r ANDS478
’l life.augmented

Application note

STM32MP135 line interfacing with a MIPI® CSI-2 camera

Introduction

The document provides information on how to interface STM32MP135 line microprocessors with a MIPI CSI-2 camera. The
STM32MP135 line can address CMOS camera sensors through the DCMIPP (digital camera module interface pixel processor)
parallel port. However, it is possible to extend the range of addressable camera sensors, for instance MIPI®CSI-2 cameras
(camera serial interface), thanks to the STMIPID02 MIPI CSI-2 deserializer discrete component.

The MIPI CSI-2 interface protocol has become for many years the standard technology for today’s embedded sensors. This has
been driven by the mobile market and is also widely used in the industrial market. MIPI CSI-2 brings decisive advantages,
offering reduced pin count and lower cost versus the conventional parallel interface or MIPI CPI.

The STMIPID02 MIPI CSI-2 deserializer can address a broad range of MIPI CSI-2 camera sensors used in mobile devices and
automotive applications. The direct interface removes the requirement for associated software overhead linked to frame
decoding (for camera over USB or Ethernet for instance).

Relying on the STM32MP135F-DK board, the purpose of this application note is to demonstrate the STM32MP135 line
capability to address the 2 Mpixel GC2145 MIPI CSI-2 camera sensor through the STMIPID02 MIPI CSI-2 deserializer. Both
drivers are available and included in the STMicroelectronics OpenSTLinux software distribution package. For this application
note and according to the STMIPID02 deserializer specifications, the focus is set exclusively on the MIPI CSI-2.1 protocol over
a D-PHY.

AN5478 - Rev 2 - May 2024 www.st.com

For further information contact your local STMicroelectronics sales office.

ﬁ AN5478

General information

1 General information

This document applies to STM32MP135x Arm® Cortex® based microprocessors.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

Table 1. List of acronyms

CPI Camera parallel interface

CSlI Camera serial interface

DCMIPP Digital camera interface pixel processor
LDO Low-dropout regulator

MIPI Mobile industry processor interface
PMIC Power management integrated circuit

AN5478 - Rev 2 page 2/15

Lys

AN5478

Reference documents

Reference documents

ANS5478 - Rev 2

The below resources are public and available on STMicroelectronics web site at www.st.com.

R1]
R2]
(R3]
[R4]

[R5]

[Ré]
[R7]

[R8]

[R9]

[R10]

[R11]
[R12]
[R13]
[R14]

STM32MP135x datasheets: DS13483, DS13874.

STM32MP131x/3x/5x device errata: ES0539.

Dual mode MIPI CSI-2 / SMIA CCP2 de-serializer: DS12803.

Getting started with STM32MP13x lines hardware development: AN5474.

Linux® V4L2 camera framework for STM32MP13: https://wiki.st.com/stm32mpu/ + search
'STM32MP13 V4L2 camera overview'.

STCubeProgrammer (flash programming tool): https://wiki.st.com/stm32mpu/wiki/
STM32CubeProgrammer.

Device tree configuration: https://wiki.st.com/stm32mpu/ + search 'DCMIPP device tree configuration'.

OpenSTLinux_distribution: https://wiki.st.com/stm32mpu/wiki/
OpenSTLinux_distribution#Reference_source_code.

Directory structure for the OpenSTLinux Distribution package: https://wiki.st.com/stm32mpu/wiki/
Example_of directory_structure_for_Packages.

STM32CubeProgrammer software tool:: https://www.st.com/en/development-tools/
stm32cubeprog.html.

https://wiki.st.com/stm32mpu/wiki/how_to_populate_the sd_card_with_dd_command.
https://wiki.st.com/stm32mpu/wiki/How_to_use USB_mass_storage_in_U-Boot.
https://wiki.st.com/stm32mpu/wiki/STM32MP13_resources#Boards_user_manuals.

