
August 2019 AN3307 Rev 6 1/38

1

AN3307
Application note

Guidelines for obtaining IEC 60335
 Class B certification for any STM32 application

Introduction

The role of safety has become very important for electronics applications. The level of safety
requirements for components used in electronic designs is steadily increasing. The
manufacturers of electronic devices include many new technical solutions in the design of
new components. Software techniques for improving safety are continuously being
developed.

The current safety recommendations and requirements are specified at worldwide level by
recognized international standards bodies such as IEC (International electrotechnical
commission) and come under the compliance, verification and certification process of
testing houses and authorities like VDE (Association for electrical, electronic and
information technologies). The certification process is closely associated with the
Electromagnetic compatibility (EMC) tests when the robustness of the system against the
noise emission and the noise sensitivity is tested for the compliance with international
standards.

The main purpose of this application note and its associated software(a)
(STM32-CLASSB-SPL) is to facilitate and accelerate the user software development and
the certification processes for appliances which are subject to these requirements and
certifications and are based on some of the ST 32-bit family of microcontrollers.

There are three packages certified by VDE for the 32-bit ST microcontrollers covering the
STM32F0, STM32F1 and STM32F3 Series microcontrollers, referred to in this document as
STM32F. All the certified packages are based on dedicated CMSIS and standard peripheral
libraries (SPL) and all of them use similar principles described by this document, with focus
on the main differences. While using the hardware and firmware compatibility between ST
families, these packages can also be adapted for some other ST 32-bit microcontrollers not
certified for SPL (for example STM32F2, STM32F4 or STM32L1 Series)(b).

a. All the Class B firmware packages are available upon request only, contact the nearest ST sales office.

b. STMicroelectronics is developing derivative firmware supporting new products step by step. Contact the local
ST sales office to obtain the latest information about available packages and plans for their certification.

www.st.com

http://www.st.com

Contents AN3307

2/38 AN3307 Rev 6

Contents

1 Package variation overview . 6

2 Main differences between STM32F packages
and their possible modifications . 7

3 Compliance with IEC and VDE standards . 11

3.1 Generic tests included in the STM32F firmware library 12

3.2 Application-specific tests not included in the ST firmware library 14

4 Class B software package . 15

4.1 Basic software principles used . 15

4.1.1 Fail Safe mode . 15

4.1.2 Class B variables . 15

4.1.3 Class B flow control . 17

4.2 Package organization . 18

4.2.1 Projects included in the package . 18

4.2.2 Tool-specific integration of the library . 18

4.2.3 Application demonstration example . 19

4.3 Package configuration and debugging . 19

4.3.1 Configuration control . 19

4.3.2 Verbose diagnostic mode . 20

4.3.3 Debugging the package . 21

5 Class B solution structure . 22

5.1 Integrating the software into the user application 22

5.2 Description of startup self tests . 23

5.2.1 CPU startup self-test . 24

5.2.2 Watchdog startup self-test . 25

5.2.3 Flash complete checksum self-test . 26

5.2.4 Full RAM March C-/X self-test . 26

5.2.5 Clock startup self-test . 28

5.3 Periodic runtime self-test initialization . 30

5.4 Description of periodic runtime self-tests . 31

5.4.1 Runtime self-test structure . 31

AN3307 Rev 6 3/38

AN3307 Contents

3

5.4.2 CPU light runtime self-test . 32

5.4.3 Stack boundaries runtime test . 32

5.4.4 Clock runtime self-test . 33

5.4.5 Partial Flash CRC runtime self-test . 34

5.4.6 Watchdog service in runtime test . 34

5.4.7 Partial RAM runtime self-test . 35

6 Revision history . 37

List of tables AN3307

4/38 AN3307 Rev 6

List of tables

Table 1. MCU parts which must be tested for Class B compliance . 12
Table 2. Overview of methods used in the micro-specific tests provided with this application note . 13
Table 3. Physical order of RAM addresses organized into blocks of 16 words 26
Table 4. March C- phases in RAM partial test . 36
Table 5. Document revision history . 37

AN3307 Rev 6 5/38

AN3307 List of figures

5

List of figures

Figure 1. Example of RAM memory configuration . 16
Figure 2. Control flow four-step checking principle . 17
Figure 3. Diagnostic LED timing signal principle . 19
Figure 4. STM32 demo hyper terminal output window in verbose mode. 21
Figure 5. Integration of startup and periodic runtime self-tests into the application 22
Figure 6. Startup self test structure . 23
Figure 7. CPU startup self-test structure . 24
Figure 8. Watchdog startup self-test structure . 25
Figure 9. Flash memory startup self-test structure . 26
Figure 10. RAM startup self-test structure . 27
Figure 11. Scramble test - detailed structure of a single check and fill procedure. 27
Figure 12. Clock startup self-test subroutine structure . 28
Figure 13. Clock frequency measurement principle. 29
Figure 14. Periodic runtime self-test initialization structure . 30
Figure 15. Periodic runtime self-test and timebase interrupt service structure 31
Figure 16. CPU light runtime self-test structure . 32
Figure 17. Stack overflow runtime test structure . 32
Figure 18. Clock runtime self-test structure . 33
Figure 19. Partial Flash CRC runtime self-test structure . 34
Figure 20. Partial RAM runtime self-test structure . 35
Figure 21. Fault coupling principle used at partial RAM runtime self-test . 36

Package variation overview AN3307

6/38 AN3307 Rev 6

1 Package variation overview

The STM32F0 Series package, like all STM32 devices, is based on the Arm ®(a) Cortex®
microcontroller software interface standard (CMSIS) and the STM32F0 Series standard
peripheral library V1.0.0 published by ST. It supports the STM32F050xx microcontrollers
where the Flash memory density ranges between 32 and 64 Kbytes.

The STM32F10x package is based on the CMSIS and the STM32F10x standard peripheral
library V3.5.0 published by ST. Available configurations support the following devices in the
STM32F10x family in range of this standard peripheral library revision:

• Low, medium and high density performance line devices

• Low, medium and high density access line devices

• Low, medium and high density value line devices

The STM32F3xx package is based on the CMSIS, STM32F30x and STM32F37x standard
peripheral libraries V0.1.0 published by ST. It supports the STM32F30x and STM32F37x
microcontrollers where the Flash memory density ranges between 64 and 256 Kbytes.

These associated firmware packages are available upon request only. Please contact the
local ST sales office for more information.

Two projects have been prepared and tested for each package under IAR/EWARM
version 6.40 and KEIL®/MDK-ARM™ version 4.50 environment and toolchains.

For more EMC information please refer to the following related application notes:

• Software techniques for improving microcontroller EMC performance application note
(AN1015)

• EMC design guide for ST microcontrollers application note (AN1709)

For more detailed information about the cyclic redundancy check calculation (CRC) please
refer to the following related application note:

• Using the CRC peripheral in STM32 family application note (AN4187)

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN3307 Rev 6 7/38

AN3307 Main differences between STM32F packages and their possible modifications

37

2 Main differences between STM32F packages
and their possible modifications

This document describes mainly the basic STM32F1xx package; as the other packages are
its derivatives. The user can find some slight differences mainly due to the hardware
deviations, compilers and debugging tools incompatibilities. Main differences are focused
on in this section. The user can find a complete list and detailed information about STL files
included in documentation *.chm file, which is extracted and attached for each package.

CPU Tests

The register R13 is renamed to MSP (Main stack pointer) at assembly source files of the
STM32F3xx package. With the STM32F0xx package, all the instructions in the tests loading
immediate 32-bit constant operands are replaced by instructions loading constants placed
at code memory, due to restricted instruction set of ARM® Cortex®-M0 core.

