
http://www.st.com

Contents AN5439

2/27 AN5439 Rev 3

Contents

1 Overview . 5

2 Augmented NDEF content update . 6

2.1 Automatic NDEF content update on phone detection 6

2.1.1 Arbitration between RF and I2C interfaces . 6

2.1.2 NDEF detection and reading procedure in smartphones 7

2.1.3 Timing constraints for automatic NDEF content update 11

2.1.4 Battery-less automatic NDEF content update implementation 12

2.1.5 Battery powered automatic NDEF content update implementation 19

2.2 Periodical NDEF content update and update based on external events . 24

2.3 Configuration data considerations . 25

3 Revision history . 26

AN5439 Rev 3 3/27

AN5439 List of tables

3

List of tables

Table 1. Possible cases of communication arbitration . 7
Table 2. Tag memory content (ST25DV04K) . 14
Table 3. Tag memory content (ST25DV04KC). 17
Table 4. Document revision history . 26

List of figures AN5439

4/27 AN5439 Rev 3

List of figures

Figure 1. Application board . 5
Figure 2. Phone 1 tag detection phase . 8
Figure 3. Phone 2 tag detection phase . 8
Figure 4. Phone 3 tag detection phase . 9
Figure 5. RF polling frequency (phone 3) . 10
Figure 6. Phone 2 NDEF read phase. 11
Figure 7. Phone 1 NDEF read phase. 11
Figure 8. Battery-less application example hardware setup . 14
Figure 9. Battery-less NDEF update capture with phone 1 (ST25DV04K) . 16
Figure 10. Battery-less NDEF update capture with phone 4 (ST25DV04K) . 16
Figure 11. Battery-less NDEF update example result on phone 4 (ST25DV04K) 17
Figure 12. Battery-less NDEF update capture with phone 4 (ST25DV04KC) 18
Figure 13. Battery powered NDEF update chronogram (1/2) . 20
Figure 14. Battery powered NDEF update chronogram (2/2) . 20
Figure 15. Battery powered NDEF update capture with phone 4 (NDEF update phase). 23
Figure 16. Battery powered NDEF update capture with phone 4 (NDEF reading phase) 23
Figure 17. Battery powered NDEF update example result on smartphone . 24

AN5439 Rev 3 5/27

AN5439 Overview

26

1 Overview

The EEPROM content is accessed by either a smartphone or an NFC Forum reader through
its RF interface, and by a microcontroller through its wired I2C interface.

The NDEF message is stored in the user memory of the ST25DV-I2C.

When the smartphone is close enough to the ST25DV-I2C antenna, it detects the tag
presence and starts reading the NDEF message stored in the ST25DV-I2C memory (see
Figure 1).

The content of NDEF message is usually static, but the microcontroller updates the content
of the NDEF message, either in background or dynamically when the phone is approached
so that the NDEF message always contains dynamic data.

Figure 1. Application board

Several data append dynamically to the NDEF message, among them:

– Identification information (such as UID, signature)

– Tap counter

– Tamper status

– MAC (message authentication code)

– Sensors values (e.g. temperature, humidity, pressure, distance, voltage)

– GPS position

– Date and time

– Battery power level

– Diagnostic log

Thanks to the native support of NDEF message by Android and iOS-based smartphones,
an action is automatically triggered on the phone while reading the NDEF message, such as
opening a browser, sending an email or a text message, or opening an application.

MSv65106V1

Microcontroller ST25DV-I2C

Application board

NDEF

NDEF read

External events

Counters, status...

Sensors values

Tag detection
Action

triggered

Augmented NDEF content update AN5439

6/27 AN5439 Rev 3

2 Augmented NDEF content update

The NDEF message content is updated by the microcontroller in three phases:

Phase 1 and 2:

1. When the presence of a smartphone is detected, and before the smartphone starts to
read the NDEF message

2. During NDEF read by the smartphone

Phase 3:

3. Any other time, when the smartphone does not try to read the NDEF message

The first two phases are “on-demand update” of the NDEF message. The content is
updated “just in time” each time the smartphone tries to read the NDEF message.

The third one is asynchronous regarding the smartphone presence. It corresponds to a
periodical update of the NDEF message, or to an update triggered by other external events
(such as an interruption from a sensor).

The following sections focus on the “on demand update” method, since the asynchronous
method does not imply specific techniques.