STM32MP15x Series interfacing with a MIPI CSI-2 camera: AN5470.

page 3/15

http://www.st.com
https://wiki.st.com/stm32mpu/
https://wiki.st.com/stm32mpu/wiki/STM32CubeProgrammer
https://wiki.st.com/stm32mpu/wiki/STM32CubeProgrammer
https://wiki.st.com/stm32mpu/
https://wiki.st.com/stm32mpu/wiki/OpenSTLinux_distribution#Reference_source_code
https://wiki.st.com/stm32mpu/wiki/OpenSTLinux_distribution#Reference_source_code
https://wiki.st.com/stm32mpu/wiki/Example_of_directory_structure_for_Packages
https://wiki.st.com/stm32mpu/wiki/Example_of_directory_structure_for_Packages
https://www.st.com/en/development-tools/stm32cubeprog.html
https://www.st.com/en/development-tools/stm32cubeprog.html
https://wiki.st.com/stm32mpu/wiki/How_to_populate_the_SD_card_with_dd_command
https://wiki.st.com/stm32mpu/wiki/How_to_use_USB_mass_storage_in_U-Boot
https://wiki.st.com/stm32mpu/wiki/STM32MP13_resources#Boards_user_manuals

‘_ AN5478
'l STM32MP135 line interfacing with the STMIPID02 MIPI CSI-2 deserializer

3 STM32MP135 line interfacing with the STMIPID02 MIPI CSI-2
deserializer

The STM32MP135x microprocessors do not natively implement a MIPI CSI-2 interface but embed a DCMIPP
parallel port based on a MIPI CPI interface. It can be connected through the STMIPID02 MIPI CSI-2 deserializer
to address any compatible MIPI CSI-2 camera sensor device. The STMIPID02 MIPI CSI-2 deserializer is
connected to a MIPI CSI-2 camera on one side, and to the STM32MP135x microprocessor DCMIPP data parallel
interface on the other side. An overview of the block diagram is shown in the figure below.

Figure 1. Block diagram overview

400 kHz 12C + RefClk (6 - 27 MHz)

STMIPIDO02 STM32MP135x

. CLKP/IN
Main g DATA1P/N
CSI-2 camera DATA2P/N (optional) - SN74AV

VDDE_1V8

DCMIPP

PIXCLK
VSYNC
HSYNC

1 data lane DIN:0]
SEENY Csiio({lane)) CLKPN

DATA1P/N
CSI-2 camera

Parallel Parallel

RAWS /10 /12 RAWS /10 / 12 mode 8110/ 12-bits RAWS /10 /12
RGB565 RAWS 8-bits RGB565
YUV4:2:2 8-bits RAWS 8-bits YUV4:2:2 8-bits
JPEG RAWS 8-bits JPEG
N
o>)
<
s
[a]
3.1 MIPI CSI-2 versus MIPI CPI interface

Compared to a MIPI CPI, the MIPI CSI-2 interface offers a very significant pin count saving. A MIPI CPI data port
requires a minimum of eight data lines (12 data lines maximum), one clock, two synchronization lines, where a
MIPI CSI-2 data port requires a 2-wire differential pair per lane, and a clock lane.

3.2 Power supply considerations

Since the STMIPID02 deserializer bridge external power-supply voltage pins are limited to 1.8 V, the
STM32MP135F-DK board embeds 1.8 V-3.3 V level shifters (SN74AV) to fed the STM32MP135F at the nominal
Vpp = 3.3 V. All the different power voltages to the STM32MP135F are supplied through the external PMIC
module (power management integrated circuit).

For detailed information about the overall schematics refer to the STM32MP135F-DK motherboard schematics
[R13]. To configure the STM32MP135F with Vpp = 1.8 V supply voltage, refer to [R4].

Regarding the GC2145 camera sensor, the Vpp power supply for the I/Os and the LDO (low-dropout regulator)
external power source is set to 1.8 V. For the analog logic, a 2.8 V must also be supplied as well as the external
source.

