Layout file the information byte is:
- Byte 1 Need Reset Indication:
=1 if DFU_DETACH is requested
= 0 or absent if DFU_DETACH is not requested

DFU stack in ROM code and TF-A
TF-A and ROM code use a STMicroelectronics DFU v1.1 stack.

ROM code first USB enumeration for STM32MP15x device

The STM32MP15x ROM code initializes the USB and the DFU stack, and allows the loading and the execution of
TF-A in the internal RAM. Before execution of TF-A, the USB stack is interrupted after the manifestation on TF-A
alternate with dfuMANIFESTSYNC state.

In TF-A, the USB device is restored and the DFU stack is resumed (no USB reset, no enumeration). The first
request received by TF-A must return dfulDLE. At the first enumeration ROM code, the alternate settings present
the partitions that are used by the ROM code and by FSBL TF-A.

Table 15. STM32MP15x ROM code USB enumeration

Alternate setting PhaselD String descriptor ROM code support TF-A support

@Partition0 /0x00/1*256Ke

1 1 @FSBL /0x01/1*1Me Yes No

2 2 @Partition2 /0x02/1*1Me No No

3 3 @Partition3 /0x03/1*16Me No File containing SSBL (FIP)
4 O0xF1 @virtual /0xF1/1*512Ba GetPhase GetPhase

The sizes are chosen to be flexible even if they are fixed in the ROM code:
. Partititon0 = layout file expected less than 256 KB
. FSBL = TF-A size is limited by internal RAM (set max to 1 MB)

. Partition2 = reserved for future use (1 MB)
. Partition3 = SSBL: 16 MB used to be able to load kernel directly
. Partition4 = reserved for future use (16 MB)

. 0xF1 = GetPhase: read-only, limited to 256 bytes normally

page 28/38

AN5275
usB

3.4.2

3.4.3

ANS5275 - Rev 7

ROM code first USB enumeration for STM32MP13x device

The STM32MP13x ROM code initializes the USB and the DFU stack, and allows the loading and the execution of
TF-A in internal RAM. Before execution of TF-A, the USB is disconnected on the DFU_DETACH request and a
new USB enumeration is done in TF-A after a USB connect.

At the first enumeration on STM32MP13x, the ROM code alternate settings present the partitions that are used by
the ROM code only.

Table 16. STM32MP13x ROM code USB enumeration

Alternate setting PhaselD String descriptor

0 1 @FSBL /0x01/1*128Ke
1 O0xF1 @virtual /0xF1/1*512Ba

ROM code first USB enumeration for STM32MP2 Series

The STM32MP2 Series ROM code initializes the USB and the DFU stack, and allows the loading and the
execution of TF-A in internal RAM. Before execution of the TF-A, the USB is disconnected on the DFU_DETACH
request and a new USB enumeration is done in TF-A after a USB connect.

At the first enumeration on STM32MP2 Series device, the ROM code alternate settings present the partitions that
are used by the ROM code:

. the FSBL

. the GetPhase alternate

. the three RSSE partitions required for SSP.
For emxaple on STM32MP25x, we have :

Table 17. STM32MP25x ROM code USB enumeration

Alternate setting Phase ID String description

0 0x01 @FSBL /0x01/1*256Ke

1 OxF3 @RSSE_FW /0xF3/1*256Ke

2 OxF5 @RSSE_BLOB /0xF5/1*128Ke
3 O0xF6 @RSSE_PLUGIN /0xF6/1*96K
4 OxF1 @virtual /0xF1/1*512Ba

page 29/38

G AN5275
,l usB

3.44 TF-A USB enumeration
In STM32MP15x TF-A, as the ROM code USB configuration is re-used without a new USB enumeration, the
alternate settings are fixed by the first enumeration done by STM32MP15x in ROM code (see Section 3.4.1).

In other STM32 MPU TF-A, the second USB enumeration presents the alternate settings for the partitions used to
load the file containing the SSBL. For example in the STM32MP2 Series, the partition with Phaseld = 2 is used to
get the DDR parameters.

The number and size of partitions are flexible, they can be modified in TF-A code. The tables below give
examples.

Table 18. STM32MP13x TF-A USB enumeration

Alternate setting PhaselD String descriptor

0 3 @SSBL /0x03/1*16Me
1 O0xF1 @virtual /0xF1/1*512Ba

Table 19. STM32MP25x TF-A USB enumeration

Alternate setting PhaselD String descriptor

0 2 @DDR FIP /0x02/1*32Ke

1 3 @FIP /0x03/1*16Me

2 OxF1 OxF1@virtual /0xF1/1*
Note: As shown in the tables above, PhaselD=3 with maximum size 16 MB can be used for FIP including kernel.
3.5 DFU stack in U-Boot

The existing DFU stack of U-Boot is used.

