£— AN3995
YI Application note

Getting started tutorial
for SPC564Bxx and SPC56ECxx family

Introduction

The SPC564Bxx and SPC56ECxx is a family of Power Architecture® based microcontrollers
that target automotive vehicle body and gateway applications such as Central body
controller, Smart junction boxes, Front modules, High end gateway, Combined Body
controller and gateway.

These dual core architecture devices contain an e200z4d and e200z0h core, compliant with
the Power Architecture standard.

It provides the scalability needed to implement platform approaches and delivers the
performance required by increasingly sophisticated software architectures.

These devices feature up to 3 MB of internal Flash and up to 256 KB of internal SRAM
memory.

It operates at speeds of up to 120 MHz and offers high performance processing optimized
for low power consumption.

The SPC564Bxx and SPC56ECxx family expands the range of the SPC560B/C
microcontroller family but differs from it by being the first device to feature the e200z4d core
and the e200z0h in a dual core configuration.

The differences between this family and the previous one (SPC560B/C) mean that the
initialization and configuration are different.

This application note details the steps required to properly initialize the SPC564Bxx and
SPC56ECxx from reset as well as how to control the second core. An example code is
described throughout the application note to explain the steps.

It is intended that this application note is read along with the SPC564Bxx and SPC56ECxx
Reference Manual, RM0070 that can be obtained from the STMicroelectronics® website at
http://www.st.com (see Section C.1: Reference document).

September 2013 Doc ID 022384 Rev 2 1/49

www.st.com

http://www.st.com

Contents AN3995

Contents
1 Application example description 6
2 Microcontroller boot 7
2.1 Boot mechanism 7
2.1.1 Bootable sectorsand RCHW 8
3 e200z4d initialization and examplecode 10
3.1 Creating e200z4d Flash bootfile 10
3.11 MMU remarks 10
3.1.2 Configure MMU for SRAM i e 13
3.1.3 Initialize the SRAMECC e 14
3.14 Configure MMU for Flash 14
3.15 Configure MMU for Peripheral Bridge 16
3.1.6 Memory initialization e 16
3.1.7 Performance Hints Initialization 19
3.2 €200z4d device configurationfromCcode 24
3.2.1 Disablewatchdog i 24
3.2.2 Mode configurationand clocking 25
3.2.3 Clock & PLL configuration, 28
3.24 Configure Cache e 29
3.25 Starting the e200z0h core i 30
3.3 Thee200z4dexamplecode i 31
4 €200z0h Initializations and examplecode 32
4.1 €200z0Nh Startup COAe . . . oo 32
Appendix A Application codeexample i .. 34
Al main.cfile 34
A2 crt0O corezd Flash.s i e e 38
Appendix B Linkerfile 44
Appendix C Furtherinformation 47
C.1 Referencedocument. i a7

2/49 Doc ID 022384 Rev 2 KYI

AN3995 Contents

C.2 Acronyms and abbreviations. e 47

ReVISION NISTOrY . .o 48

KYI Doc ID 022384 Rev 2 3/49

List of tables AN3995

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.

4/49

Boot mode Selection 7
RCHW field desCription.o e e e 9
Example of MMU configuration. e 12
Memory partition sSChema e 44
Acronyms and abbreviations e a7
Document revision history 48

4

Doc ID 022384 Rev 2

AN3995

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.

BOOt SECIOr StIUCIUIE. o e e e e e 9
SPC564Bxx/SPC56ECxx block diagram 11
MMU configuration code for SRAM e 13
SRAM ECC initialization code 14
MMU configurationcodefor Flash 15
Code to copy configuration code from Flashto SRAM. 15
MMU configuration code for peripheralsarea. i 16
Booting flow using GHS startup libraries i 17
Startup file: __ghs _board_ memory init 18
Startup file: branch to GHS startup libraries 18
Startup file: enable BTB and SPE. e e i 19
Startup file: Flash Configurationcode. i 20
Startup file;: SRAM wait states configurationcode 20
Startup file: XBAR register configurationvalues. 21
Startup file: XBAR configurationcode 22
Cache Configuration Code e e 23
Environment configurations code e 24
SWTdisabling code e 25
Mode entry diagram e 26
Mode Initialization Code 26
Peripheral Control Registers. e e 27
Run peripheral control registers e 27
System clock dividers configurationcode. e 28
PLL configuration Code. it 29
Application code: the mainfunction e 31
€200z0h startup Codettt e e 33

Doc ID 022384 Rev 2 5/49

Application example description AN3995

1

6/49

Application example description

This application note describes the necessary steps to configure the device in order to run
two independent codes on the two cores.

This family is quite different from the previous one, indeed apart from the memories size
now it has been introduced the dual core concept: in the SPC564Bxx and SPC56ECxx
family the primary core is an e200z4d while the second one is a e200z0h.

While the second core (€200z0h) is thought only as performance core (only to speed up the
execution), the introduction of the e200z4d implies that the user has a more powerful
architecture to cope with the application tasks.

The availability of MMU, ICache and Signal Processing instructions enhance the
performance, but require the correct configuration.

The example code described herein toggles two LEDs with each core running the
application independent of the other.

It has been chosen to treat the two applications separately to better understand the dual
core concept even for compiler projects: of course each project produces one executable
image. The user then has to program the device with both executable images (the
instruction codes are located in different places).

Following this strategy the device is perceived as two separate MCUs each with proprietary
Flash and SRAM.

In this application note, it has been decided to split (in equal parts) the Flash and the SRAM
for both cores.