AN5478 - Rev 2 page 4/15

AN5478
STM32MP135 line interfacing with the STMIPID02 MIPI CSI-2 deserializer

3.4

ANS5478 - Rev 2

STM32MP135 line video throughput performance through DCMIPP

The MIPI CSI-2.1 interface can theoretically support data throughput rates up to 2.5 Gbyte/s per lane with a D-
PHY. This is hardly sustainable by the STM32MP135x, firstly due to I/O slew rate constraints on the pins of the
(MIPI CPI) parallel port interface, secondly because the MPU would have hard time processing in real time such a
frame rate coming continuously from the camera.

For instance, a 2-Mpixel sensor with 16-bit per pixel and a frame rate of 30 frames/s, produces a continuous data
throughput of 120 Mbyte/s. Such figures are hardly sustainable on a parallel port interface. Therefore, the sensor
image data throughput must be reduced by adjusting either the image frame rate, the resolution, the pixel depth,
or a combination of these.

From the GC2145 sensor to the STM32MP135x microprocessor through the STMIPID02 deserializer bridge, it is
possible to continuously acquire images with the following resolutions and frames:

. VGA 640 x 480 RGB 565 30 fps

. 720p 1280 x 720 RGB 565 30fps

. 720p 1280 x 720 YUYV 30fps

. UXGA 1600 x 1200 RGB 565 20fps
. UXGA 1600 x 1200 YUYV 20fps

STMIPID02 Linux driver

The STMIPID02 MIPI CSI-2 deserializer bridge is designed to address a broad range of MIPI CSI-2 sensors
targeting the consumer market and specifically mobile phone applications. To satisfy the growing demand to
address this type of sensors from the industrial market to the 10T (Internet of Things) via artificial intelligence, the
STMIPIDO2 driver has been upstreamed to the Linux community. It is freely available in Linux based applications.
The STMIPIDO02 bridge driver is included in the STMicroelectronics OpenSTLinux delivery package, starting from
version 1.1.0 and above.

page 5/15

AN5478

Overall application

Overall application

41

4.2

4.3

ANS5478 - Rev 2

The camera demonstrator is part of the GTK demo launcher application, based on the OpenSTLinux software
distribution package. It is ported on the STM32MP135F-DK Discovery board featuring the STM32MP135F and
the STMIPIDO02, in link with the MB1897 camera board module featuring the GC2145 camera sensor thru the
ribbon cable included in the STM32MP135F-DK board package.

Figure 2. Camera demonstrator hardware

STM32MP135F-DK Discovery board overview

The board main features:

* STM32MP135F 11x11 microprocessor

* STPMIC1D power module

» 2 x 512 Mbytes of DDR3L RAM

* STMIPIDO02 deserializer bridge

» STLINK-V3E through the USB Micro-B port (to connect a console to the host PC)
» 2x USB TypeC for flash load purpose and DRP via the STM32G0 MCU.

» Connectivity to receive the MB1897 GC2145 camera board module

For more information, refer to [R13].

MB1897 camera board module overview

The GC2145 camera sensor is soldered on the MB1897 circuit board and is connected through MIPI CSI-2 to the
STM32MP135F for evaluation purpose.

The board image

The STMicroelectronics OpenSTLinux software targets STM32MP application boards (including the
STM32MP135F-DK board) and provides drivers, library, tools, and examples to exercise STM32MP135 line
embedded peripherals through its distribution package. It natively addresses MIPI CSI-2 camera sensors such as
the GC2145 through the STMIPID02 MIPI CSI-2 deserializer bridge.

As for a demonstrator, the OpenSTLinux Starter package provides the board image file ready to be flashed in the
STM32MP135F-DK board SDcard memory) and embeds the driver for either the GC2145 sensor or the OV5640
camera sensor (now deprecated) through the STMIPID02 deserializer bridge.

Two possible recommended image programming procedures are detailed in the next sections.

page 6/15

‘_ AN5478
,l Overall application

4.31 STM32CubeProgrammer software tool

This all-in-one software tool is an easy option to populate the binary image into any flash device connected to a
STM32 MCU/MPU. The tool can be downloaded from [R10].

For a faster programming, it is recommended to position the board hardware boot switches to DFU (or USB boot
mode) as indicated in the table below.