2.1 Automatic NDEF content update on phone detection

There are several advantages to update NDEF message content on phone detection: data
are always fresh, and application can run battery-less (assuming power consumption is low
enough to enable power through energy harvesting).

However, this is the most challenging method as it requires important timing constraints.
Depending on the amount of data to update it may not be possible to implement it.

To understand the timing constraints, user has to first understand how arbitration between
I2C and RF interface works in the ST25DV-I2C and how a smartphone detects the tag
presence and reads the NDEF message.

2.1.1 Arbitration between RF and I2C interfaces

In the case of NDEF message update on phone detection, both the the microcontroller
(through I2C interface) and the smartphone (through the RF interface) try to access the
ST25DV-I2C. The microcontroller tries to write the EEPROM and the smartphone tries to
read it.

Due to their nature, these two host controllers are not synchronized, which means that they
try to access the ST25DV-I2C concurrently. To manage such situation, the ST25DV-I2C has
built-in arbitration circuitry to handle concurrent communications from the RF and I2C sides.

The arbitration is based on the “first talked - first served” principle. It depends on whether
the I²C and RF channels are in the busy state:

– ST25DVI2C is in I²C busy state when decoding and executing an I²C command, and
during the EEPROM programming time that follows a valid I2C write command.

– ST25DV-I2C is in RF busy state when decoding and executing an RF command.

When both interfaces are active, the ST25DV-I2C decodes and executes the first received
command (see Table 1), which describes possible cases of communication arbitration.

AN5439 Rev 3 9/27

AN5439 Augmented NDEF content update

26

Figure 4. Phone 3 tag detection phase

Phone 3 tag detection phase starts with two pulse of modulated 13.56 MHz RF field, each
followed by a pause, to detect NFC peer-to-peer devices (ACM). After this, procedure is
identical to that seen for phone 1 and phone 2. Timings are:

1. 13.56 MHz pulse: 9.5 ms, then 1.8 ms pause

2. 13.56 MHz pulse: 7.8 ms, then 2.78 ms pause

3. NFC tag detection with NFC-V anti-collision 38 ms after the RF field rising.

These three smartphones summarize what typically happens, whatever the embedded OS.

The 30 ms minimum delay before start of NFC-V anti-collision allows the microcontroller to
update the NDEF message content in the ST25DV-I2C memory. ST25DV-I2C can provide
power to boot the microcontroller through energy harvesting as soon as RF field is rising,
and the microcontroller then has 30 ms before the first NFC-V commands (inventory) to
update the NDEF message through I2C. This method is detailed in Section 2.1.4.

After NFC-V anti-collision phase, if no tag has been found (no answer to the inventory
command), the smartphone stops emitting the RF field to save battery. The inventory
command duration is 2.2 ms.

Then, the smartphone starts a new polling phase later, with a polling frequency usually
around 500 ms, as shown in Figure 5.

MSv65103V1

NFC-A/B

NFC-V

NFC-F

RF Field 38ms

Inventory

WUPA WUPB

Polling req

ATR_REQ

ATR_REQ

MSv65118V1

Augmented NDEF content update AN5439

10/27 AN5439 Rev 3

Figure 5. RF polling frequency (phone 3)

If the required time to update the NDEF message exceeds 30 ms, the microcontroller
enables the use of the polling phase by updating the NDEF message content on detection
of a first polling phase and let the tag answer to the smartphone only on a later polling
phase. The GPO_FIELD_CHANGE interruption of ST25DV-I2C detects the RF field. The
time allocated to update the NDEF message is then only limited by the response time
perceived by the user. However, as the RF field is not present between each polling phase,
it is not possible to use energy harvesting to power the microcontroller, therefore battery or
permanent power is required. This method is detailed in Section 2.1.5.

NDEF read phase

After NFC-V anti-collision is performed, the smartphone starts the NDEF read procedure.
This procedure is specified by NFC Forum for Type 5 tags.

The procedure starts quickly after the inventory command with the read of the CC file: the
phone sends a read single block command to read the first 4 (or 8 bytes) of the tag. Then
the phone sends several read single block commands or read multiple block commands to
read the NDEF message itself (starting quickly after CC file).

Android smartphones add some ISO15693 commands between the inventory of the tag
detection procedure and the NDEF read procedure: get system information and get multiple
block security status.