The memory partition and the XBAR (crossbar architecture) have been optimized for dual
core operations and in particular to give priority to e200z4d core (see Section 3.1.7:
Performance Hints Initialization):

e The SRAM is split over 2 slave ports, 0x4000_0000 to 0x4001_FFFF on slave port 2
(used by e200z4d) and 0x4002_0000 to 0x4003_FFFF on slave port 3 (used by
€200z0h);

e There are 2 Flash ports, z4 instruction port on slave port 0 and a second Flash port for
everything else on slave port 1.

By splitting the SRAM in the linker file(s) so that the e200z4d has access to one block and
the e200z0h has access to the other block, crossbar contentions are generally avoided
between the cores for SRAM access® (see Appendix B: Linker file).

a. When, for example, there are large amounts of DMA transfers to/from SRAM it could be useful to use the
SRAM allocated to the processor which allows fewer accesses to SRAM. User has to take care that none of
this prevents either core from writing the full SRAM array so care has to be taken in software (using
semaphores and / or software interrupts) to ensure memory coherency.

Doc ID 022384 Rev 2 KYI

AN3995

Microcontroller boot

2

2.1

Note:

Microcontroller boot

This chapter describes the configuration required by the user, and the steps performed by
the microcontroller®® and in particular, by the SSCM (System Status and Configuration
Module), in order to achieve a successful boot from Flash memory.

For further information, look at SPC564Bxx and SPC56ECxx Reference Manual (see
Section C.1: Reference document).

Boot mechanism

SPC564Bxx and SPC56ECxx family (as other SPC56xx devices), has two hardware boot
configuration pins, FAB (Force Alternate Boot mode) and ABS (Alternate Boot Select).
These 2 external pins on the microcontroller are latched during reset and used by the SSCM
to determine whether the microcontroller boots from Flash memory or attempts a serial
download via FlexCAN or LINFlex (RS232) (see Table 1).

In this application note, the focus is on the default operating mode: the Flash boot mode.

Table 1. Boot mode selection
Mode FAB pin (PA[9]) ABS pin (PA[8])
Flash Boot (Default Mode) 0 -
Serial Boot (LINFlex) 1 0
Serial Boot (FlexCAN) 1 1

When the device is powered on, the SSCM (System Status Configuration Module) searches
the pre-determined locations in Flash for a valid RCHW (Reset Configuration Half Word)
(see Section 2.1.1: Bootable sectors and RCHW).

e Ifavalid BOOT_ID is found, the SSCM reads the VLE bit and the boot vector address
(as well as the CSE block size).

e Ifavalid BOOT_ID is not found, the SSCM starts the process of putting the
microcontroller (€200z4d) into static mode(®). See SPC564Bxx and SPC56ECxx family
Reference Manual for detailed information (see Section C.1: Reference document).

The static mode differs from safe mode. Static mode is a non-operational mode which can
only be entered via the BAM (Boot Assist Module).

b. The booting mechanism has an impact only on the e200z4d core.
c. Static Mode Sequence:
1. The SSCM creates a 4 KB MMU page at the start of the BAM with the VLE bit set (the BAM is VLE code).

2. The SSCM then sets the CPU core (€200z4d) instruction pointer to the BAM address and the core starts to
execute the code to enter static mode as follows:
- the Software Watchdog Timer (SWT) is enabled;
- the core executes the "wait" instruction which halts the core.

After the microcontroller enters static mode, the SWT periodically resets the core (approximately every 10 ms)
to re-attempt a boot from Flash memory.

Doc ID 022384 Rev 2 7149

Microcontroller boot AN3995

Note:

211

Note:

8/49

In all these conditions, the e200z0h core remains held in reset: for further information please
refer to SPC564Bxx and SPC56ECxx Reference Manual, RM0070 (see Section C.1:
Reference document).

In order to access memory (for the e200z4d core), a valid MMU TLB entry has to be
created. The SSCM does this automatically by reading the reset vector and modifying TLB
entry O to create a 4 KB page containing the reset vector address.

The MMU VLE bit is set depending on the status of the VLE bit within the RCHW. The 4 KB
MMU page(d) must be 4 KB aligned. This means that the most efficient place to put the
application code is immediately after the boot sector (see Section 2.1.1: Bootable sectors
and RCHW). So in order to maximize the available space inside the 4 KB block, the reset
vector should be set close to the start of a 4 KB boundary.

For example, if the reset vector is set to address 0x0000_0020, then the SSCM aligns the 4
KB MMU page to the start of the 4 KB aligned block containing address 0x0000_0020 — an
MMU page starting at address 0x0000_0000.

Similarly, if the reset vector is set to address 0x0000_O0FFO which is towards the end of an
aligned 4 KB block, the MMU page still has to start at 0x0000_0000 leaving very little room
in the 4 KB MMU page for code execution.

Finally, the SSCM sets the e200z4d core instruction pointer to the reset vector address and
starts the core running.

Bootable sectors and RCHW

In order to successfully boot from Flash memory, the user must program two 32-bit fields
into one of the 5 possible boot blocks (see Figure 1).

The entities to program are:

e 16-bit Reset Configuration Half Word (RCHW), which contains:

— A BOOT_ID field that must be correctly set to Ox5A in order to "validate" the boot
sector;

— AVLE bit which configures the initial MMU entry to either Power Architecture Book
VLE or Power Architecture Book IlI-E as described later on in this chapter;

e 32-bit reset vector (this is the start address of the user code)
The boot sector also contains a 32-bit field containing the size of the block of data to be
checked by the CSE (Cryptographic Security Engine) during a secure boot. See

SPC564Bxx and SPC56ECxx family Reference Manual, RM0070 for detailed information
(Section C.1: Reference document).