Table 2. Boot switches configuration for programming

Boot 2 (switch 3) Boot 1 (switch 2) Boot 0 (switch 1)

UART and USB USB OTG

Once the binary image is programmed, position the hardware boot switches to SDCard boot mode.

1. Boot2 =1
2. Boot1=0
3. Boot0 =1

It is recommended to program the whole binary image into an SDcard.

On a custom board, if the binary image partition must be split between the NOR-Flash (TF-A, U-boot) and eeMMC
(Linux), refer to [R6].

4.3.2 Other programming methods
Here are two other programming methods:
. to program the binary image onto an SDcard using the conventional “dd” command, refer to the [R11]
guidelines.
. to program the binary image onto a USB mass storage device using U-boot, refer to [R12].
Note: This method only applies if U-boot is available, therefore, if the two initial flash board partitions are

already present into the SDCard or the board non-volatile memory.

4.4 Booting the board image and activate camera preview display
Once the boot switches are changed to SDcard:
. The GTK launcher demonstrator screen should pop-up (see Figure 3).

. Select the camera preview logo to display the live video stream from the GC2145 MIPI CSI-2 camera
module.

Figure 3. GTK launcher demonstrator

Q =

STMEZ WP
netdata Camera Video
perf monitor preview playback STM22MP erd
ArmE C A
Python GTK
Bluetooth launcher
speaker
LL L]
N Thu Apr 23, 95149 Pi

AN5478 - Rev 2 page 7/15

‘_ AN5478
’l Overall application

The script used to run the camera preview is in /usr/local/demo/application/camera/bin/
launch_camera_preview.sh. By default the sensor is configured in VGA RGB565 30fps, then the stream is scaled
down to adapt to the board screen resolution (480 x 272).

The camera sensor format and framerate settings are adjusted through the V412 Linux kernel framework
dedicated to the STM32MP135x microprocessor and the GC2145 camera sensor. A subset of the commands is
provided in the following section. For a comprehensive set of information on the camera subsystem topology and
setup, refer to [R5].

4.5 V4L2 commands

On STM32MP135, the camera subsystem must be configured first, before invoking any V4L2 application-related
command. This is performed with the V4L2 media-ct1 utility command (refer to [R6]).

Note: The above step is a STM32MP135 specificity. On STM32MP15x products, V412 commands can directly interface
with the camera sensor through I12C (refer to [R14]).

451 Configuring the camera sub-node and frame capture

The shell script below can be used to configure the GC2145 with one of the following format: RGB565_BE,
RGB565_LE, YVYU, YUYV, UYVY, VYUY. BE/LE determine data endianes (only for RGB565 format).

The media-ctl part configures the camera subsystem while the the v412 command performs the video capture:

if ‘echo $3 | grep "RGB565 LE" 1>/dev/null 2>&1°; then
sensorbuscode=RGB565 2X8 LE
parallelbuscode=RGB565 2X8 LE
v412ctlfmt=RGBP

fi

if “echo $3 | grep "RGB565 BE" 1>/dev/null 2>&1°; then
sensorbuscode=RGB565 2X8 BE
parallelbuscode=RGB565 2X8 LE
v412ctlfmt=RGBP

fi

if ‘echo $3 | grep "YUYV" 1>/dev/null 2>&1°; then
sensorbuscode=YUYV8 2X8
parallelbuscode=YUYV8 2X8
v41l2ctlfmt=YUYV

fi

if ‘echo $3 | grep "YVYU" 1>/dev/null 2>&1°; then
sensorbuscode=YVYU8 2X8
parallelbuscode=YUYV8 2X8
v41l2ctlfmt=YVYU

fi

if ‘echo $3 | grep "UYVY" 1>/dev/null 2>&1°; then
sensorbuscode=UYVY8 2X8
parallelbuscode=UYVY8 2X8
v41l2ctlfmt=UYVY

fi

if ‘echo $3 | grep "VYUY" 1>/dev/null 2>&1°; then
sensorbuscode=VYUY8 2X8
parallelbuscode=VYUY8 2X8
v412ctlfmt=VYUY