In NFC Forum NFC-V technology, the minimum timing between two consecutive RF
commands (time between end of the response and start of a new request) is 309 μs. In
practice, delay between two RF commands in smartphones is larger, typical values are
between 1.5 and 5 ms. This delay is usually too short to allow any I2C write access to the
ST25DV-I2C EEPROM. Updating the NDEF message content during NDEF read by the
smartphone is not a valid option. In fact, any I2C request not terminated before start of a
new RF command can cause an RF error answer and immediate stop of the NDEF reading
process by the smartphone.

AN5439 Rev 3 11/27

AN5439 Augmented NDEF content update

26

Figure 6. Phone 2 NDEF read phase

Figure 7. Phone 1 NDEF read phase

Phone 1 stops emitting the RF field after end of NDEF read, and then regularly re-activates
the RF and sends an inventory command to check that the tag is still present.

2.1.3 Timing constraints for automatic NDEF content update

The constraint is to avoid any RF command fail, to avoid abortion from the smartphone. This
means no RF command received during execution of an I2C command (including EEPROM
programming time).

To update the NDEF message, the microcontroller has to write data into ST25DV-I2C
EEPROM. The ST25DV-I2C programming time is 5 ms per block of 4 bytes (assuming all
bytes belonging to a same row, aka page).

As described in NDEF read phase, the delay between two consecutive RF commands
during the NDEF read phase is less than 5 ms, it is therefore not possible to write data from
I2C in ST25DV-I2C EEPROM during this phase without causing arbitration conflict with RF
commands.

Therefore, to avoid any collision between RF and I2C, the NDEF update must be completed
by the microcontroller between RF field rise and start of anti-collision (first inventory
command), which is usually at least 30 ms for most smartphones.

MSv65105V1

NFC-V

RF Field

In
ve

nt
or

y

R
ea

d
S

in
gl

e
B

lo
ck

 0

G
et

 S
ys

 In
fo

R
ea

d
S

in
gl

e
B

lo
ck

 1

R
ea

d
S

in
gl

e
B

lo
ck

 1

R
ea

d
S

in
gl

e
B

lo
ck

 2

R
ea

d
S

in
gl

e
B

lo
ck

 3

R
ea

d
S

in
gl

e
B

lo
ck

 4

2.3ms 5.7ms

G
et

 M
ul

tip
le

B

lo
ck

 S
ec

ur
ity

S

ta
tu

s

MSv65107V1

NFC-V

RF Field

In
ve

nt
or

y

Re
ad

 S
ing

le
Bl

oc
k 0

Re
ad

 S
ing

le
Bl

oc
k 0

Re
ad

 S
ing

le
Bl

oc
k 1

Re
ad

 S
ing

le
Bl

oc
k 2

Re
ad

 S
ing

le
Bl

oc
k 3

Re
ad

 S
ing

le
Bl

oc
k 4

1.6ms 15ms

Re
ad

 S
ing

le
Bl

oc
k 1

In
ve

nt
or

y

Augmented NDEF content update AN5439

12/27 AN5439 Rev 3

NDEF update timing is separated into three phases:

1. Microcontroller wakes-up or boots

2. Microcontroller may read data into ST25DV-I2C (typically a counter value) or into
external devices (typically sensors)

3. Microcontroller writes into ST25DV-I2C EEPROM (NDEF content update)

The microcontroller wakeup and boot phase is not detailed in this application note as it
differs from one microcontroller to another.

The data read phase speed essentially depends on I2C bus frequency and if external
devices required being accessed (that is, sensors with long conversion time).

The ST25DV-I2C memory update speed is mainly dependent on EEPROM programming
time. To calculate the duration of an I2C write it is possible to split the I2C write command in
two parts: the I2C bytes transmitted on the bus and the EEPROM programing phase that
starts right after the STOP condition:

– I2C write command duration = (3 + number of bytes to write) / (9 * I2C clock period)

– EEPROM programing duration = 5 * 10-3 * (number of pages to program)

– Total duration of the I2C write = I2C write command duration + EEPROM programing
duration

EEPROM pages of ST25DVxxK devices are 16-byte long. Data located on the same page
share the address bits b16-b2. In terms of duration, programing one byte is equivalent to
programing one page, programing five bytes is equivalent to programing two pages.

For example, for ST25DV04K, with an I2C clock of 400 KHz, it is possible to write 16 bytes
starting at address 000Ch in 20 ms. If starting at address 000Bh, or if writing 17 bytes
starting at address 000Ch, the operation takes 25 ms.