Application code can then be programmed from offset address 0x000C.

d. The 4 KB block provides sufficient space to the user to:
1. Add MMU entries for SRAM and peripherals
2. Perform standard system initialization tasks (initialize the SRAM, setup stack, copy constant data)

3. Transfer execution to RAM, re-define the Flash memory MMU entry and transfer execution back to Flash
memory.

Doc ID 022384 Rev 2 KYI

AN3995

Microcontroller boot

Figure 1. Boot sector structure

0x0000_0000 Boot sector 0
32 KB
0x0000_8000 Boot sector 1 Boot sector structure
16K8 BitO 678 15 16 Bit 31
0x0000_C000 Boot sector 2 0x0 w BOOT_ID
(RCHW) Reserved S (OX5A) Reserved
16 KB
0x0001_0000 Boot sector 3 0x4 32-bit reset vector (points to start address of application code)
0x8 Size of Flash memory array to be verified by CSE
32KB (see the CSE chapter)
0oxC Application code (from offset 0xC and onward)
0x0001_8000 Boot sector 4
32 KB
Code Flash memory

The structure of RCHW is described in Table 2:

Table 2. RCHW field description

Field Description
VLE Bit
VLE 0 MMU TLB Entry 0 is configured for Power Architecture Book IlI-E.
1 MMU TLB Entry 0 is configured for Power Architecture Book VLE.
Boot identifier.
BOOT_ID

If BOOT_ID = 0x5A, the boot sector is considered valid and bootable.

Doc ID 022384 Rev 2 9/49

€200z4d initialization and example code AN3995

3

3.1

3.1.1

10/49

e200z4d initialization and example code

Creating e200z4d Flash boot file

In order to run an application from Flash memory, the user code must perform a series of
mandatory actions for proper execution:

Provide reset vector in the location after the RCHW (Section 2.1: Boot mechanism);
Configure MMU;
Initialize SRAM (ECC) (see Section 3.1.3: Initialize the SRAM ECC);

Configure wait states for Flash and SRAM (see Section 3.1.7: Performance Hints
Initialization);

Configure XBAR (see Section 3.1.7: Performance Hints Initialization);
Enable SPE (Signal Processing Extension) instructions if needed by the application

Enable BTB(®) (Branch Prediction Buffers) (see Section 3.1.7: Performance Hints
Initialization).

MMU remarks

The e200z4d core has a Memory Management Unit (MMU)(f) which prohibits access from
the e200z4d core to the XBAR (Crossbar) unless a valid MMU entry is configured for that
access.

The user has to take care that the MMU only protects access from the e200z4d core to the
crossbar so that, it does not affect any of the other crossbar masters such as the e200z0h
core, FlexRay or the eDMA (see Figure 2).

e.

f.

See section €200z4 core in RM0070 (Section C.1: Reference document)

MMU is not present on e200z0h core

4

Doc ID 022384 Rev 2

AN3995 €200z4d initialization and example code

Figure 2. SPC564Bxx/SPC56ECxx block diagram

[J-r
JTAG Port CSE = SRAM Code Flash|| Data Flash
'§ 2x128KB| |2x1.5MB 64 KB
Nexus Port N 3+ <-> o
T 2 o
Instructions 3
= o
> | NMIO €200z0h (Masten S| 5 2x SRAM Flash memory
- < Masten) > 2 % controller controller
Voltage . g nstructions g | o
e IR e N ¥ I
(Master) 3 (Slave)
NMIO > D
* + - (Slave)
X————" -
Interrupt requests (Slave)
NMIL from peripheral—3|)
blocks —bMAMU
MPU
INTC || registers
Clocks eDMA
CMU CAN
EMPLL > (Master Sampler| STCU
A A
_ A o A A
X
Semaphores| | |RTC/API| 4x STM| | SWT || ECSM | [PIT RTI MC_RGM||MC_CGM| MC_ME (|MC_PCU BaM ||| sscm ||| wkPu
R R R R TR R AR
Y Y VYV Y Y v v Y Y Y
Peripheral Bridge |
SIUL 10ch® | [27chor33ch® | 2x32ch 10 % 8 x) 6 x
1x 12-bit 1x1obit [CTU < " Lios | | LINFlexD| | pspi e FlexCAN
Interrupt ADC ADC
Request External A A A A
- Interrupt A A
Request
GPIO &
Pad Control
[YYYYY™ >
Y 3) Y (3 % Y Y Yy v
o XX X & X X X
Legend: ADC Analog-to-Digital Converter JTAGC JTAG controller
BAM Boot Assist Module LINFlexD Local Interconnect Network Flexible with DMA support
CSE Cryptographic Services Engine MC_ME Mode Entry Module
CAN Controller Area Network (FlexCAN) MC_CGM Clock Generation Module
CMU Clock quitor_Unit) MC_PCU Power Control Unit
CTU Cross Triggering Unit MC_RGM Reset Generation Module
DMAMUX DMA Channel Multiplexer MPU Memory Protection Unit
DSPI Deserial Serial Peripheral Interface Nexus Nexus Development Interface
eDMA enhanced Direct Memory Access NMI Non-Maskable Interrupt
FlexCAN Controller Area Network controller modules PIT_RTI Periodic Interrupt Timer with Real-Time Interrupt
FEC Fast Ethenet Controller RTC/API Real-Time Clock/ Autonomous Periodic Interrupt
eMIOS Enhanced Modular Input Output System SIUL System Integration Unit Lite
ECSM Error Correction Status Module SRAM Static Random-Access Memory
FMPLL Frequency-Modulated Phase-Locked Loop SSCM System Status Configuration Module
FlexRay FlexRay Communication Controller STM System Timer Module
12C Inter-integrated Circuit Bus SWT Software Watchdog Timer
IMUX Internal Multiplexer STCU Self Test Control Unit
INTC Interrupt Controller WKPU Wakeup Unit
Notes: 1) 10 dedicated channels plus up to 19 shared channels. See the device-comparison table.