Clock tests and time base interval measurement

Instead of Real-time Clock (RTC) counter used in the STM32F1xx package, a sub-second
register is used at STM32F0xx and STM32F3xx packages for clock measurement due to
different implementation of RTC registers. The clock system measurement technique differs
slightly due to this fact, in these packages. Internal timers are used for cross-check
frequency measurement when this feature is available mainly to determine harmonic or
sub-harmonic frequencies if the system clock is provided by the external crystal.

SRAM tests

Some ST microcontrollers feature a built-in word protection with single bit redundancy
(hardware parity check) applied on CCM RAM or on part of SRAM, at least. This hardware
protection is one of the acceptable methods required by the IEC 60335 and IEC 60730
Class B standards. It reduces software testing overhead significantly. The applied software
SRAM March test can be removed from both startup and runtime test sets in this case. It
can be used optionally for testing the parts of RAM which are not covered by the hardware
parity check, or as a supplementary testing method. The diagnostic coverage of single bit
redundancy protection is limited to detect specific range of errors; so additional checks can
be required by the certification authority at some safety critical cases. An example could be
a combination of hardware parity protection and software March test which can be an
acceptable test of variable memory satisfying even more severe Class C criteria. The
reliability of hardware parity check can be increased, too, by other suitable methods like
using double inverse storage of safety critical information at physically separated areas (e.g.
to prevent a corruption caused by radiation or EMI which typically attacks a limited physical
memory locality).

The hardware parity check is an optional feature. When it is enabled, an unintentional parity
error event can be detected during the execution of startup self-test procedure due to not
initialized parity system (e.g. case of local variables if they are allocated and read out while
using different data access to memory).

Main differences between STM32F packages and their possible modifications AN3307

8/38 AN3307 Rev 6

To prevent this, it is suggested to initialize the concerned RAM space before calling startup
self-test procedure. A simple loop inserted into startup assembly code can solve the
problem and initialize parity system at dedicated RAM area:

Note: The real content of the registers copied by STMIA instruction does not care because the
purpose of this loop is to initialize the parity system. The content of the RAM will be
initialized later by the compiler standard startup procedure anyway. The RAM_block_begin
and RAM_block_size constants' setting should correspond with the number of data copied
by STMIA instruction to prevent any undefined memory access.

If the initial software March test is performed over a RAM area dedicated for stack, it
destroys the stack content where the return address of the test routine is stored. That is why
the return address must be saved before the test starts and restored back to the stack after
the test finishes. The return address is kept at dedicated register while the test is running.
The store and restore handling depends on compiler implementation and it can differ for
different level of optimization settings. In case of any such change the user has to check,
how the return address is saved into stack and perform adequate store and restore of its
value correctly back before return from test is performed and the address is popped out
(follow intrinsic operations at begin and end of STL_FullRamMarchC() routine at
stm32fxxx_STLFullRamMc.c file).

Flash memory tests

While the IAR compiler can be set to include a 32-bit CRC result compatible with
STMicroelectronics hardware directly into code (see IAR documentation), the CRC
calculation is not fully supported by KEIL compiler for the STM32 microcontrollers yet. That
is why the result provided by STM32's internal CRC generator cannot be used directly for

; Program starts here after reset

;--

Reset_Handler

; Parity system initialization has to be performed here prior to the

; startup self-test procedure

;--

; r0 is used as a pointer to RAM,

; r1 keeps end address of the area

;--

;At every step of the loop, the 32-byte block (r2-r9) is copied to RAM

; starting from address kept at r0, r0 is then increased by 32

; the loop body is performed while r0<r1

LDR R0, =RAM_block_begin

ADD R1, R0, #RAM_block_size

RAM_init_loop

STMIA R0!, {R2-R9}

CMP R0, R1

BLT RAM_init_loop

; RAM is initialized now, program can continue by startup self-test

LDR R0, =STL_StartUp

BLX R0

AN3307 Rev 6 9/38

AN3307 Main differences between STM32F packages and their possible modifications

37

such invariable memory checking at KEIL project. The users have to store the checksum
computation result into final source code manually by modifying and proper placement of
CHECKSUM area at the end of Flash memory (see end of startup_stm32fxxx.s file and
linker file settings). The result of a CRC calculation can be obtained by an external tool or it
can be read at debug phase from begin of RAM (see invariable memory check part in
stm32fxxx_STLstartup.c file) where the result is stored temporarily by initial test. The
CHECKSUM area itself must be excluded from the range of CRC calculation. Other
possible testing method could be to compute a 32-bit checksum by the CRC generator in
the initial phase and validate its result by using 16-bit software CRC computation in parallel.
Specific SW procedures for 16-bit CRC calculation must be provided and called for proper
testing at this case during startup tests. The validated 32-bit CRC value can be then saved
as a reference for comparing all the subsequent runtime checks. This method decreases
the CPU load at run time phase significantly, as the CRC computation is done via a
hardware CRC generator exclusively. Please follow the latest updates from providers of
compilers to implement the latest and most sufficient methods.

The Flash memory can be tested while the DMA is used for feeding the CRC block, too. In
comparison with software test, the CPU load decreases significantly when the DMA is
applied but the speed of the test itself does not change so much as the DMA needs few
cycles to read and transfer data anyway. The test even can slow down when the DMA
services some other transfers in parallel. Moreover some additional DMA configuration is
required at initialization of the test. The user can find some detailed information about using
the DMA at CRC calculation at the dedicated application note, AN4187: Using the CRC
peripheral in STM32 family.

Startup and system initialization

There are differences at the initial system configuration and setup of debug and diagnostic
utilities (e.g. recognizing reset cause) respecting hardware deviations. The startup file is
modified to force the very first flow to begin of startup test set.

Parameters

All the configuration parameters are centralized into one file stm32fxxx_STLparam.h. The
configuration differences respect mainly different sizes of tested areas, different compilers,
slight deviations of control flow, etc. Be careful when modifying an initial or run time test of
possible corruption of control flow. In this case, the values summarized at complementary
control flow counters can differ from the constants defined for comparison at flow check
points. To prevent any control flow error, the user must change the definition of these
constants in an adequate way.

Files structure

The structure of directories of all the packages is nearly the same for all the packages. It
follows common structure used for ST standard peripheral drivers with added extra directory
for self-test files. There is an additional subdirectory at Libraries directory at STM32F3xx
package where two different directories are applied for STM32F30x and STM32F37x
standard peripheral drivers, respecting both subfamilies differences. The dedicated group of
standard drivers is included in dependency on project setting. The number of included self-
test library header files is reduced at STM32F0xx package, as most of headers associated
with their source files stay simply empty and they follow a formal structure only. The function
of stm32xxx_STLlib.h header including all these associated headers is replaced by common
header stm32f0xx_STL_param.h here, which is included by all the sources in this package
instead of stm32xxx_STLlib.h, as it is used in the other packages.

Main differences between STM32F packages and their possible modifications AN3307

10/38 AN3307 Rev 6

Verbose and diagnostic modes

The verbose messages can slightly vary between the packages but they are mostly self-
explanatory. The users can easily find the calling place and condition at the source code
from which the message is published. Signals provided on GPIO LEDs can be used for
basic check if the application runs properly, as well as for the measurement of some basic
timing intervals. Be sure the verbose messages increase the processing load at execution
phase and significantly increase an overhead of code memory capacity, especially.

Duration of the tests

The duration of the initial functional self-test performed at startup phase can vary slightly
depending on CPU clock frequency and size of memory areas tested. The differences
between duration of periodical run time self-tests are negligible and depend mainly on the
CPU clock. Both software RAM transparent and partial Flash tests last about 20 µs with a
default block size setting (at CPU clock about 72 MHz).

The overall test RAM or Flash cycle duration depends on:

• The size of the memory area under check,

• The size of the block checked at one step and

• The frequency of the partial test steps.