In ST25DVxxKC, EEPROM pages are 16-byte long. Data located on the same page share
the address bits b16-b4. In terms of duration, programing five bytes is equivalent to
programing one page, programing 17 bytes is equivalent to programing two pages.

For example, in ST25DV04KC with an I2C clock of 1MHz, it is possible to write 16 bytes
starting at address 0010h in 5 ms. If starting at address 0011h, or if writing 17 bytes starting
at address 0010h, the operation takes 10 ms.Therefore, the possible amount of data
updated in the NDEF message is limited and special care must be taken on the start
address and the resulting number of pages to program.

If the length of data to be updated is larger than 4 bytes, ST25DVxxKC devices should be
preferred over ST25DVxxK.

2.1.4 Battery-less automatic NDEF content update implementation

As described in previous sections, it is possible to make a battery-less application using a
ST25DV-I2C dynamic tag and a microcontroller to create an augmented NDEF application.

The application must update the NDEF message as soon as the smartphone starts to
provide RF field, and in less than 30 ms to allow correct reading of the NDEF message by
the smartphone.

In principle, this augmented NDEF application:

– Behaves as a standard NFC tag

– Boots the microcontroller when RF field is rising

– Makes use of energy harvesting to power the microcontroller and possibly other on-
board external devices

AN5439 Rev 3 13/27

AN5439 Augmented NDEF content update

26

– Reads data in ST25DV-I2C and possibly other on-board external devices

– Writes data into the ST25DV-I2C memory to update NDEF message content

– Does all this before the first NFC-V command (in less than 30 ms)

In order to achieve this, the prerequisites are:

1. The initial NDEF message has been previously programmed into ST25DV-I2C
memory.

2. The ST25DV-I2C has been configured with EH enabled at boot (EH_MODE
configuration register=00h).

3. Minimal number of components and components with low power consumption are
used.

To reach the 30 ms max timing, all phases must be time-optimized: capacitor charging when
EH start providing current, MCU boot time, data reading and data writing. Special attention
is required to avoid tearing issues.

During a write of data into EEPROM, it is possible that the RF field gets lost (that is, if
smartphone is removed). To avoid data corruption in that case, an anti-tearing mechanism
must be put in place.

A simple solution is to finish the NDEF update by writing a counter, and to protect only this
counter from tearing. The validity of NDEF data is guaranteed if the counter value is higher
than previous value (counter incremented).

In order to protect the counter from tearing, the energy stored in capacitors is used. As
explained in Section 2.1.3, the EEPROM programming starts only after the stop condition of
an I2C write command. During the EEPROM programming, only the ST25DV-I2C requires
being powered through its Vcc pin, since the microcontroller does not require anymore to
provide I2C clock or any other signal. By only keeping the ST25DV-I2C powered after the
stop condition of the last I2C write (counter update), the power consumption is minimal and
the ST25DV-I2C is powered by capacitor discharge if RF field is removed. This provides an
anti-tearing for the counter update.

Capacitor discharge at constant current is calculated as C = I * dt / dV. Assuming I = 350 µA
(max value at 3.3 V, 125 °C), dV = 3 V - 1.8 V (3 V is the typical EH output value and 1.8 V
is the minimum operating voltage for ST25DV-I2C), and dt = 5 ms (typical page write time),
the minimum C value needed to power the ST25DV-I2C to write a page is 1.46 µF. If counter
is more than one page (4 bytes for the ST25DVxxK and 16 bytes for the ST25DVxxKC), dt
must be augmented by steps of 5 ms per page.

The capacitor value must be balanced with capacitor charging time in order not to have a
too long charging time to reach the 1.8 V when EH power is starting power delivery. The
capacitor charging time must be taken into consideration when trying to keep the total NDEF
update timing under 30 ms.

Example of battery-less automatic NDEF content update with ST25DV04K

In this example the augmented NDEF tag provides a NDEF message containing a URL. The
end of the URL is automatically completed with a temperature value read in a sensor and a
tap counter incremented at each NDEF read.