fi

media-ctl -d /dev/media0 --set-v412 "'gc2145 1-003c':0[fmt:$sensorbuscode/$1x$2@1/$4 field:no

nel" -v

media-ctl -d /dev/medial --set-v412 "'dcmipp parallel':0[fmt:$Ssensorbuscode/$1xS$2]" -v
media-ctl -d /dev/medial --set-v412 "'dcmipp parallel':1[fmt:Sparallelbuscode/$1x$2]" -v
media-ctl -d /dev/medial --set-v412 "'dcmipp dump postproc':1[fmt:Sparallelbuscode/$1x$2]" -v
media-ctl -d /dev/medial --set-v412 "'dcmipp dump postproc':1[crop: (0,0)/$1x$2]" -v

v4l2-ctl --set-fmt-video=width=$1,height=5$2,pixelformat=$v4l2ctlfmt --stream-mmap --stream-sk
ip=100 --stream-count=1 --stream-to=my image

That is, to configure the sensor in VGA, the video format as RGB565_BE, and targeting 30fps:

AN5478 - Rev 2 page 8/15

AN5478

Overall application

ANS5478 - Rev 2

root@stm32mpl:~# ./capture test gc2145.sh 640 480 RGB565 BE 30
Opening media device /dev/medial

Enumerating entities
looking up device: 81:
looking up device: 81:
looking up device: 81:
looking up device: 81:
looking up device: 81:
Found 5 entities
Enumerating pads and links

Setting up format RGB565 2X8 BE 640x480 on pad gc2145 1-003c/0
Format set: RGB565 2X8 BE 640x480

Setting up frame interval 1/30 on pad gc2145 1-003c/0

Frame interval set: 1/30

Setting up format RGB565 2X8 BE 640x480 on pad st-mipid02 1-0014/0
Format set: RGB565 2X8 BE 640x480

Setting up frame interval 1/30 on pad st-mipid02 1-0014/0
Enumerating entities
looking up device: 81:
looking up device: 81:
looking up device: 81:
looking up device: 81:
looking up device: 81:
Found 5 entities
Enumerating pads and links

Setting up format RGB565 2X8 BE 640x480 on pad dcmipp parallel/0
Format set: RGB565 2X8 BE 640x480

Opening media device /dev/medial

Enumerating entities
looking up device: 81:
looking up device: 81:
looking up device: 81:
looking up device: 81:
looking up device: 81:
Found 5 entities
Enumerating pads and links

Setting up format RGB565 2X8 LE 640x480 on pad dcmipp parallel/1l
Format set: RGB565 2X8 LE 640x480

Setting up format RGB565 2X8 LE 640x480 on pad dcmipp dump postproc/0
Format set: RGB565 2X8 LE 640x480

Opening media device /dev/medial

Enumerating entities
looking up device: 81:
looking up device: 81:
looking up device: 81:
looking up device: 81:
looking up device: 81:
Found 5 entities
Enumerating pads and links

Setting up format RGB565 2X8 LE 640x480 on pad dcmipp dump postproc/1l
Format set: RGB565 2X8 LE 640x480

Opening media device /dev/medial

Enumerating entities
looking up device: 81:
looking up device: 81:
looking up device: 81:
looking up device: 81:
looking up device: 81:
Found 5 entities
Enumerating pads and links

Setting up selection target 0 rectangle (0,0)/640x480 on pad dcmipp dump postproc/1l
Selection rectangle set: (0,0)/640x480

<LLLLLLLLLLLLLLLLLLLLLLLLLLLLLL 29,03 fps

<LLLLLLLLLLLLLLLLLLLLLLLLLLLL 29,03 fps

<LLLLLLLLLLLLLLLLLLLLLLLLLLLL 29,03 fps

<LLLLLLLLLLL

B W o N B W o N B W o N P

S w o NN

S w o NN

page 9/15

‘_ AN5478
,l Overall application

45.2 Displaying a camera preview in Weston/Wayland
By default, the user is logged as root user. Since OpenSTLinux DV4.1, to launch Weston Wayland application and
run weston/wayland commands, one need to be logged as weston user:

root@stm32mpl:~# su -1 weston
stm32mpl:~$

The camera subsystem must be set as described in 4.5.1 with the selected format, resolution and framerate. One
can invoke for instance waylandsink in a gstreamer pipeline, using the same format as in the camera subsystem

setup:

stm32mpl:~$./media-ctl-setup gc2145.sh 640 480 RGB 565 BE 30

stm32mpl:~$ gst-launch-1.0 v41l2src device=/dev/video0 ! "video/x-raw,width=640,height=480, fra
merate=30/1" ! waylandsink fullscreen=true