2) Package dependent. 27 or 33 dedicated channels plus up to 19 shared channels. See the device-comparison table.
3) 16 x precision channels (ANP) are mapped on input only I/O cells.

KYI Doc ID 022384 Rev 2 11/49

€200z4d initialization and example code AN3995

Note:

12/49

As previously described in the Section 2.1: Boot mechanism the MMU is not automatically
configured(g) apart from a small 4 KB page containing the reset vector address in the TLB
entry O.

This means that the MMU must be configured by the user, before any access outside to the
block mapped by the SSCM.

In a typical application, the e200z4d core accesses Flash, SRAM and the peripheral blocks
and therefore MMU access needs to be granted.

An example of configuration is showed in Table 3.

This configuration is quite similar to the ones implemented in this application note with the
exception of the SRAM 2 memory area (second row of the table). The relative TLB was not
configured because this area is used by the performance core (e200z0h).

The e200z4d core has 16 MMU TLB entries and these allow the user to increase if needed
the protection granularity by splitting the memory in several blocks.

For further information see Memory Protection Unit section in the Reference Manual (see
Section C.1: Reference document).

Table 3. Example of MMU configuration

Memory area Memory address Size Closest MMU size
SRAM 1 0x4000_0000 - 0x4001_FFFF 128KB 128KB
SRAM 2 0x4002_0000 - 0x4003_FFFF 128KB 128KB
:"ﬁgrim'”di”g shadow 0x0000_0000 - 0X00FF_FFFF 16MB 16MB
Peripherals 0xC000_0000 - OXFFFF_FFFF 1GB 1GB

The user has to take into account setting up the stack (see Section 3.1.3: Initialize the
SRAM ECCQC), prior to performing any RAM accesses like executing the mandatory ECC
initialization, or before any peripheral register writes, the memory spaces have to be
configured through the MMU entries.

These considerations both with small block (4KB) mapped by SSCM on TLB entry 0 by
default (see Section 2.1: Boot mechanism) imply that all MMU regions have to be mapped
at the start of the boot code.

MMU pages must not overlap and must also be configured on a boundary matching their
size (for example, 4 KB MMU page must sit on a 4 KB boundary).

Moreover, it is strongly recommended that the user doesn’t change the MMU configuration
of a memory location currently being accessed, otherwise there is potential for errors.

The suggested order of MMU configuration could be defined as follows:

g. Inthis device family the Boot Assist Module (BAM) does not run when the device performs a normal Flash boot
then the MMU configurations must be done by the user.

Doc ID 022384 Rev 2 KYI

AN3995 €200z4d initialization and example code
1. Configure the MMU TLB entry for RAM. In this manner, the user code can initialize the
SRAM ECC (see Section 3.1.3: Initialize the SRAM ECC).
2. Configure the MMU TLB entry for Flash(™ (see Section 3.1.4: Configure MMU for
Flash)
— Copy configuration code to SRAM®
— Jump to first instruction of this code in SRAM and execute it
— Transfer execution back to the Flash
3. Configure the MMU TLB entry for the IPBridge (peripherals space) (see Section 3.1.5:
Configure MMU for Peripheral Bridge)
3.1.2 Configure MMU for SRAM

In order to configure MMU TLB entries, there are four MMU Assist registers (MAS) which
are written with the TLB entry number, start address and size of the MMU entry and other
information such as whether the page is VLE or BookE instructions.

In Figure 3 is showed a scratch code of MMU configuration(j) for RAM using TLB entry 1:

Figure 3. MMU configuration code for SRAM

#/***/

#/* MMU configuration code for SRAM */
#/* TLB1, Entry 1 128KB 0x4000_0000 to 0x4001_ FFFF */
#/***/
e lis r3, 0x1001
mtmas0 r3 #/* MASO */

e lis r3, 0xC000
e _or2i r3, 0x0380

mtmasl r3 #/* MAS1 0xC0000380 (128Kb) */

e lis r3, 0x4000
e or2i r3, 0x0028
mtmas2 r3 #/* MAS2 = 0x40000028 */

e lis r3, 0x4000
e or2i r3, 0x003F
mtmas3 r3 #/* MAS3 = 0x4000003F */

tlbwe #/* Write the entry to the TLB */

The SRAM space mapped through the TLB 1 is half of the space available on the device®
and it corresponds to the bank placed at the lower addresses.
The example shown here is using this as the upper bank is reserved for the e200z0h core.

h. In this application note the strategy suggested is to re-uses the TLB 0 to map all Flash memory space.

i. User can use this mechanism at this time (the execution from SRAM) to configure the wait states for Flash (see
Section 3.1.7: Performance Hints Initialization): to avoid executing code from Flash while wait states are
changing. This means that should copy also this configuration code to SRAM at this time and execute it with
the MMU ones.

j. After the MAS registers are written, the TLB is validated with a single “tlowe” (TLB Write Entry) instruction
k. This device family has two 128KB contiguous banks start at 0x4000_0000

Doc ID 022384 Rev 2 13/49

€200z4d initialization and example code AN3995

3.1.3

3.1.4

14/49

This means that the e200z4d core doesn’t need to have any mapping on this memory space
(see Section 1: Application example description).

Initialize the SRAM ECC

The SRAM in the SPC564Bxx and SPC56ECxx family (as other SPC56xx devices) has the
ECC (Error Correction Code) protection.