For instance, a test of the RAM area collecting 32 pairs of word Class B variables needs 16
partial steps if 4 words are tested by one step (in fact, 6 words are tested at every step if just
one word overlap is configured at both the highest and the lowest address - follow the
transparent RAM test configuration).

the test of 64 Kbytes of Flash memory can be done at 1024 partial steps when the block size
is set to default 16 words. This means an overall duration of 10 s if the period of steps is
10 ms.

At any critical case when a such long interval for Flash testing is not acceptable, the
program memory can be divided into few sectors and the test can be reduced to be
performed above one selected sector just keeping the safety functions and data currently
used.

The toggling of some LEDs can be used to measure the timing performance of the firmware.
Be sure any control of the verbose messages used at debugging is disabled as well as the
initialization of evaluation board display when doing any such measurement.

AN3307 Rev 6 11/38

AN3307 Compliance with IEC and VDE standards

37

3 Compliance with IEC and VDE standards

The IEC (International Electrotechnical Commission) is a non-profit and non-governmental
authority recognized worldwide for preparing and publishing international standards for a
vast range of electrical, electronic and related technologies. IEC standards are focused
mainly on safety and performance, the environment, electrical energy efficiency and its
renewable capabilities. The IEC cooperates closely with ISO (International Organization for
Standardization) and ITU (International Telecommunication Union). Their standards define
not only the recommendations for hardware, but also for software solutions. Standards are
divided into a number of safety classes depending on the purpose of the application.

The other bodies that are recognized worldwide in the field of electronic standard
organizations are VDE in Germany, IET in the United Kingdom and the IEEE in the United
States. The VDE association also includes a Testing and Certification Institute which is a
pioneer of software safety inspection. This is a registered National Certification Body (NCB)
for Germany. The main purpose of this testing house is to offer standard compliance and
quality testing services to manufacturers of electrical appliances.

One of the pivotal IEC standards is the IEC 60335-1 norm, which covers safety and security
of household electronic appliances destined for domestic and similar environment.
Appliances incorporating electronic circuits are subject to component failure tests.

The basic principle is that the appliance must remain safe in the case of any component
failure. The microcontroller is an electronic component just like any other from this point of
view. If safety relies on an electronic component, it must remain safe after two consecutive
faults. This means the appliance must stay safe with one hardware failure and with the
microcontroller not operating (under reset or not operating properly).

If the safety depends on software, the software is taken into account with the second applied
failure. The conditions required for software are defined precisely in Annex Q of the
IEC 60335-1 norm. Three classes of appliances are defined here:

• Class A: Safety does not rely on software

• Class B: Software prevents unsafe operation

• Class C: Software is intended to prevent special hazards

This application note and the associated ST software package covers the group B
specification. Appliances under group C need some other special requirements such as
dual microcontroller operation, which is outside the scope of this document.

Class B compliance aspects for microcontrollers are related both to hardware and software.
A list of microcontroller parts under compliance is evaluated at IEC 60335-1 Annex T which
refers to IEC 60730 Annex H. This list can be divided into two groups - micro-specific and
application-specific items. See Table 1.

While application-specific parts rely on customer application structure and must be defined
and developed by the users (communication, I/O control, interrupts, analog inputs and
outputs), micro-specific parts are related purely to the micro structure and can be made
generic (core self-diagnostic, volatile and non-volatile memory integrity checking, clock
system tests). This group of micro-specific tests is the focus of the ST solution based on
powerful hardware features of STM32 MCU such as dual independent watchdogs or clock
sources.

Compliance with IEC and VDE standards AN3307

12/38 AN3307 Rev 6

3.1 Generic tests included in the STM32F firmware library

The certified by VDE STM32F firmware library packages are composed of the following
micro-specific software modules:

• CPU register test

• Clock monitoring

• RAM functional check

• Flash checksum integrity check

• Watchdog self-test

• Stack overflow monitoring

An overview of the methods used for these MCU-specific tests is given in Table 2 and they
are described in more detail in the following sections. The last two items from the list above
are not explicitly asked for by the norm, but they improve overall fault coverage.

Table 1. MCU parts which must be tested for Class B compliance

Group Components to be tested

Micro-specific

CPU registers

CPU program counter

Clock

Volatile & non-volatile memories

Internal addressing (and external memory addressing if any)

Internal data path

Application-specific

Interrupt handling

External communication

Timing

I/O peripherals

Analog A/D and D/A

Analog multiplexer

AN3307 Rev 6 13/38

AN3307 Compliance with IEC and VDE standards

37

The users can include a part or all of these software modules certified by VDE into the
project. If they stay unchanged and are integrated in accordance with the guidelines, the
time and costs needed for a certified end-application would be significantly reduced.

Note: If minor changes have to be made to the modules, it is suggested that the user keeps
careful track of all of these changes in order to inform the certification authority of all
modifications made to the certified routines.

Table 2. Overview of methods used in the micro-specific tests provided with this
application note

Components to be
verified

Method used

CPU registers

Functional test of all registers and flags including R13 (stack pointer), R14
(link register) and PSP (Process stack pointer) is done at startup. In the
runtime test R13, R14, PSP and flags are not tested. The stack pointer is
tested for underflow and overflow, the link register is tested by PC
monitoring. If any error is found, the software jumps directly to the Fail Safe
routine.

Program counter

Two different watchdogs driven by two independent clock sources can
reset the device when the program counter is lost. The Window watchdog,
driven by the main oscillator, performs time slot monitoring while the
Independent one, driven by the low speed internal RC oscillator, is
impossible to disable once enabled. Both watchdogs must be serviced at
regular intervals. Program control flow is additionally monitored using a
specific software method.

Addressing and data
path

This is tested indirectly by RAM functional and Flash integrity tests, stack
overflow (a specific pattern is written at a low boundary of stack space and
checked for corruption at regular intervals) and underflow (a second
pattern is written at a high boundary if it is not at the RAM end). In addition,
a bus error exception vector is fetched by the CPU if a memory access
fault occurs.

Clock

A reciprocal method of comparing two independent clock sources is used
while clocking two timers. Wrong main frequency (harmonic/sub harmonic)
can be detected using the external low speed 32 kHz oscillator as a
timebase.

Non-volatile memory
A 16-bit CRC software checksum test of the entire memory is done at
startup and a partial memory test is repeated at runtime (block by block).
Optionally the built in hardware for fast 32-bit CRC calculation can be used.

Volatile memory

A March C- (or optionally March X) full memory test is done at startup and
a partial memory test is repeated at runtime (block by block), scrambled
order of physical addresses in RAM is respected in tests for optimal
coverage of coupling faults, word protection with double redundancy
(inverse values stored in non adjacent memory space) is used for safety
critical Class B variables, Class A variable space, stack and unused space
are not tested at runtime.

Compliance with IEC and VDE standards AN3307

14/38 AN3307 Rev 6

3.2 Application-specific tests not included in the ST firmware
library

The users have to focus on all the remaining tests that cover application-specific MCU parts
that are not included in the ST firmware library:

• Testing the analog blocks (AD/DA, multiplexer)

• Testing the digital I/O

• External addressing

• External communication

• Timing and interrupts

The tests for the analog part depend on the application and peripheral capability of the
device. The pins used should be checked for correct analog intervals (by checking that the
measured voltages correspond to the real analog values) and free analog pins can be used
to read some reference voltages in conjunction with testing the analog multiplexers if they
are used in the application. The internal reference voltage should also be checked. Some
STM32 devices feature two (and some even three) independent ADC blocks. It make sense
to perform conversions on the same channel using two different ADC blocks for security
reasons.

Class B tests must also detect any malfunction of the digital I/Os. This could be covered by
plausibility checks together with some other application parts (for example, the change in an
analog signal from a temperature sensor should be checked when the heating/cooling
digital control is switched on/off). Selected port bits can be locked by applying the correct
lock sequence to the lock bit in the GPIOx_LCKR register to prevent unexpected changes to
the port configuration. The reconfiguration is only possible at the next reset sequence in this
case. In addition, the bit banding feature can be used for atomic manipulation of the SRAM
and peripheral registers.