The USB stack, the controller and the USB PHY must be initialized in DFU mode when the USB download mode
is indicated by ROM code or TF-A.

The GetPhase command is available by download command on partition OxF1.
STM32CubeProgrammer must loop until phase is OXxFE or OxFF:
. Get current phase: DFU_UPLOAD (GetPhase = 0xF1)

. Found associated file in field binary of layout file
. Download file in associated alternate settings
. Manifestation and pool manifestation end

For NVM partition, the upload / download operation accesses the NVM and the manifestation flushes the last
operation in the device.

For “memory” partition, the manifestation only flushes the current operation and the cache. The start in memory
operation is only done with DFU_DOWNLOAD on virtual partition (see 3.3.1).

3.51 U-Boot first USB enumeration

U-Boot presents the needed alternate settings to load the layout (minimal configuration is, phase ID = 0x0 and
0xF1). Other memory or special region (phase ID > 0xF0) can be also added by U-Boot in other alternates, for
example with OTP:

Table 20. U-Boot first USB enumeration

Alternate setting PhaselD String descriptor

0 0 @Flashlayout /0x00/1*256Ke
1 O0xF1 @virtual /0xF1/1*512Be
2 OxF2 @OTP /0xF2/1*776Be

AN5275 - Rev 7 page 30/38

<71 AN5275
) /4 UsB

3.5.2 U-Boot second USB enumeration
For its second enumeration, U-Boot presents all the needed alternate settings:

. Each partition in NVM or each device, defined in the Layout file (phase, size, type is writable only if
selected), with Address = Phase ID

. Memory mapping region, when it is added in U-Boot

. Special region (address = reserved, phase ID > 0xFO0)

It depends on U-Boot settings and Layout file content. An example is shown in the table below.

Table 21. U-Boot second USB enumeration

Alternate setting PhaselD String descriptor

0 0 @Flashlayout /0x00/1*4Ke

1 1 @fsbl1 /0x01/1*256Ke

2 2 @fsbl2 /0x02/1*256Ke

3 3 @ssbl /0x03/1*512Ke

4 0x10 @bootfs /0x10/1*64Me

5 0x11 @rootfs /0x11/1*512Me

N M Last user partion in Layout (N<OxFO0)
N+1 - @sysram /0x2FFF000/1*256Ke
N+2 - @mcuram /0x30000000/1*284Ke
N+3 - @ddr /0xC0000000/1*1Ge

Last-1 OxF1 @virtual /0xF1/1*512Ba

Last 0xF2 @OTP /0xF2/1*512Be

AN5275 - Rev 7 page 31/38

Lys

AN5275

Revision history

Table 22. Document revision history

I T

11-Oct-2019 1
17-Mar-2022 2
22-Mar-2022 3
15-Nov-2022 4
22-Nov-2022 5
17-Jan-2023 6

ANS5275 - Rev 7

Initial release.
Updated Section 1.1 Introduction
Updated Figure 9. Interface state transition diagram

Updated:

. Section 1.4: Layout file format

. Section 1.6: STM32 image header

. Figure 4, Figure 5 and Figure 6

. Section 2.5: UART/USART command set

Updated:

. Section 1.4: Layout file format

. Section 1.6: STM32 image header

. Figure 4, Figure 5 and Figure 6

. Section 2.5: UART/USART command set

. Figure 5. USART programming sequence description - 2
. Figure 10. USB sequence - 2

Corrected figure numbering on:

. Figure 4. USART programming sequence description - 1 and
Figure 5. USART programming sequence description - 2

. Figure 9. USB sequence - 1 and Figure 10. USB sequence - 2

Added:

. Section 3.4: DFU stack in ROM code and TF-A

. Section 3.4.1: ROM code first USB enumeration for STM32MP15x
device

. Section 3.4.2: ROM code first USB enumeration for STM32MP13x
device

. Section 3.4.4: TF-A USB enumeration

. Section 3.5: DFU stack in U-Boot

. Section 3.5.1: U-Boot first USB enumeration

. Section 3.5.1: U-Boot first USB enumeration

. Section 3.5.2: U-Boot second USB enumeration
Updated:

. Section 1.1: Introduction

. Section 1.2: Reference

. Section 1.3: Overview

. Section 1.5: Phase ID

— Table 1. Reserved phase ID
. Section 1.6: STM32 image header

. Section 1.7.2: Case 2 — OpenSTLinux programming from U-Boot for a
programmed device

. Section 2.1: UART/USART protocol
- Figure 4. USART programming sequence description - 1

. Section 2.4: UART/USART main loop

- Figure 6. Main UART/USART sequence

- Figure 7. STM32CubeProgrammer download sequence
. Section 2.5: UART/USART command set

— Table 2. USART commands
. Section 2.5.1: Get command (0x00)

- Table 3. Get command response
. Table 4. Get ID command response

page 32/38

Lys

AN5275

Changes
Section 2.5.4: Get phase command (0x03)

- Table 6. Get phase command response
Section 2.5.5: Download command (0x31)

- Table 7. Packet number

Section 2.5.6: Read memory command (0x11)
Section 2.5.6: Read memory command (0x11)
Section 2.5.8: Start command (0x21)

Section 3.1: DFU protocol

Section 3.2: USB sequence

- Figure 9. USB sequence - 1

Section 3.3: DFU enumeration and alternate settings

Section 3.3.1: The virtual command partitions 0xF1 (GetPhase/
SetOffset/Start)

Section 3.3.1.1: DFU download

- Table 13. DFU Start command

Section 3.4.1: ROM code first USB enumeration for STM32MP15x
device

Removed:

Figure "Programming sequence for boot from NVM" in
Section 1.7.2: Case 2 — OpenSTLinux programming from U-Boot for a
programmed device

Added:

Section 3.4.3: ROM code first USB enumeration for STM32MP2 Series

Updated:

18-Dec-2024 7 .

ANS5275 - Rev 7

Section Introduction
Section 1.1: Introduction
Section 1.2: Reference
Section 1.3: Overview

- Figure 1. Programming operation
Section 1.5: Phase ID

- Table 1. Reserved phase ID

Section 1.6: STM32 image header

Figure 2. Programming chart

Figure 3. OpenSTLinux programming sequence overview
Section 1.7.2: Case 2 — OpenSTLinux programming from U-Boot for a
programmed device

Figure 4. USART programming sequence description - 1
Figure 5. USART programming sequence description - 2
Section 2.4: UART/USART main loop

Section 2.5.1: Get command (0x00)

Section 2.5.2: Get ID command (0x02)

Section 2.5.4: Get phase command (0x03)

Section 2.5.6: Read memory command (0x11)

Section 3.1: DFU protocol

Section 3.2: USB sequence

- Figure 9. USB sequence - 1

- Figure 10. USB sequence - 2

Section 3.3: DFU enumeration and alternate settings
Section 3.4.4: TF-A USB enumeration

page 33/38

Lys Moo
Contents

1 Embedded programming Service.ouiiiiiiiiiii i iiiiiiiiiia s 2

1.1 INtrodUCHION . . . 2

1.2 ReferencCe. 2

1.3 OV IV W . . 3

1.4 Layoutfile format. 4

1.5 Phase ID. . .. e 4

1.6 STM32image header. e 4

1.7 Programming SEQUENCEottt e 4

1.71 Case 1 —programming fromreset. 4

1.7.2 Case 2 — OpenSTLinux programming from U-Boot for a programmed device. 8

2 UART/US AR T .. it ittt tate et tasas e taaaassannasseanaasennnnnsennnnnns 9

21 UART/USART ProtoCol.o e e e e e e e e 9

2.2 UART/USART configuration. e et 12

23 UART/USART CONNECLIONo e e e et 12

24 UART/USART Main [00pot e e e e e e 13

2.5 UART/USART command Set e 15

2.51 Getcommand (0X00) 16

25.2 Get ID command (0X02)t 16

253 Get version command (0X01)ttt 17

254 Get phase command (0X03)ttt 17

25.5 Download command (0X31)t 19

2.5.6 Read memory command (OX11) 20

257 Read partition command (0x12) 21

258 Start command (0X21).o 21

3 05 22

3.1 DFU protocol . ..o 22

3.2 USB SEQUENCE.o e 24

3.3 DFU enumeration and alternate settings i 26

3.31 The virtual command partitions OxF1 (GetPhase/SetOffset/Start) 27

3.4 DFU stackinROM code and TF-A e e 28

3.41 ROM code first USB enumeration for STM32MP15x device 28

3.4.2 ROM code first USB enumeration for STM32MP13x device 29

343 ROM code first USB enumeration for STM32MP2 Series 29

344 TF-AUSB enumeration. e 30

3.5 DFU stack in U-Boot. e 30

ANS5275 - Rev 7

page 34/38

‘,_l ANS5275

Contents

3.51 U-Boot first USB enumeration 30
3.5.2 U-Boot second USB enumerationttt 31
ReVISion RiStoryo i it e 32
Listoftableso i i s 36
List Of fiQUIres. . ..o i i 37