ECC checks are performed during the read portion of an SRAM ECC read/write (R/W)
operation, and ECC calculations are performed during the write portion of a R/W operation.
Because the ECC bits can contain random data after the device is powered on, the SRAM
must be initialized by executing 32-bit write operations prior to any read accesses to avoid
ECC error and therefore an exception being raised.

Figure 4 shows a scratch code of SRAM initialization.

Figure 4. SRAM ECC initialization code

#/**/

#/* Initialize all SRAM space by copying all 32GPR's to RAM (fast) */
#/* Counter defines number of 32 x 32-bit words needed to write to RAM*/
#/**/
e lis r5, _SRAM ADDR Z4@h #/* SRAM start address defined in the linker file */
e or2i r5, _SRAM ADDR Z4@l

e lis r6, _SRAM SIZE zZ4@h #/* SRAM size defined in the linker file */
e or2i r6, _SRAM SIZE z4el

e srwi r6, r6, 0x7 #/* Divide SRAM size by 128 bytes */
mtctr ré6 #/* Move to counter for use with "bdnz" */

sram_loop:

e stmw r0,0x0(r5) #/* Write all 32 registers to SRAM */

e addi r5,r5,128 #/* Increment the RAM pointer to next */
#/* 128byte (4bytes*32 registers) */

e bdnz sram loop #/* Loop for all of SRAM */

Configure MMU for Flash

It is strongly recommended (see Section 3.1.1: MMU remarks), not to re-configure an MMU
entry for memory that is currently being used because doing so that can cause stability
issues at the point when the MMU TLB region is re-validated.

From the user point of view this means that it should be fine to configure additional TLB
entries while executing from an existing entry.

Of course users could use the same TLB 0 to map all the Flash but the MMU configuration
code must be executed by the SRAM: the code has to be copied to SRAM and then the
execution flow is transferred to SRAM so that the Flash MMU entry can be safely re-
configured (in this Application Note was described this strategy).

Figure 5 shows a scratch code of MMU configuration for Flash using TLB entry 0.

I. This is also true for implicit read accesses caused by any write accesses of less than 32 bits

4

Doc ID 022384 Rev 2

AN3995

€200z4d initialization and example

code

When the code is executed from Flash, all the code between the labels

“conf_sram_code_begin” and “conf_sram_code_end” is copied(m) to and executed from the

SRAM.

Figure 6 shows a scratch code of copy code from Flash to SRAM.

Figure 5. MMU configuration code for Flash

#/**/

#/* MMU configuration code for Flash (TLBl entry 0) -> copy to RAM */
#/* TLB1l entry 0, 0x0000_0000 to OxO0FF FFFF overwriting existing TLB */
#/* infact MMU have configured the small 4 KB block at the reset vector. */
#/* NOTE: this configuration allows access to all device Flash */
#/**/
#/* ---- MMU configuration (TLB1l, Entry 0) for Code Flash:this block will be
copied to RAM */

e lis r3, 0x1000 #/* MASO, Configure TLB1l, Entry 0 */

mtmas0 r3

e lis r3, 0xC000 #/* MAS1 = 0xC0000700 (16MB) */

e or2i r3, 0x0700

mtmasl r3

e lis r3, 0x0000 #/* MAS2 = 0x00000020 */

e or2i r3, 0x0020

mtmas2 r3

e lis r3, 0x0000 #/* MAS3 = 0x0000003F */

e or2i r3, OxO003F

mtmas3 r3

tlbwe #/* Write the entry to the TLB */

Figure 6. Code to copy configuration code from Flash to SRAM

conf_sram:
#/* Calculate number of bytes to copy (data between labels) */
e lis r3, conf_sram code_begineh
e or2i r3, conf sram code_begine@l
e lis r4, conf_sram code_endeh
e _or2i r4, conf_sram code_endel
subf r4, r3, r4

e or2i r5, SRAM ADDR_z4@l

e 1lbz r6, 0(r3)

e_stb r6, 0(r5)

e addi r3, r3, 1

e addi r5, r5, 1

e bdnz copy configuration code#/* Loop is based on the value of counter */

e or2i r24, SRAM ADDR Z4el

se_mtctr r24
se_bctr #/* Jump to the SRAM Start address */

mtctr r4 #/* Move to counter register the number of bytes to copy */

e lis r5, _SRAM ADDR_Z4@h #/* SRAM start address defined in the linker file */

copy_configuration_code: #/* Copy configuration code from Flash to RAM */

e lis r24, _SRAM ADDR_Z4@h #/* SRAM start address defined in the linker file*/

m. As mentioned previously, at this time, user can use this mechanism to configure also the Flash wait states (see

Section 3.1.7: Performance Hints Initialization): he has to put the code between the labels.

Doc ID 022384 Rev 2

15/49

€200z4d initialization and example code AN3995

3.1.5

3.1.6

16/49

Configure MMU for Peripheral Bridge

As mentioned user has to create a valid MMU entry before addressing any of the
peripherals (including the SWT).

Figure 7 shows a scratch code of MMU configuration(”) for peripheral area TLB entry 2:

Figure 7. MMU configuration code for peripherals area

#/**/

#/* MMU configuration code for Peripheral Area (IPBridge) */
#/* TLBl, entry 2 1GB 0xC000_0000 to OXFFFF_FFFF */
#/**/

e lis r3, 0x1002 #/* MASO, Configure TLBl, Entry 2 */

mtmas0 r3

e lis r3, 0xC000 #/* MASL = 0xCO000AQ0 */

e or2i r3, 0xO0A00

mtmasl r3

e lis r3, 0xC000 #/* MAS2
e or2i r3, 0x002A

mtmas2 r3

e lis r3, 0xC000 #/* MAS3 = 0xCO00003F */
e or2i r3, O0xO003F

mtmas3 r3

0xC000002A */

tlbwe #/* Write the entry to the TLB */

Memory initialization

The Stack/Heap memory sections must be initialized as well as constants and pre-initialized
variables being copied from Flash to RAM.