Application interrupt occurrences and external communication flows should also be
checked. Different methods can be used: one method can use a set of incremental counters
with specific counters incremented by each interrupt or communication event. The values in
the counters are then checked periodically at given time intervals to make a cross-check
with an independent timebase. The number of events performed within the last period
should correspond to the application requirements. The configuration lock feature can be
used to secure the timer register settings with three levels controlled by the TIMx_BDTR
register.

The data exchange at communication sessions should be checked while including a
redundant information into the data packets. Parity, sync signals, CRC check sums, block
repetition or protocol numbering can be used for this purpose. Robust application software
protocol stacks like TCP/IP give higher level of protection, if necessary.

AN3307 Rev 6 15/38

AN3307 Class B software package

37

4 Class B software package

This section highlights the basic common principles used in the ST software solution. The
workspace organization is described as well as configuration and debugging capabilities.
Any differences between the two supported development environments (IAR’s EWARM and
Keil’s MDK-ARM) are highlighted.

4.1 Basic software principles used

The basic software methods and common principles used for all the tests included in the ST
solution are described in detail in this section.

4.1.1 Fail Safe mode

If any failure is detected, the FailSafePOR() routine is called (defined in
stm32fxxx_STLstartup.c file). The program stays in an endless loop waiting for a
watchdog reset. Apart from some debugging features the routine is almost empty. The users
have to provide the content to the routine and ensure that it executes the right actions to
keep the application in a safe state.

The debug or verbose mode described in Section 4.3: Package configuration and
debugging can be used to identify which error has occurred.

4.1.2 Class B variables

Each class B variable is stored as a pair of two complementary values in two separate RAM
regions. Both normal and redundant complementary values are always placed in non
adjacent memory locations. A partial transparent RAM March C- or March X test is
performed continuously on these RAM areas by means of an interrupt subroutine. The pair
is compared for integrity each time before the value is used. If any value stored in the pair is
corrupted, Fail Safe mode is invoked. An example of RAM configuration can be seen in
Figure 1. The users can adapt the RAM space allocation according to the application needs
and the hardware capabilities of the device.

For better consistency of the run time test, all the Class B regions are merged together
within a single compact memory location.

The user has to align the size of the tested area to multiply single transparent steps while
respecting overlay used for the first and last step of the test, including address scrambling.
That is why the user has to allocate dummy gaps at the beginning and at the end of the area
dedicated to Class B variables. Size of these gaps has to correspond to applied overlay of
the tested single block.

Backup buffer and pointer to Class B area has to be allocated out of the area dedicated to
Class B variables, at a specific location tested separately each time the overall Class B area
test cycle is completed.

Specific pattern is written at the low boundary of stack space and checked for corruption at
regular intervals to detect the stack overflow. To check its underflow, a second pattern can
be written at high boundary if the stack is not placed at top of RAM. If the stack is placed at
top of RAM an underflow event raises hardware exception event. When more than a single
stack area is used by the application, it is advisable to separate the adjacent areas by

Class B software package AN3307

16/38 AN3307 Rev 6

boundary patterns to check that all the pointers operate exclusively within their dedicated
areas.

Stack and non safety RAM area are not checked by the transparent RAM test at run time.

Figure 1. Example of RAM memory configuration

MS35281V4

Class B variables
(redundant complementary values)

Class B variables
(normal values)

Area under
run time
check

Gap (overlap) at the beginning
of Class B area

Gap (overlap) at the end
of Class B area

Area tested during
the first step

Area tested during
the second step

Area tested during
the last step

Area tested during
the last but one step

. .
 .

Overlap

Overlap

Class A variables

Unused RAM

Specific pattern to detect stack
overflow

Stack

Specific pattern to detect stack
underflow*

* Next pattern must be stored here if the stack does not start at the end of the RAM

Area under
run time
check

Area under
run time
check

RAM backup buffer
Pointer to Class B area

AN3307 Rev 6 17/38

AN3307 Class B software package

37

4.1.3 Class B flow control

A specific software method is used to check if all parts of the test flow are successfully
passed. Unique labels (constant numbers) are defined for identifying all key points (blocks
with component tests) in the code flow in order to make sure no block is skipped and all of
them are performed as expected. The unique labels are processed in two complementary
counters to comply with class B variable criteria. The main principle is a symmetrical
four-step change of the counter pair content (adding or subtracting the unique label values)
each time any significant testing block is processed. Two of the steps check if the block is
correctly called from the main flow level (processed just before calling and just after return
from the called procedure). The next two steps check if the block is correctly completed
inside the called procedure (processed just after entry and just before return from the
procedure). An example is given in Figure 2, where a routine performing a component test is
called in the checked flow sequence and the four-step checking service is shown. This
method decreases the load on the CPU as all these points are always checked by counting
one member of the complementary counter pair only. As there is always the same number
of call/return and entry/exit points, the values stored in the counter pair must be always
complementary ones after any block is passed completely. Several execution flow check
points are evaluated and placed in the code flow where the integrity of the counter pair is
checked. If the counters are not complementary or they do not contain the expected values
at any of these checkpoints, the Fail Safe routine is called.

Figure 2. Control flow four-step checking principle

Note: The unique number for the calling point for Component test 1 at the main level is defined as
5, and for the procedure itself it is defined as 7 in this example. The initial value of the
counters are set to 0 and 0xFFFFFFFF for simplicity. The table in the upper right corner of

MS18591V1

Counter Counter_

0x00000005 0xFFFFFFFF

XOR

0xFFFFFFFA
0xFFFFFFFF 0xFFFFFFF3
0xFFFFFFF8 0xFFFFFFF4
0xFFFFFFF3 0 xFFFFFFFF

Counter = Counter + 7

Compon ent test 1

Counter_ = Counter_ - 7

Counter = Counter + 5

Counter_ = Counter_ - 5

Compon ent test 2

Compon ent test n

Flow check point check Counter value
and Counter XOR Counter_ =

0xFFFFFFF F Fail Safe routine

Fail

E
xe

cu
tio

n
flo

w
 s

eq
ue

nc
e

0x0000000C
0x0000000C

0x0000000C

Class B software package AN3307

18/38 AN3307 Rev 6

Figure 2 shows how the counters are changed in four steps and their complementary state
after the last step of the checking policy (return from procedure) is done.

4.2 Package organization

This section describes how the ST solution is organized.

4.2.1 Projects included in the package

As well as the standard firmware and self-test libraries, the installation package includes two
projects for STM32 family - IAR’s EWARM and Keil’s MDK-ARM. The corresponding
Project.eww or Project.uvproj project file must be configured for a specific STM32Fxxx
family device before compilation.

The required linker files are predefined and the defined symbols for concrete configuration
are already declared in the preprocessor sections. For information on certain exceptions
and special cases, refer to Section 4.2.2: Tool-specific integration of the library.

4.2.2 Tool-specific integration of the library

Startup file

It is recommended to reuse the following compiler-specific files:

• startup_STM32fxxx.s file where regular reset handler should be replaced by
STL_StartUp function address and checksum storage area should be defined (in case
of MDK-ARM compiler)

• *.icf (for IAR) and *.sct (for KEIL) linker script files where all the memory regions
including Class B specific ones are defined

• The workspace can also be used as an example (CRC generation is enabled in the
linker/ processing tab of project options with IAR).

• Self-test startup routines do not alter or disable the compiler’s standard C startup files,
variables and stack/heap which are initialized in the usual way.

Defining new variables and memory sizes

A double storage in CLASS_B_RAM and CLASS_B_RAM_REV is necessary to ensure the
redundancy of the safety critical data (Class B). All other variables defined without any
particular attributes are considered as Class A variables and are not checked during the
transparent RAM test.