Hardware setup:

– ST25DV04K dynamic tag, with NDEF message preloaded and EH enabled at boot

– STM8L152 ultra low power MCU

– STTS751 low power, fast conversion time, temperature sensor

Augmented NDEF content update AN5439

14/27 AN5439 Rev 3

– 2 x 4.7 µF capacitors (plus 10 nF and 100 nF capacitors for device decoupling)

Figure 8. Battery-less application example hardware setup

The NDEF message is a URL type (example.com/temp=0000/tapcounter=0000) containing
the following data:

– temperature value and tap counter value addresses are aligned with EEPROM pages
and are only 4-byte long, to improve programming speed (5 ms for each)

– temperature and tap counter are written in ASCII format in the NDEF message

– tap counter on four characters is enough as it provides 10000 values if decimal is
used, 65536 values if hexadecimal is used and 1.6 * 106 values if all alphanumeric
values are used.

 .

Table 2. Tag memory content (ST25DV04K)

Byte address Byte value ASCII Comment

0000 E1 40 40 00 á@@. CCFile

0004 03 2A D1 01 .*Ñ. NDEF TLV

0008 26 55 01 65 &U.e URL value

000C 78 61 6D 70 xamp -

0010 6C 65 2E 63 le.c -

0014 6F 6D 2F 74 om/t -

0018 65 6D 70 3D emp= -

001C 30 30 30 30 0000 Temperature value

0020 2F 74 61 70 /tap -

0024 63 6F 75 6E coun -

0028 74 65 72 3D ter= -

002C 30 30 30 30 0000 Tap counter value

0030 FE 00 00 00 Þ… TLV terminator

MSv65108V1

STM8L152

ST25DV04K

STTS751

4.7uF

VEH

I2C

Vcc Vcc

Vcc

AN5439 Rev 3 15/27

AN5439 Augmented NDEF content update

26

Sample code executed by the microcontroller (with ST25DV04K):

/* initialize I2C bus and clocks */

I2C_Init();

/* Read I2C sensor to get current temperature */

GetOneTemperature (&data_sensor);

/* update temperature value in NDEF message */

ConvertTempToAscii(data_sensor, data_char);

I2C_WriteOnePage(ST25DV_ADDRESS_USER, temperature_addr, data_char);

/* poll for end of EEPROM programming (~5ms) */

while(I2C_Poll(ST25DV_ADDRESS_USER));

/* read current tap counter in tag's EEPROM */

I2C_ReadBuffer(ST25DV _ADDRESS_USER, tapcounter_addr, 4, data_char);

/* increment tap counter and update value in NDEF message */

IncrementTapCounterAscii(data_char);

I2C_WriteOnePage(ST25DV_ADDRESS_USER, tapcounter_addr, data_char);

/* immediately stop MCU to reduce power consumption */

halt();

The initialization phase is kept minimal to shorten boot time. After finishing I2C write (tap
counter), the microcontroller is set in halt mode to minimize power consumption (STTS751
is already in minimal power mode) so that all energy stored in capacitors is available to
ST25DV-I2C in case of RF field off (anti-tearing of tap counter update).

Figure 9 and Figure 10 are oscilloscope screenshots showing the NDEF update in action on
phone 1 and phone 4.

Augmented NDEF content update AN5439

16/27 AN5439 Rev 3

Figure 9. Battery-less NDEF update capture with phone 1 (ST25DV04K)

Figure 10. Battery-less NDEF update capture with phone 4 (ST25DV04K)

AN5439 Rev 3 17/27

AN5439 Augmented NDEF content update

26

With the phone 4, RF field goes off for ~6 ms after first ACM detection, but the 2 x 4.7 µF
capacitors are enough to maintain Vcc voltage above 1.8 V.

After presenting the smartphone on the tag's antenna, the smartphone automatically opens
the web browser, with the URL containing dynamic information about temperature (+26 °C)
and tap count (2Ah, 42 taps) as shown in Figure 11.

Figure 11. Battery-less NDEF update example result on phone 4 (ST25DV04K)

Example of battery-less automatic NDEF content update with ST25DV04KC

The ST25DV04K can advantageously be replaced by a ST25DV04KC, as it can write 16
bytes from I2C in 5 ms, when the ST25DV04K in the same 5 ms can write only 4 bytes
(assuming data are page aligned). This makes possible to update the NDEF message faster
or to update more data.

The hardware setup is the same, only ST25DV04K is replaced by ST25DV04KC (pin to pin
compatible).

The NDEF message is slightly changed to align data to be updated with ST25DV04KC
pages (example.com/current_temp=0000/tc=0000). This makes possible to update the
temperature value and the tap counter value in a single 5 ms, 16-byte write, compared to
the two 5 ms, 4-byte writes needed by the ST25DV04K.