These initialization steps can be done by user by scratch or left to pre-built compiler
initialization script (often hidden from user).

In any case these initialization steps are tightly coupled to the linker file and are compiler
specific so it is not detailed in this document: GHS (GreenHills) compiler suite was used for
this document (see Figure 8).

For this reason in the startup files described in these paragraphs (see Appendix A:
Application code example) the label “_start” was substituted by “ _ghs_board_memory_init”
(see Figure 9) and at the end of the startup file the execution flow doesn’t branch to the
application code (for example “e_bl main”) (see Figure 10) but instead it is redirected to
GHS startup library which completes the memory initialization (for example, handle the SDA
(Small Data Area) optimization).

n. After the MAS registers are written, the TLB is validated with a single “tlowe” (TLB Write Entry) instruction

Doc ID 022384 Rev 2 KYI

AN3995

€200z4d initialization and example code

4

Figure 8. Booting flow using GHS startup libraries

GHS startup script:
Initialization Start
(contain _start label)

_ghs_board_memory_init:

GHS startup script:
Intialization End
(copy of data to SRAM,
Initialization stack/heap,
optimizations handling)

/* Platform dependent
initialization code is
located here */

se_blr #/* Jump to Caller */

Main.c
(user application)

Doc ID 022384 Rev 2

17/49

€200z4d initialization and example code AN3995

Figure 9. Startup file: __ghs_board_memory_init

#/**/
#/* RCHW Configuration (and referencing of start label for linker) */
#/**/
.section .rchw
.LONG 0x015A0000 #/* RCHW: VLE bit, Valid Bood Identifier O0x5A */
.LONG _start
.file "crt0_corez4 Flash.s"

.section .vletext boot, "vax"
.vle

#.global _start
.global__ghs_board memory init
.global asm_init_cache

.equ MPROADDR, OxFFF04000

.equ MPROVALUE, 0x76543210 #/* Flash PORT1l: Priority to corez4 (instruct.)*/
.equ SGPCROVALUE, 0x0

.equ MPR1ADDR, OxFFF04100

.equ MPR1VALUE, 0x76543201 #/* Flash PORT1l: Priority to corez4 (data)*/
.equ SGPCR1VALUE, 0x1

.equ MPR2ADDR, OxFFF04200

.equ MPR2VALUE, 0x54376201 #/* PRAMO: Priority to corez4 (data)*/

.equ SGPCR2VALUE, 0x1

.equ MPR3ADDR, OxFFF04300

.equ MPR3VALUE, 0x54301276 #/* PRAM1l: Priority to corez0 (data)*/

.equ SGPCR3VALUE, 0x4

.equ MPR7ADDR, OxFFF04700

.equ MPR7VALUE, 0x54327106 #/* PBRIDGE: Priority to corez4 (data)*/
.equ SGPCR7VALUE, 0x1

#/* _start: */ #/* uncomment this line and comment the following one */
#/* you don't use GHS libraries (take care to */
#/* configure SDA/Stack/..pointers */
__ghs_board memory_init:

Figure 10. Startup file: branch to GHS startup libraries

se blr #/* Jump to Caller */

#e_ bl main #/* Use this Branch and comment the previous if you not
#/* use GHS crtO.ppc */

.type _ ghs board memory init,@function
.size _ ghs board memory init,$-_ ghs board memory init

4

18/49 Doc ID 022384 Rev 2

AN3995

€200z4d initialization and example code

3.1.7

Performance Hints Initialization

The device performance can be addressed by customizing several system level
configurations that of course need to be changed on user's application basis.

Below is a list of actions that user can done to speed up the device performances:

e Signal Processing Extension (SPE) for fixed point and single precision calculations
(see Figure 11);

e Branch Target Buffer (BTB) providing target address pre-fetching (see Figure 11): This
enables operation beyond a conditional branch without waiting for the branch to be
decoded and resolved;

e Flash Port Configuration. The user can choose to set the minimum wait states (with
regard to device operating frequency) as well as configure the line buffer allocation and
pre-fetch behavior.

In this application note the minimum allowed wait states for a device frequency equal to
120MHz, when prefetching enabled has been selected.(see Figure 12);

e SRAM wait states: User has to setup an additional wait states over the SRAM (see
Figure 13) if the system clock is above 64MHz.
In this application note it is preferred to insert this initialization (just to have all wait
states configurations together) here even if this configuration is only strictly linked to
system clock frequency (see Section 3.2.3: Clock & PLL configuration).

e The highly configurable crossbar (XBAR) architecture allows tailored priorities and
arbitration schemes on a per slave port basis. For detailed information please refer to
the XBAR chapter in the Reference Manual (see Section C.1: Reference document).
In this application note it has been selected to configure the XBAR so that the e200z4d
core execution can have the maximum priority over all other slaves (Figure 14).

All the configurations related to XBAR (for example: all the masters) are done inside
the startup file of the e200z4d core even if no special constraints are present. This
implementation has been chosen to have all XBAR configurations together.