Class A and Class B variable region sizes can be modified in the linker configuration file.
New Class B variables must be declared in the stm32fxxx_STLclassBvar.h header file,
with the following syntax for the IAR development environment:

__no_init EXTERN uint32_t MyClassBvar @ "CLASS_B_RAM";

__no_init EXTERN uint32_t MyClassBvarInv @ "CLASS_B_RAM_REV";

and with the following syntax for the KEIL development environment:
EXTERN uint32_t MyClassBvar __attribute__((section("CLASS_B_RAM"), zero_init));

EXTERN uint32_t MyClassBvarInv __attribute__((section("CLASS_B_RAM_REV"), zero_init));

Note: The start and end addresses of RAM/ROM regions are not exported when using the KEIL
environment. These address modifications must be edited in the stm32fxxx_STLparam.h

AN3307 Rev 6 19/38

AN3307 Class B software package

37

file, which contains addresses and constants required to do the RAM and ROM (Flash)
tests.

4.2.3 Application demonstration example

A short demonstration example of a user application is attached at main.c file related to the
dedicated project (see Section 5: Class B solution structure). It provides an example of how
the Class B routines can be integrated into an application-specific solution and
demonstration software controlling hardware of dedicated evaluation board.

The demonstration software uses the following hardware:

• On board LCD screen to display basic status messages

• Outputs to drive LEDs indicating that testing routines are executed properly. Dedicated
LEDs are toggled once the partial RAM or Flash memory test is completed and at every
beginning and end of Class B testing procedures. These LED signals can be used to
measure duration and frequency of the tests. Some of the LEDs indicate partial
intervals of initial startup test, too. Please, follow the source code for more details.

Figure 3. Diagnostic LED timing signal principle

4.3 Package configuration and debugging

Sometimes a functional part of the package should be suspended, excluded or included.
The reason could be that certain tests are not required for a given application context. Some
modifications can also useful when the package has to be debugged. This section describes
how the ST solution can be configured, modified and debugged.

4.3.1 Configuration control

The configuration of the software is done at two basic levels. One configuration level is
given by the project settings, where the differences between the STM32 family members is
the factor. This part is mainly done automatically by proper configuration of the project. The
other configuration level is the user settings. All the user configuration settings are
centralized in the Class B configuration file stm32fxxx_STLparam.h. A set of constants
defined in this file control the conditional compilation of some functions. Adjustable
constants must have specific settings to run all the tests properly (see note at Section 4.2.1:
Projects included in the package).

Some runtime tests can be skipped depending on the end application. If the periodicity of
the test is inherent (for example, for a washing machine, the users switch the application on

Complete Class B test period

Partial test
period

Partial test
duration

ai18002b

Class B software package AN3307

20/38 AN3307 Rev 6

or off when it is used), then power on tests are sufficient and transparent/runtime tests can
be avoided. This point must be discussed with the chosen test institute case by case.

For a maximum robustness, the recommendation is to enable the independent watchdog
using the hardware option bytes, and start the window watchdog as soon as possible in the
main routine once the application development is close to the end. This is not done by
default in the STM32 self-test library demonstration.

The stack overflow detection and watchdog self-check are not mandatory according to the
EN/IEC60335-1 standard. They can be disabled or skipped if necessary.

It can help decrease the CPU load during runtime if 32-bit CRC checks are made using the
STM32’s internal CRC generator (32-bit wide CRC computation using the standard
0x04C11DB7 polynomial). Today the KEIL compiler does not support CRC format directly,
but it can be used in conjunction with 16-bit CRC. One possible method could be to compute
a 32-bit checksum in the initial phase and validate it using 16-bit CRC computation
compared with the linker result. The validated 32-bit CRC value can be then saved as a
reference for comparing all the subsequent runtime checks.

The CRC generation is not supported in the KEIL environment; so calling the CRC checking
routines without a proper setting of CHECKSUM area at startup file will cause the
application to reset continuously (as if a failure was detected).

Examples:

1. To disable the CRC check at startup, modify the output logic control used to evaluate
the test result (assuming the computed CRC is different from REF_CRC16):
In the stm32fxxx_STLstartup.c file modify:
if(STL_crc16(CRC_INIT,(u8 *)ROM_START, ROM_SIZE) != REF_CRC16)

into:
if(STL_crc16(CRC_INIT,(u8 *)ROM_START, ROM_SIZE) == REF_CRC16)

2. To replace 16-CRC by 32-bit internal CRC computation, modify stm32fxxx_STLmain.c
file:
RomTest = STL_crc16Run();
by
RomTest = STL_crc32Run();
Then comment the following #defines in file stm32f10x_STLparam.h starting from line
129:
#define DELTA_MAIN
#define LAST_DELTA_MAIN
#define FULL_FLASH_CHECKED ...
and uncomment the corresponding #defines for 32-bit CRC computation. In this case
only the CRC32 algorithm control flow will be checked correctly.

4.3.2 Verbose diagnostic mode

The dedicated USART Tx serial peripheral line is used in verbose mode as a standard
output for Class B status text messages. This mode is useful in the debug phase when the
line can be monitored by an external terminal (the line setting is 115200 Bd, no parity, 8-bit
data, 1 stop bit). The verbose mode is enabled by default and can be disabled during startup
and/or runtime by commenting lines with the STL_VERBOSE_POR and STL_VERBOSE
defined in the Class B configuration file stm32x_stl_param.h. Each successful finishing of
SRAM and Flash test at run time is signalled by printing a specific character '#' or '*' at the
terminal window. The verbose messages can differ slightly between packages. Figure 4
shows an example of verbose mode.

AN3307 Rev 6 21/38

AN3307 Class B software package

37

Figure 4. STM32 demo hyper terminal output window in verbose mode

4.3.3 Debugging the package

If any of the self-test routines fail, an MCU reset is triggered in the FailSafePOR function
defined at stm32xxx_STLstartup.c file. This makes the debugging of the application difficult,
and can cause the debugger to lose the execution context.

While debugging the package it is useful to disable:

• The call to the NVIC_GenerateSystemReset() macro in the FailSafePOR() routine to
prevent losing execution context when resetting the micro

• The control flow monitoring when adding or removing self-test routines, in particular
run-time self-diagnostics

• All the program memory CRC checksum tests when using software breaks in the code
to prevent program memory check sum error occurrence

• The window watchdog to prevent improper service out of the time slot window
dedicated for its refresh.

In the debugging phase it may be useful to enable the verbose diagnostic mode to watch
Class B status text messages via the USART terminal.

Class B solution structure AN3307

22/38 AN3307 Rev 6

5 Class B solution structure

5.1 Integrating the software into the user application

The Class B routines are divided into two main processes: startup and periodic runtime self
tests. The periodic runtime test must be initialized by a set-up block before it is applied. All
the processes are covered by adequate caller-called controls checked at a number of flow
check points. All the class B variables are kept redundantly in duplicate control registers
stored in user-defined Class B variable space. This space is split into two separate RAM
regions which are under permanent control of a transparent test which is part of the runtime
tests.

Figure 5 shows the basic principle of how to integrate the Class B software package into a
user software solution. The reset vector should be forced by the user to jump to the
STL_StartUp() procedure which contains all the system self tests to be performed at
startup. If all these tests pass sucessfully then the standard startup procedure
__iar_program_start() for IAR or Reset_Handler() for the KEIL solution is performed.