Temperature value and tap counter value are on same page (16 bytes, starting at address
0020h) and are updated in a single I2C write command.

Table 3. Tag memory content (ST25DV04KC)

Byte address Byte value ASCII Comment

0000 E1 40 40 00 03 2A D1 01 26 55 01 65 78 61 6D 70 á@@..*Ñ.&U.examp CCFile+TLV

0010 6C 65 2E 63 6F 6D 2F 63 75 72 72 65 6E 74 5F 74 le.com/current_t -

0020 65 6D 70 3D 30 30 30 30 2F 74 63 3D 30 30 30 30 emp=0000/tc=0000 Page to be updated

0030 FE 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Þ…………… TLV terminator

Augmented NDEF content update AN5439

18/27 AN5439 Rev 3

Sample code executed by the microcontroller with ST25DV04KC:

/* initialize string to be written in NDEF */

char data_char[16] = “emp=0000/tc=0000”;

/* initialize I2C bus and clocks */

I2C_Init();

/* Lanch sensor acquisition */

OneShotTemperature ();

/* read current tap counter in tag's EEPROM (4Bytes) */

I2C_ReadBuffer(ST25DV _ADDRESS_USER, 0x002C, 4, data_char+12);

/* wait for sensor to complete acquisition */

Delay(14ms);

/* Read I2C sensor to get current temperature */

ReadOneTemperature (&data_sensor);

/* convert temperature value to ASCII */

ConvertTempToAscii(data_sensor, data_char+4);

/* increment tap counter value in ASCII */

IncrementTapCounterAscii(data_char+12);

/* update temperature and tap counter values in NDEF message (16 bytes) */

I2C_WriteOnePage(ST25DV_ADDRESS_USER, 0x0020, data_char);

/* immediately stop MCU to reduce power consumption */

halt();

Figure 12 is an oscilloscope screenshot showing the NDEF update in action on phone 4.

Figure 12. Battery-less NDEF update capture with phone 4 (ST25DV04KC)

AN5439 Rev 3 19/27

AN5439 Augmented NDEF content update

26

The ST25DV04KC provides additional timing margin between end of NDEF update in
EEPROM and first NFC-V command.

2.1.5 Battery powered automatic NDEF content update implementation

When timing constraint of 30 ms is not achievable, another method allowing longer time to
update the NDEF message is possible.

As seen in Section 2.1.2, smartphones are continuously polling for tags presence by
sending short RF field bursts. This method makes use of capacity of ST25DV-I2C to detect
those RF field bursts to trigger the NDEF update. Once NDEF is updated, the ST25DV-I2C
is configured to answer normally to the next smartphone polling sequence, until the NDEF
message is read. This create a small delay in answer when a smartphone taps the tag, but it
is limited to 500 ms or less with most smartphones.

Since there is no RF field between two polling sequences, energy harvesting cannot be
used with this method the ST25DV-I2C and the microcontroller must be externally powered.

In principle, this augmented NDEF application:

– Behaves as a standard NFC tag

– Wakes-up the microcontroller on RF events

– Uses a battery or permanent supply to power the microcontroller and other possible
on board external devices

– On first RF field rising, updates NDEF message. The battery power allows NDEF
update even when RF field is off

– On next RF field rising, waits for NDEF read from the smartphone.

– After detection of NDEF read by the smartphone, waits for the next RF field rising to
update the NDEF again

– The initial NDEF message is first programmed into ST25DV-I2C memory

This augmented NDEF method is based on RF events detection. The application must
detect a RF field rising event, and an NDEF message read.

The RF field rising detection is performed using the ST25DV-I2C RF_FIELD_RISING event
detection.

The NDEF message read can be interpreted by combining two event detections:
RF_ACTIVITY and RF_FIELD_FALLING. The smartphone finish reading the NDEF
message if RF activity has been detected and the RF field goes off (meaning the
smartphone has been removed).

A global variable is used as a flag to keep trace if NDEF update has already been done:

– Upon detection of RF field rising, the microcontroller checks this variable to know if
NDEF update must be done or not. If flag is not set, NDEF update is done and the
flag is set.

– Upon detection of RF activity and RF field falling, the microcontroller checks this flag
to know if NDEF update has previously been achieved. If yes, NDEF message is
considered read and the flag is unset.