Note how the slave 3 (the slave port related to PRAM controller one) is configured to
give priority to e200Z0h (see Section 1: Application example description);

e Configure the ICache. The e200z4d processor supports a 4 Kbyte, 2 or 4-way set-
associative, instruction cache (ICache) with a 32-byte line size.
The ICache improves system performance by providing low-latency data to the
instruction pipeline. In this application note the 4-way configuration, which generally
allows the best performance versus the 2-way ones, has been chosen (see Figure 16).
Note that this code is located in the startup file (as an assembly function) but isn’t
executed at this time (see Section 3.2.4: Configure Cache).

Figure 11. Startup file: enable BTB and SPE

#/**/

#/* Enable Signal Processing extension (SPE) in Machine State Register */
#/**/
mEMSR r3
e_or2isr3, 0x0200
mtMSR r3

#/**/

#/* Enable Branch Target Buffers BTB */
#/**/
e_1i ro, 0x201
mtsprl013, r0

Doc ID 022384 Rev 2 19/49

€200z4d initialization and example code AN3995

Figure 12. Startup file: Flash Configuration code

#/**/
#/* Configure the Flash wait states and the prefetch buffers -> copy to RAM*/
#/* Code is copied to RAM first, then executed, to avoid executing code */
#/* from Flash while wait states are changing. */
#/**/
#/* PFCRO = 0x294BFDFD (settings for 120MHz) */

#/* APC and RWSC = 0bl01 (5 additional hold cycles) */

#/* WWSC = 0bl0l (5 wait) */

#/* B02_PO_DPFE = 0bl (enabled) */

#/* B02_PO_IPFE = 0Obl (enabled) */

#/* B02_PO_PFLIM = 0blx (prefetch on miss or hit) x/

#/* B02 _PO_BFE = 0bl (enabled) */

e lis r3, 0x294B

e or2i r3,0xFDFD #/* NOTE: OxaDaD = OxaFaF */
e_lis r4, OxC3F8 #/* PFCRO ADDRESS HIGH */
e_or2i r4, 0x801C #/* PFCRO ADDRESS LOW */

e _stw r3, 0(r4)

se_isync

msync

#/* PFAPR = 0x0300FFFF */

e lis r3, OxFFO00 #/* Round-robin arbitration-Prefetching enabled. */
e or2i r3, OxFFFF #/* Both read and write accesses */

e_lis r4, OxC3F8 #/* PFAPR ADDRESS HIGH */

e_or2i r4, 0x8024 #/* PFAPR ADDRESS LOW */

e_stw r3, 0(r4)

se_isync

msync

Figure 13. Startup file: SRAM wait states configuration code

#/**/

#/* Configure SRAM wait states to 1 */
#/* RAM needs an additional wait state if the system clock is above 64 Mhz */
#/**/
e lis r3, 0x4000 #/* l-wait state for RAM access */
e_or2i r3, 0x0

e lis r4, OxFFF4 #/* ECSM */
e _or2i r4, 0x0024

e stw r3, 0(r4)

se_isync

msync

20/49 Doc ID 022384 Rev 2

4

AN3995

€200z4d initialization and example code

Figure 14. Startup file: XBAR register configuration values

.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ

MPROADDR, OxXFFF04000
MPROVALUE, 0x76543210
SGPCROVALUE, 0x0
MPR1ADDR, OxXFFF04100
MPR1VALUE, 0x76543201
SGPCR1VALUE, O0Ox1
MPR2ADDR, OxXFFF04200
MPR2VALUE, 0x54376201
SGPCR2VALUE, O0x1
MPR3ADDR, OxXFFF04300
MPR3VALUE, 0x54301276
SGPCR3VALUE, 0x4
MPR7ADDR, OxXFFF04700
MPR7VALUE, 0x54327106
SGPCR7VALUE, O0x1

#/*

#/*

#/*

#/*

#/*

Flash PORT1:

Flash PORT1:

PRAMO :

PRAM1 :

PBRIDGE:

Priority to corez4 (instruct.)*/

Priority to corez4 (data)*/

Priority to corez4 (data)*/

Priority to corez0 (data)*/

Priority to corez4 (data)*/

Doc ID 022384 Rev 2

21/49

€200z4d initialization and example code AN3995

Figure 15. Startup file: XBAR configuration code(©

#/**/

#/* Configure XBAR */
#/**/

#/* Configure Master Priority Register 0 */

e lis r4, MPROVALUE@h #/* MPRO Conf. High Value */

e or2i r4, MPROVALUEe@l #/* MPRO Conf. Low Value */

e lis r5, MPROADDR@h #/* MPRO Address High Value */
e or2i r5, MPROADDR@l #/* MPRO Address Low Value */
se_stw r4,0x0(r5) #/* Store Value */

#/* Configure Slave General Purpose Control Register 0 */

e lis r4, SGPCROVALUE@h #/* SGPCRO High Value High Value */

e_or2i r4, SGPCROVALUE@l #/* SGPCRO Low Value */

se_stw r4,0x10(r5) #/* Store Value (SGPCRO address is 0x10 bytes after MPRO) */

#/* Configure Master Priority Register 1 */

e lis r4, MPR1VALUE@h #/* MPR1 Conf. High Value */

e or2i r4, MPR1VALUEel #/* MPR1 Conf. Low Value */

e lis r5, MPR1ADDR@h #/* MPR1 Address High Value */
e or2i r5, MPR1ADDRel #/* MPR1 Address Low Value */
se_stw r4,0x0(r5) #/* Store Value */