Setting pipeline to PAUSED

Pipeline is live and does not need PREROLL ...
Pipeline is PREROLLED ...

Setting pipeline to PLAYING ...

New clock: GstSystemClock

Redistribute latency...

The image preview from the GC2145 camera is displayed on the STM32MP135F-DK board LCD screen.

page 10/15

ANS5478 - Rev 2

ﬁ AN5478

Revision history

Table 3. Document revision history

31-Jan-2023 1 Initial release.
28-May-2024 2 Reduced the Application Note's scope exclusively to the STM32MP135 line.

AN5478 - Rev 2 page 11/15

‘_ AN5478
,’ Contents

Contents
General information i i 2
Reference documents ...t i i ittt 3
STM32MP135 line interfacing with the STMIPID02 MIPI CSI-2 deserializer........... 4
3.1 MIPI CSI-2 versus MIPI CPlinterface i 4
3.2 Power supply considerations e 4
3.3 STM32MP135 line video throughput performance through DCMIPP 5
3.4 STMIPIDO2 LinUX driVerottt e e e e e e ettt e e e 5
4 Overall application.t i i it ea it iasa s nannssanannsannnns 6
4.1 STM32MP135F-DK Discovery board overview. 6
4.2 MB1897 camera board module overview. 6
4.3 The board image 6
4.31 STM32CubeProgrammer software tool 7
4.3.2 Other programming methods. 7
4.4 Booting the board image and activate camera preview display. 7
4.5 VAL2 COMMANASo e e e e e e 8
451 Configuring the camera sub-node and frame capture 8
4.5.2 Displaying a camera preview in Weston/Wayland 10
ReVISION NiStOry i i i i ettt eata i aaa s nnaasennnnaannnnns 1"
List of tables ittt i 13
List Of figQUIreS. i it it ettt teaa s tnaa s iaa e s 14

AN5478 - Rev 2 page 12/15

‘— AN5478
,’ List of tables

List of tables

Table 1. Listof @CrOonymMs 2
Table 2. Boot switches configuration for programming. 7
Table 3. Documentrevision history 11

ANS5478 - Rev 2 page 13/15

‘,_l AN5478

List of figures

List of figures

Figure 1. Block diagram OVEerVIEW 4
Figure 2. Camera demonstrator hardware e 6
Figure 3. GTK launcher demonstrator e 7

ANS5478 - Rev 2 page 14/15

‘,_l AN5478

IMPORTANT NOTICE — READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics — All rights reserved

AN5478 - Rev 2 page 15/15

http://www.st.com/trademarks

	AN5478
	Introduction
	1 General information
	2 Reference documents
	3 STM32MP135 line interfacing with the STMIPID02 MIPI CSI-2 deserializer
	3.1 MIPI CSI-2 versus MIPI CPI interface
	3.2 Power supply considerations
	3.3 STM32MP135 line video throughput performance through DCMIPP
	3.4 STMIPID02 Linux driver

	4 Overall application
	4.1 STM32MP135F-DK Discovery board overview
	4.2 MB1897 camera board module overview
	4.3 The board image
	4.3.1 STM32CubeProgrammer software tool
	4.3.2 Other programming methods

	4.4 Booting the board image and activate camera preview display
	4.5 V4L2 commands
	4.5.1 Configuring the camera sub-node and frame capture
	4.5.2 Displaying a camera preview in Weston/Wayland

	Revision history
	Contents
	List of tables
	List of figures