During NDEF update, the ST25DV-I2C is set in RF_SLEEP mode so that any incoming RF
command is just ignored. This provides two benefits:

– Prevents any false or partial detection of the tag by the smartphone during the NDEF
update

Augmented NDEF content update AN5439

20/27 AN5439 Rev 3

– Prevents any RF perturbation during I2C access (I2C accesses are not blocked by
any RF access)

With this method, it is not required to implement any anti-tearing technique as, for the
battery-less method, there is not risk of tearing (the ST25DV-I2C is continuously powered by
the battery during EEPROM programming).

Figure 13 and Figure 14 summarize the complete NDEF update sequence:

Figure 13. Battery powered NDEF update chronogram (1/2)

Figure 14. Battery powered NDEF update chronogram (2/2)

Example of battery powered automatic NDEF content update implementation

In this example the augmented NDEF tag provides an NDEF message that contains an
SMS. The message is automatically updated with the tag UID, three sensors’ values and a
tap counter incremented at each NDEF read.

Hardware setup:

– A X-NUCLEO-NFC05A1 shield, embedding a ST25DV04K dynamic tag, with NDEF
message preloaded

– A NUCLEO-L053R8 board, embedding a STM32L053 microcontroller

ST25DV-I2C memory is preloaded with the NDEF message, with sensors and tap counter
values set to 0.

Sample of code executed by the microcontroller:

/* Init ST25DV driver */

while(NFC04A1_NFCTAG_Init(NFC04A1_NFCTAG_INSTANCE) != NFCTAG_OK);

MSv65112V1

NFC-V
RF Field

GPO
I2C

Inventory
Not answered Inventory followed by NDEF read

NDEF message update
ST25DV-I2C in RF_SLEEP state

First smartphone’s tag
detection sequence

Next smartphone’s
tag detection

sequence

GPO FIELD_RISING and NDEF
not updated = update triggered

GPO FIELD_RISING and NDEF
 already updated = no update

MSv65113V1

NFC-V

RF Field

GPO

I2C

Inventory
Not answeredInventory followed by NDEF read

NDEF message update
ST25DV-I2C in RF_SLEEP state

Next smartphone’s tag
detection sequence

Next smartphone’s tag
detection sequence

GPO FIELD_RISING and NDEF not
 updated = update triggered

GPO FIELD_RISING and NDEF
already updated = no update

GPO FIELD_FAILLING and
RF_ACTIVITY = end of NDEF read

AN5439 Rev 3 21/27

AN5439 Augmented NDEF content update

26

/* Set EXTI settings for GPO Interrupt */

NFC04A1_GPO_Init();

/* Set GPO Configuration: RF Field change and RF activity */

NFC04A1_NFCTAG_ConfigIT(NFC04A1_NFCTAG_INSTANCE,ST25DV_GPO_ENABLE_MASK |
ST25DV_GPO_FIELDCHANGE_MASK | ST25DV_GPO_RFACTIVITY_MASK);

/* main loop */

while(1)

{

 if(GPOActivated == 1)

 {

 /* Read ITSTS_Dyn to determine source of the GPO interrupt */

 NFC04A1_NFCTAG_ReadITSTStatus_Dyn(NFC04A1_NFCTAG_INSTANCE, &ItStatus)
;

 switch(ItStatus)

 {

 case ST25DV_ITSTS_DYN_FIELDRISING_MASK:

 case ST25DV_ITSTS_DYN_FIELDRISING_MASK |
ST25DV_ITSTS_DYN_FIELDFALLING_MASK:

 case ST25DV_ITSTS_DYN_FIELDRISING_MASK |
ST25DV_ITSTS_DYN_RFACTIVITY_MASK:

 /* RF field rising detected */

 if(NDEF_update_done == 0) /* update to be done ? */

 {

 /* set ST25DV in RF_SLEEP mode */

 passwd.MsbPasswd = 0; passwd.LsbPasswd = 0;

 NFC04A1_NFCTAG_PresentI2CPassword(NFC04A1_NFCTAG_INSTANCE, passwd
);

 NFC04A1_NFCTAG_SetRFSleep(NFC04A1_NFCTAG_INSTANCE);

 /* update NDEF content */

 MX_NFC4_NDEFUpdate();

 NDEF_update_done = 1;