ANS5275 - Rev 7 page 35/38

‘_ ANS5275
,’ List of tables

List of tables

Table 1. Reserved phase ID 4
Table 2. USART COMMANAS oottt e e e e e e e e e e e e 15
Table 3. Get command rESPONSE ottt 16
Table 4. GetID command reSPONSE ot ittt e e 16
Table 5. Get version command rE€SPONSE oottt e e 17
Table 6. Get phase command reSPONSE oottt 17
Table 7. Packet nUMbEr 19
Table 8. Download command. 19
Table 9. Read memory COMmMaNd.o 20
Table 10. Read Partition command. e 21
Table 11. Startcommand e 21
Table 12. DFU SetOffset command e 27
Table 13. DFU Start command. 27
Table 14. DFU GetPhase command reSpoONSEot e e 28
Table 15, STM32MP15x ROM code USB enumeration e e e e 28
Table 16. STM32MP13x ROM code USB enumeration e e e e e 29
Table 17. STM32MP25x ROM code USB enumeration e e e e 29
Table 18. STM32MP13x TF-A USB enumeration e e e e e e e e e 30
Table 19. STM32MP25x TF-A USB enumeration e e e e e e e e e 30
Table 20. U-Boot first USB enumeration e 30
Table 21. U-Bootsecond USB enumeration. e 31
Table 22. Document revision history 32

AN5275 - Rev 7 page 36/38

‘,_l ANS5275

List of figures

List of figures

Figure 1. Programming operation 3
Figure 2. Programming chart 5
Figure 3. OpenSTLinux programming SEQUENCE OVEIVIEW vt vt i e it et e e e e e e e e e e e e e e e e 7
Figure 4. USART programming sequence description - 1. 10
Figure 5. USART programming sequence description - 2. 11
Figure 6. Main UART/USART SEQUENCE ot ittt e e e e e e e e e e e e e e e e e e e 13
Figure 7. STM32CubeProgrammer download SEQUENCE ottt e e 14
Figure 8. Interface state transition diagram 23
Figure 9. USB SEQUENCE - 1. . . o o e 25
Figure 10. USB SeqUENCE - 2. o o e e 26

ANS5275 - Rev 7 page 37/38

‘,_l ANS5275

IMPORTANT NOTICE — READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics — All rights reserved

AN5275 - Rev 7 page 38/38

http://www.st.com/trademarks

	AN5275
	Introduction
	1 Embedded programming service
	1.1 Introduction
	1.2 Reference
	1.3 Overview
	1.4 Layout file format
	1.5 Phase ID
	1.6 STM32 image header
	1.7 Programming sequence
	1.7.1 Case 1 – programming from reset
	1.7.2 Case 2 – OpenSTLinux programming from U‑Boot for a programmed device

	2 UART/USART
	2.1 UART/USART protocol
	2.2 UART/USART configuration
	2.3 UART/USART connection
	2.4 UART/USART main loop
	2.5 UART/USART command set
	2.5.1 Get command (0x00)
	2.5.2 Get ID command (0x02)
	2.5.3 Get version command (0x01)
	2.5.4 Get phase command (0x03)
	2.5.5 Download command (0x31)
	2.5.6 Read memory command (0x11)
	2.5.7 Read partition command (0x12)
	2.5.8 Start command (0x21)

	3 USB
	3.1 DFU protocol
	3.2 USB sequence
	3.3 DFU enumeration and alternate settings
	3.3.1 The virtual command partitions 0xF1 (GetPhase/SetOffset/Start)
	3.3.1.1 DFU download
	3.3.1.2 DFU upload

	3.4 DFU stack in ROM code and TF‑A
	3.4.1 ROM code first USB enumeration for STM32MP15x device
	3.4.2 ROM code first USB enumeration for STM32MP13x device
	3.4.3 ROM code first USB enumeration for STM32MP2 Series
	3.4.4 TF-A USB enumeration

	3.5 DFU stack in U-Boot
	3.5.1 U-Boot first USB enumeration
	3.5.2 U-Boot second USB enumeration

	Revision history
	Contents
	List of tables
	List of figures