Figure 5. Integration of startup and periodic runtime self-tests into the application

While the application is running, periodic tests are performed at certain intervals. To run
them, the users must execute an initialization block by calling STL_InitRunTimeChecks()
routine in the initialization phase and then insert a periodic call to
STL_DoRunTimeChecks() at the main level, preferably in the main loop. Periodic system
interrupts are configured by initializing the SysTick clock frequency and the main time base

RESET

Start up self-test
(STL _StartUp())

Application start up

Periodic runtime self-test init
(STL_InitRunTimeChecks())

Main loop

Task 1

Task 2

Task 3

Time base ISR

ISR 1

ISR 2

Fail Safe routine
(FailSafePOR())

MS18592V2

Periodic runtime self-test
(STL_DoRunTimeChecks())

(SysTick_Handler())

AN3307 Rev 6 23/38

AN3307 Class B solution structure

37

measurement in the initial routine. The RTC is also reset and synchronized to allow
measurement to be performed in the SysTick interrupt service routine. The
SysTick_Handler() interrupt service counts ticks and performs short partial transparent
RAM March C or March X checks at correct intervals (20 ms) when a flag (TimeBaseFlag) is
set to synchronize the rest of the runtime checks called from the main level. The
FailSafePOR() routine itself is described in Section 4.1.1: Fail Safe mode.

5.2 Description of startup self tests

The startup self-tests should be run during the initialization phase as the first check
performed after resetting the micro (see Figure 5). This is done by forcing the reset vector to
the address the start of the STL_StartUp() routine. The structure of the block of startup test
structure is shown in Figure 6 and it includes the following self tests:

• CPU startup test

• Watchdog startup tests

• Flash complete checksum test

• Full RAM March C/X test

• Clock startup test

• Control flow check

These blocks are described in more detail further in this section.

Figure 6. Startup self test structure

MS18593V1

RESET

Watch dogs self-test

Switch PLL ON

Flash integrity check

RAM functional check

Clock frequency check

Control Flow check

Resume C startup Fail Safe routine

Fail

Fail

Fail

Fail

HW Reset

CPU core self-test Fail

Switch PLL Off

Class B solution structure AN3307

24/38 AN3307 Rev 6

5.2.1 CPU startup self-test

The CPU startup self-test tests the core flags, registers and stack pointers for correct
functionality. If any error is found, it jumps directly to the Fail Safe routine. The source files
are written in assembly, and there are two different files for the IAR and KEIL development
environments. The structure is given in Figure 7.

Figure 7. CPU startup self-test structure

MS18594V1

Test Flags

Test R0

Test link register R14

Test R1 to R12

Test OK Fail Safe routine

Fail

Fail

Fail

Fail

Verify ramp pattern R0 to R 12

Test Process Stack Pointer

Test Stack Pointer R13

Fail

Fail

Fail

AN3307 Rev 6 25/38

AN3307 Class B solution structure

37

5.2.2 Watchdog startup self-test

The structure of the test is based on the reset status register content which registers all the
previous reset causes by setting different flags (see Figure 8).

Figure 8. Watchdog startup self-test structure

The standard reset condition (power on, low power, software or external pin flag indicates
the previous reset cause) is assumed at the beginning of the watchdog test. All the flags are
cleared, the IWDG timeout is set to the shortest period so an IWDG reset should then occur.
After the next reset, the IWDG flag should be set and recognized as the sole reset cause.
The test can then continue with the WWDG test. When both flags are set in reset status
register, the test is considered as completed and all the flags in the reset status register are
cleared again.

The users must take care to set both IWDG and WWDG periods properly. Their periods and
the refresh window parameter must be set in accordance with the time base interval(a)
because a normal refresh is performed at the successful end of the periodic runtime test in
the main loop.

a. The system tick interrupt service routine indicates a defined time base interval via a dedicated time base
flag. The run-time test is started at the main level periodically at this interval. As the watchdog control is the
last step of successfully finished run-time tests (and it should be the only place where the watchdog is
refreshed in the main loop) the time base interval must be set in correlation with the watchdog timeout and
vice versa. The watchdog refresh period must be shorter than the watchdog timeout to prevent a reset of
the CPU. Refer to the flowchart in Figure 15.

MS18595V1

IWDG
reset?

Clear All Flags

Test IWDG

Test WWDGWWDG
reset?

Clear All Flags

Test OK

No

No

Yes

Yes

HW Reset

HW Reset

Standard
reset?

Yes

Yes

No

Software Reset
SW Reset

Class B solution structure AN3307

26/38 AN3307 Rev 6

5.2.3 Flash complete checksum self-test

The CRC checksum computation is performed on the entire Flash space defined in the
linker checksum structure. The result of the computation is compared with that of the linker.
If they differ, the test fails. Refer to Section 4.3.3: Debugging the package for additional
comments on CRC procedures.

Figure 9. Flash memory startup self-test structure

5.2.4 Full RAM March C-/X self-test

The entire RAM space is alternately checked and filled word by word with background
patterns (value 0x00000000) and inverse background patterns (value 0xFFFFFFFF) in six
loops as shown in Figure 10. The first three loops are performed in incremental order of
addresses, and the last three in decremented reverse order. The order of tested addresses
is scrambled as it respects the physical order of addresses to prevent and recognize any
cross-talk between physically adjacent memory cells. The scramble principle is shown in
Table 3. The basic physical unit is a pattern (a row) covering a block of 16 words. The
numbers in the table cells represent logical addresses, while their order in the table
represents the physical layout. Bold frames highlight the places where the logical order is
scrambled. Any address scrambling is not present at new ST products. The March test of
RAM is simplified significantly for them.

Some new products have implemented a hardware word protection with single bit
redundancy (hardware parity check) applied on CCM RAM or on part of SRAM at least. The
applied software SRAM March test can be removed completely or partially from both startup
and runtime test sets for this case. The software test can be used only for testing of those
parts of RAM which are not covered by the hardware parity check or as a supplementary
testing method.

Fail Safe() routine

No

Test OK

16-bit CRC =
_check sum

Yes

Compute 16-bit CRC check sum

ai18007b

Table 3. Physical order of RAM addresses organized into blocks of 16 words

Physical order of addresses---->

R
ow

s -->

0 1 3 2 4 5 7 6 8 9 11 10 12 13 15 14

16 17 19 18 20 21 23 22 24 25 27 26 28 29 31 30

32 33 35 34 36 37 39 38 40 - - - - - - -

AN3307 Rev 6 27/38

AN3307 Class B solution structure

37

The algorithm of the entire test and a detailed description one of its scramble loops are
given in Figure 10 and Figure 11. If an error is detected, the test is interrupted and a fail
result is returned. The simplified March X algorithm can also be used. It is faster, as two
middle marching steps are skipped.

Figure 10. RAM startup self-test structure

Figure 11. Scramble test - detailed structure of a single check and fill procedure

MS18597V1

Fill RAM with 0

Scramble test (check ~0 / fill 0)

Test OK Fail Safe routine

Fail

Fail

Fail

Check RAM for 0

Fail

Fail

Increasing order
of addresses

Decreasing order
of addresses

Removed in
March X test

Scramble test (check ~0 / fill 0)

Scramble test (check ~0 / fill 0)

Scramble test (check ~0 / fill 0)

MS18598V1

End of
scramble
pattern ?

Fault

Check last value

Init scramble pointer

Init RAM pointer

End of RAM ?

Fail

Yes

Yes

No

No

Next RAM block

Fill new value

++ scramble pointer

Class B solution structure AN3307

28/38 AN3307 Rev 6

Note: The RAM test is byte oriented but the more precise bit March testing algorithm can be used,
too. This method is more time and code consuming.

5.2.5 Clock startup self-test

The flow chart diagram of the test is shown in Figure 12. It expresses the principle of the
method, graphically. Initially the internal low speed clock (LSI) source is started. The
external high speed source (HSE) is started in the next step. The CPU is still running on the
internal high speed clock source (HSI). The system timer (SysTick) is started with the HSI
clock source while the RTC system runs on the LSI clock source. One complete underflow
cycle of the SysTick timer is performed. The number of LSI periods counted in that cycle
gives the HSI ratio value (number of HSI pulses within the interval corresponding to one LSI
period). This initial HSI ratio measurement is stored as a reference for the next runtime
measurements.