 /* exit ST25DV from RF_SLEEP mode */

 NFC04A1_NFCTAG_ResetRFSleep(NFC04A1_NFCTAG_INSTANCE);

 passwd.MsbPasswd = 123; passwd.LsbPasswd = 456;

 NFC04A1_NFCTAG_PresentI2CPassword(NFC04A1_NFCTAG_INSTANCE, passwd
);

 }

 break;

 case ST25DV_ITSTS_DYN_FIELDFALLING_MASK |
ST25DV_ITSTS_DYN_RFACTIVITY_MASK:

 case ST25DV_ITSTS_DYN_FIELDRISING_MASK |
ST25DV_ITSTS_DYN_FIELDFALLING_MASK | ST25DV_ITSTS_DYN_RFACTIVITY_MASK:

 /* RF activity and RF field falling detected */

 if(NDEF_update_done == 1) /* update already done ? */

 {

 /* NDEF has been read, next RF field rising: update to be done */

Augmented NDEF content update AN5439

22/27 AN5439 Rev 3

 NDEF_update_done = 0;

 }

 break;

 case ST25DV_ITSTS_DYN_RFACTIVITY_MASK:

 case ST25DV_ITSTS_DYN_FIELDFALLING_MASK:

 default:

 break;

 }

 GPOActivated = 0;

 }

}

/* call back function from IT */

void BSP_GPO_Callback(void)

{

 GPOActivated = 1;

}

The STM32L0 Series is configured so that the GPO interruption sets the GPOActivated
global variable to 1. The main loop is polling on this variable value change to start the NDEF
update process. The first step is to read the ITSTS_Dyn status register to check the nature
of the RF event. Then, depending on the RF event and on the value of NDEF_update_done
global variable, decision is made to update or not the NDEF message.

Figure 15 and Figure 16 are logic analyzer screenshots showing the NDEF update in action
on phone 4.

A
N

54
3

9
A

u
g

m
en

te
d

 N
D

E
F

 co
n

te
n

t u
p

d
a

te

A
N

54
39 R

ev 3
23

/27

Figure 15. Battery powered NDEF update capture with phone 4 (NDEF update phase)

Figure 16. Battery powered NDEF update capture with phone 4 (NDEF reading phase)

MSv65114V1

RF Field

RF frames

GPO

I2C

Inventory
(not answered)NDEF update

Smartphone’s tag detection and anti-collision

RF Field rising detection

MSv65115V1

RF Field

RF frames

GPO

I2C

Inventory
(answered)

RF activity detection
RF Field rising detection

Next smartphone’s tag detection and anti-collision Smartphone NDEF reading

Check on GPO interrupt source

Augmented NDEF content update AN5439

24/27 AN5439 Rev 3

After presenting the smartphone on the tag's antenna, the smartphone automatically opens
the messaging application, with the SMS containing tag's UID, up-to-date sensors value and
the tap count as shown in Figure 17.

Figure 17. Battery powered NDEF update example result on smartphone

2.2 Periodical NDEF content update and update based on
external events

If NDEF update cannot be done dynamically and synchronously to the smartphone
presence detection, it can then be done asynchronously.

In this case, the NDEF message content is update periodically, or on other external events,
independently of any RF activity. This is the case for example if you want to update NDEF
content each time an alarm is triggered in the application, or in case the NDEF message is
used as a data log.

As I2C and RF accesses are asynchronous in this method, the microcontroller and the
smartphone try to access the ST25DV-I2C at the same time, which is not recommended. To
avoid any possible conflict between I2C and RF, it is recommended to set the ST25DV-I2C
in RF_SLEEP mode during update of the NDEF message content.

This method does not require any specific techniques, and therefore is not analyzed in this
application note.

Revision history AN5439

26/27 AN5439 Rev 3

3 Revision history

Table 4. Document revision history

Date Revision Changes

10-Apr-2020 1 Initial release.

28-Apr-2020 2
Updated Section 2.1: Automatic NDEF content update on
phone detection.

05-May-2021 3

Updated Introduction, Section 2.1.3: Timing constraints for
automatic NDEF content update, Section 2.1.4: Battery-less
automatic NDEF content update implementation and Example
of battery-less automatic NDEF content update with
ST25DV04K.

Updated Table 2: Tag memory content (ST25DV04K).

Added Example of battery-less automatic NDEF content update
with ST25DV04KC.

Minor text edits across the whole document.

AN5439 Rev 3 27/27

AN5439

27

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics – All rights reserved