Figure 12. Clock startup self-test subroutine structure

In the next step, the external HSE clock is switched as the new clock source for the SysTick
timer. Another complete underflow cycle of SysTick timer is performed. The number of LSI
periods counted in this cycle gives the HSE ratio (number of HSE pulses in the interval
corresponding to one LSI period). The HSE value is then computed from the known HSI
value and both HSI and HSE ratios measured. If the HSE value deviates from the expected

Start of LSI clock

Start of HSE clock

Test OK Fail Safe rou tine

Fail

Fail

Measure LSI versus HSI

Switch clock from HSI to HSE

Fail

Measure LSI versus HSE

HSE in range
+/- 25% ?

FailNo

Yes

Switch clock from HSE to HSI

Run RTC(LSI) & SysTick (HSI)

=> HSI Ref Ratio

HSE= (HSI * HSI Ref Ratio) / HSE Ratio

=> HSE Ratio

Run RTC(LSI) & SysTick (HSE)

MS18598V1

AN3307 Rev 6 29/38

AN3307 Class B solution structure

37

interval (more than +/- 25% of its nominal value), the CPU clock source is immediately
switched back to HSI, and HSE fail status is returned. Otherwise the test returns the OK
status. In either case, the CPU clock is switched back to the default HSI source after the test
is finished.

Figure 13. Clock frequency measurement principle

MS18599V1

Accepted
range

SysTick
Timer

(on HSI / HSE)

RTC Timer
(always on LSE)

F ~ Ref F << Ref F >> Ref

Run time measurement
Initial reference

measurement

Reference level

Zero level

Auto reload level

Zero level

Class B solution structure AN3307

30/38 AN3307 Rev 6

5.3 Periodic runtime self-test initialization

Assuming that the startup self-tests passed sucessfully and the standard initialization has
been done, then the runtime self-tests package must be initialized just before the program
enters the main loop performing regular calling of the runtime self-tests (refer to Figure 5).
The timing should be set properly to ensure the procedures of the runtime tests are called at
the necessary intervals.

At first all the class B variables are initialized. Zero and its complement value are stored into
every class B variable complementary pair. The magic pattern is then stored at the top of the
space separated for the stack. The timer peripherals are configured for the tick interval
measurement and master clock frequency measurement. The same method as the startup
test is used.

Figure 14. Periodic runtime self-test initialization structure

MS18900V1

Class B variables init

Write pattern on stack boundaries

Main time base init (SysTick)

AN3307 Rev 6 31/38

AN3307 Class B solution structure

37

5.4 Description of periodic runtime self-tests

5.4.1 Runtime self-test structure

The Runtime self-test is a block of tests which is performed periodically at the main loop
level. The execution period of the block is based on timebase interrupt settings. Before the
first run, all the tests included must be initialized by the runtime initialization phase block
(refer to Figure 5). Most of these tests are performed at the main loop level. Only the partial
transparent RAM test and the backup of the latest clock measurement results are performed
in the SysTick timer interrupt service routine at proper configurable intervals, signaled by
TimeBaseFlag settings. It includes the following self-tests:

– CPU core partial runtime test

– Stack boundaries overflow test

– Clock runtime test

– AD MUX self-test (not implemented)

– Interrupt rate test (not implemented)

– Communication peripherals test (not implemented)

– Flash partial CRC test including evaluation of the complete test

– Independent and window watchdog refresh

– Partial transparent RAM March C-/X test (under system interrupt scope)

Figure 15. Periodic runtime self-test and timebase interrupt service structure

Note: The tests of the analog part, communication peripherals and application interrupts are not
included and their implementation depends on the specific microcontroller device
capabilities and user application needs.

MS18901V1

Partial CPU core test

Stack boundaries test

Clock test

Partial Flash test

Control flow check

IWDG and WWDG refresh

Fail

Interrupt rate test

Comm peripherals test

A/D MUX test

Not
implemented

Fail Safe routine

Partial
RAM test

Return

Fail

SysTick ISR

From main

Resume main

TB_Flag?

Tick > Time
Base?

Tick++

TB_Flag= False

Tick = 0
TB_Flag = True

True

False

Yes

No

Clock measurement

Fail

Fail

Fail

Fail

Fail

Fail

Fail

Class B solution structure AN3307

32/38 AN3307 Rev 6

5.4.2 CPU light runtime self-test

The light runtime CPU core self-tests is a simplified version of the runtime test described in
Section 5.4.1: Runtime self-test structure. The flags and stack pointers are not tested. If an
error code is returned the Fail Save procedure is called.

Figure 16. CPU light runtime self-test structure

5.4.3 Stack boundaries runtime test

This test checks the stack overflow by the integrity of magic pattern stored at the top of the
space reserved for the stack. If the original pattern is corrupted, the Fail Safe routine is
called. The pattern is placed at the lowest address reserved for the stack area. This area
differs among the devices and applications. User has to define sufficient area for stack and
ensure proper placement of the pattern.

Figure 17. Stack overflow runtime test structure

1. The high-end pattern has to be checked for the stack underflow case when the stack area is not placed at
the physical end of the RAM space.

MS18902V1

Push R0 - R13

Pop R0 – R13

Test OK Fail Safe routine

Test R0 – R13
Fail

Verify ramp pattern R0 – R13
Fail

MS39925V2

Check border patterns(1)

Test OK Fail Safe routine

Fail
Any pattern corruption?

Yes

No

AN3307 Rev 6 33/38

AN3307 Class B solution structure

37

5.4.4 Clock runtime self-test

The clock runtime self-test uses a similar procedure to the one used in the startup self-test.
A few underflow cycles of the SysTick timer are performed at background processing level.
The number of LSI periods counted during this period by the RTC timer gives the runtime
HSE ratio (number of HSE pulses within the interval corresponding to the LSI period) which
is stored as a Class B variable by the STL_MeasurePeriod() function called by the SysTick
interrupt service routine. The HSE value is then computed at the main processing level in
the clock run self-test. The inputs are the same as in the startup test: known HSI reference
ratio value (stored in the initial startup test phase) and the currently measured HSE ratio. If
the computed HSE value deviates from the expected interval (more than +/- 25% of its
nominal value) the CPU clock source is immediately switched back to HSI, and HSE fail
status is returned. Otherwise the test returns OK status.

Figure 18. Clock runtime self-test structure

MS18903V1

Test OK Fail Safe routine

FailHSE in range
+-25 %?

No

Yes

HSE = (HSI * HSI Ref Ratio) / HSE Run Ratio

Class B solution structure AN3307

34/38 AN3307 Rev 6

5.4.5 Partial Flash CRC runtime self-test

The partial 16-bit CRC checksum of the block in Flash is performed at each step. The
boundaries are given by the structure stored by the linker. When the last block is reached,
the CRC checksum is compared with the value stored by the linker. If a difference is found,
the Fail Safe routine is called, otherwise a new computation cycle is initialized. Refer also to
Section 4.3.3: Debugging the package for additional comments on CRC procedures.

Figure 19. Partial Flash CRC runtime self-test structure

5.4.6 Watchdog service in runtime test

If the runtime service block is successfully completed, the window and independent
watchdogs should both be refreshed as a last step, just before returning to the main loop.
For the watchdogs to be refreshed correctly, a proper timing of the call to the runtime block
is essential. The period when the block should be called is signaled internally by a time base
flag which is tested at the beginning of the STL_DoRunTimeChecks() routine (see
Figure 15). The users must ensure not to miss calling this procedure at the main level to be
able to react properly to any change in the time base flag and consequently refresh the
watchdogs at the correct intervals.

To use the watchdogs efficiently, it is important to keep the structure of the application with
only one refresh placed in the main loop. There should be no other watchdog refreshes
except the one in the STL_DoRunTimeChecks() routine. Sometimes it may also be
necessary to refresh watchdogs in the initialization phase of the flow. In this case, the
refresh should be outside any software infinite loop. Ideally it should only be put in a
straightforward part of the code.

Compute continuous CRC

FLASH_pointer
at ROM_END?

CRC =
_checksum?

FLASH_Pointer ++

Test On going

Init CRC computation

Test OK FailSafe () routine

No No

Yes

Yes

ai18016b

AN3307 Rev 6 35/38

AN3307 Class B solution structure

37

5.4.7 Partial RAM runtime self-test

The partial transparent RAM test is performed inside the timebase interrupt service routine.
The test covers the part of the RAM allocated to class B variables. One block of six bytes is
tested in each step of the test. To guarantee coupling fault coverage, the blocks of memory
are overlapped by two side bytes from one test step to the other. The order of testing the
bytes in the block is scrambled with respect to the physical order of addresses in memory.
For more details see Section 5.2.4: Full RAM March C-/X self-test.

Figure 20. Partial RAM runtime self-test structure

In the first phase, the content of the block is stored in the storage buffer. Marching
destructive tests are performed over all the bytes of the tested RAM block in the next phase.
Then, in the final phase of this step, the original content is restored from the storage buffer.
The March X algorithm is faster because two middle marching steps are skipped. As a last
step of the test sequence, the storage buffer itself is tested by a marching test. The buffer is
tested together with the next two additional bytes to cover coupling faults in the buffer itself.
Then the whole test is reinitialized and it starts from the beginning. If any fault is detected,
the Fail Safe routine is called.

RAM_pointer = End
of Class B RAM?

Save content of RAM
block into the Buffer

Apply March test to the
RAM block

Restore content of RAM
block from the Buffer

RAM_pointer += block_size

Test On going

Apply March test
to the Buffer

FailSafe () routineTest OK

RAM_pointer = Start
of Class B RAM

Yes

No

Fail

Fail

ai18017b

Class B solution structure AN3307

36/38 AN3307 Rev 6

Figure 21. Fault coupling principle used at partial RAM runtime self-test

Note: The scrambling of physical addresses is respected in both ascending and descending tests,
if applicable.

Note: Steps 2 and 3 are skipped when the March X algorithm is used.

D0' D1' D2'
D3’ D4' D5'

D1 D4* D3*D2
D5 D1 D4* D3*D2

D5

D4 D1* D2*D3
D0

D5*

Step n Step n+1 Step n 1

Tested area
Overlap

Overlap

Storage buffer

D0*
D1 D4* D3*D2
D5

D0' D1' D2'
D3’ D4' D5'

D0*
D1 D4* D3*D2
D5

D0' D1' D2'
D3’ D4' D5'

Phase I - STORE

Phase III - RESTORE

Ascending Test Descending Test

… ..

D0*
D0*

D0' D1' D2'
D4' D5'

D0' D1' D2'
D3’ D4' D5'

MS18904V1

TEST TEST*TEST TEST*
TEST*

TEST Phase II - Test

D3’

+

Table 4. March C- phases in RAM partial test

March phase Partial bytes test over the block Address order

Initial Write 0x00 pattern Increasing

1 Test 0x00 pattern, write 0xFF pattern Increasing

2 Test 0xFF pattern, write 0x00 pattern Increasing

3 Test 0x00 pattern, write 0xFF pattern Decreasing

4 Test 0xFF pattern, write 0x00 pattern Decreasing

5 Test 0x00 pattern Decreasing

AN3307 Rev 6 37/38

AN3307 Revision history

37

6 Revision history

Table 5. Document revision history

Date Revision Changes

09-Dec-2010 1 Initial release

27-May-2011 2
Added the following text to cover page: The associated firmware
package is available upon request only. Please contact your local ST
sales office for more information.

29-Oct-2012 3

Updated document throughout to add support of STM32F0 and
STM32F3 devices.

Modified the Introduction.

Added Section 1: Package variation overview and Section 2: Main
differences between STM32F packages and their possible
modifications.

Modified Section 4.2: Package organization, Section 4.3.1:
Configuration control and Section 4.3.2: Verbose diagnostic mode.

Removed Appendix A.

26-Apr-2013 4

Modified title and removed Table 1. Applicable products and note.

Updated Introduction, Package variation overview, and Section 2:
Main differences between STM32F packages and their possible
modifications.

Modified Clock tests and time base interval measurement, SRAM
tests and Flash memory tests.

Added Duration of the tests.

Updated Section 4.2.3: Application demonstration example and
Section 5.2.4: Full RAM March C-/X self-test.

Modified Section 5.4.1: Runtime self-test structure and note after
Figure 21: Fault coupling principle used at partial RAM runtime self-
test.

30-Mar-2016 5
Updated cover adding STM32-CLASSB-SPL part number.

Updated Figure 1: Example of RAM memory configuration.

20-Aug-2019 6

Updated:

– Section 4.1.2: Class B variables

– Figure 1: Example of RAM memory configuration

– Section 5.4.3: Stack boundaries runtime test

– Figure 17: Stack overflow runtime test structure

AN3307

38/38 AN3307 Rev 6

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

	1 Package variation overview
	2 Main differences between STM32F packages and their possible modifications
	3 Compliance with IEC and VDE standards
	Table 1. MCU parts which must be tested for Class B compliance
	3.1 Generic tests included in the STM32F firmware library
	Table 2. Overview of methods used in the micro-specific tests provided with this application note

	3.2 Application-specific tests not included in the ST firmware library

	4 Class B software package
	4.1 Basic software principles used
	4.1.1 Fail Safe mode
	4.1.2 Class B variables
	Figure 1. Example of RAM memory configuration

	4.1.3 Class B flow control
	Figure 2. Control flow four-step checking principle

	4.2 Package organization
	4.2.1 Projects included in the package
	4.2.2 Tool-specific integration of the library
	4.2.3 Application demonstration example
	Figure 3. Diagnostic LED timing signal principle

	4.3 Package configuration and debugging
	4.3.1 Configuration control
	4.3.2 Verbose diagnostic mode
	Figure 4. STM32 demo hyper terminal output window in verbose mode

	4.3.3 Debugging the package

	5 Class B solution structure
	5.1 Integrating the software into the user application
	Figure 5. Integration of startup and periodic runtime self-tests into the application

	5.2 Description of startup self tests
	Figure 6. Startup self test structure
	5.2.1 CPU startup self-test
	Figure 7. CPU startup self-test structure

	5.2.2 Watchdog startup self-test
	Figure 8. Watchdog startup self-test structure

	5.2.3 Flash complete checksum self-test
	Figure 9. Flash memory startup self-test structure

	5.2.4 Full RAM March C-/X self-test
	Table 3. Physical order of RAM addresses organized into blocks of 16 words
	Figure 10. RAM startup self-test structure
	Figure 11. Scramble test - detailed structure of a single check and fill procedure

	5.2.5 Clock startup self-test
	Figure 12. Clock startup self-test subroutine structure
	Figure 13. Clock frequency measurement principle

	5.3 Periodic runtime self-test initialization
	Figure 14. Periodic runtime self-test initialization structure

	5.4 Description of periodic runtime self-tests
	5.4.1 Runtime self-test structure
	Figure 15. Periodic runtime self-test and timebase interrupt service structure

	5.4.2 CPU light runtime self-test
	Figure 16. CPU light runtime self-test structure

	5.4.3 Stack boundaries runtime test
	Figure 17. Stack overflow runtime test structure

	5.4.4 Clock runtime self-test
	Figure 18. Clock runtime self-test structure

	5.4.5 Partial Flash CRC runtime self-test
	Figure 19. Partial Flash CRC runtime self-test structure

	5.4.6 Watchdog service in runtime test
	5.4.7 Partial RAM runtime self-test
	Figure 20. Partial RAM runtime self-test structure
	Figure 21. Fault coupling principle used at partial RAM runtime self-test
	Table 4. March C- phases in RAM partial test

	6 Revision history
	Table 5. Document revision history