#/* Configure Slave General Purpose Control Register 1 */

e lis r4, SGPCR1VALUE@h #/* SGPCR1 High Value High Value */

e or2i r4, SGPCR1VALUE@l #/* SGPCR1 Low Value */

se_stw r4,0x10(r5) #/* Store Value (SGPCR1 address is 0x10 bytes after MPR1)*/

#/* Configure Master Priority Register 2 */

e lis r4, MPR2VALUE@h #/* MPR2 Conf. High Value */

e or2i r4, MPR2VALUEe@l #/* MPR2 Conf. Low Value */

e lis r5, MPR2ADDR@h #/* MPR2 Address High Value */
e or2i r5, MPR2ADDR@l #/* MPR2 Address Low Value */
se_stw r4,0x0(r5) #/* Store Value */

#/* Configure Slave General Purpose Control Register 2 */
e lis r4, SGPCR2VALUE@h #/* SGPCR2 High Value High Value */
e or2i r4, SGPCR2VALUE@l #/* SGPCR2 Low Value */

se_stw r4,0x10(r5) #/* Store Value (SGPCR2 address is 0x1l0 bytes after MPR1)*/

0. XBAR configuration not fully showed in this picture.

4

22/49 Doc ID 022384 Rev 2

AN3995 €200z4d initialization and example code

Figure 16. Cache Configuration Code

#**
invalidate and enable the instruction cache (4WAY)
#**
asm_init_cache:

e lis r3, 0x0

e or2i r3,0x0002

mtllcsrl r3

loop invalid cache:

msync

mfllcsrl r3

e and2i.r3,2

se_bne loop_invalid cache

inst cache enable (4way)
e lis r3, 0x0
e or2i r3, 0x0011 # (use 0x0001 for 2way)
mtllcsrl r3

se_blr

KYI Doc ID 022384 Rev 2 23/49

€200z4d initialization and example code AN3995

3.2 €200z4d device configuration from C code

Before the execution of the application code, user has to complete the device initialization
by performing the following steps (see Figure 17):

1. Disable the SWT (Software Watchdog Timer) (see Section 3.2.1: Disable watchdog);
Configure device modes (see Section 3.2.2: Mode configuration and clocking);
Configure system dividers (see Section 3.2.3: Clock & PLL configuration);

Configure PLL (Phase Looked Loop) (see Section 3.2.3: Clock & PLL configuration);
Enable Instruction cache (see Section 3.2.4: Configure Cache);

Start e200z0h core (see Section 3.2.5: Starting the e200z0h core);

ok wN

Figure 17. Environment configurations code

void Environment Init (void) {
SWT_Disable () ; /* Disable Software Watchdog Timer (Can */
/* also be disabled in Shadow row) */

MODE Init () ; /* Configure modes and activate all clocks */
/* for all peripherals */

CGM.Z0_DCR.B.DIV = 0x1; /* Z0 clock divider to divide by 2 */
CGM.Flash DCR.B.DIV = 0x1; /* Flash register interface /2 (default) */
PLL Init(); /* Set system clock to 120MHz */

/* based on 40Mhz XTAL */
asm_init cache(); /* Enable Cache 4WAY */

/* Start Z0 Core */

SSCM.DPMBOOT.R = 0x00180000; /* Start address of Z0 (2nd Flash block) */
SSCM.DPMKEY.R = 0x00005AFO0; /* Write key 1 */

SSCM.DPMKEY.R = 0x0000A50F; /* Write key 2 */

3.2.1 Disable watchdog

The Software Watchdog Timer (SWT)(p) is a peripheral module that can prevent system
lockup in situations such as software getting trapped in a loop or if a bus transaction fails to
terminate.

When enabled, the SWT requires periodic execution of a watchdog servicing operation: in
order to prevent a system reset, the watchdog must be serviced or disabled prior to the
initial expiry of the timer.

In a real application it is expected that the SWT would be serviced (before it expires) and re-
configured to match application timing rather than being disabled.

Look at Reference Manual (Section C.1: Reference document) for more information on
configuring and using the SWT.

In this document, the watchdog is disabled to avoid any servicing.

p. The SWT is clocked from the Slow Internal Reference Clock (SIRC) with a nominal frequency of 128 KHz. The
default SWT timeout is set to approximately 10 ms: this timeout period is determined by the actual SIRC
frequency which varies over temperature according to the device specification.

24/49 Doc ID 022384 Rev 2 KYI

AN3995

€200z4d initialization and example code

Note:

3.2.2

The simplest way to disable the SWT is to do it at the start of the main program once all of
the initialization code has been executed. The user has to take care that there is enough
time (versus the SWT time period) between the start of initialization code (startup code) and
the main function.

If there is any doubt over the time taken to run the initialization code, the watchdog can be
addressed as soon as the MMU page is defined for the peripherals.
In order to disable the watchdog in software the user needs to:

e Write the sequence of 0xC520 followed by 0xD928 to the service register. This clears
the soft lock bit enabling the next step in the process;

e Clear the WEN bit in the Control register;

Figure 18. SWT disabling code

void SWT Disable (void)

{

SWT.SR.R = 0xC520; /* Clear Soft lock bit in CR by writing */
SWT.SR.R = 0xD928; /* 0xC520 followed by 0xD928 to WSC field */
SWT.CR.B.WEN = 0x0; /* Clear Watchdog Enable Bit */

}

When user is connecting to the device using a debugger, it is likely that the debugger itself
disables the watchdog to allow debug to be carried out.

This can result in a fairly common problem when attempting to run the code in a standalone
configuration where a periodic device reset is observed, caused by the SWT time-out.

It's possible to use an additional way to disable the SWT at device reset by writing to the
Non Volatile User Options (NVUSRO) register located in the shadow row at address
OxO0FF_FE18.

By disabling the watchdog(q) in this manner it can then be re-enabled at a later stage if
desired.

e If bit-0 (MSB) of NVUSRO is set, as with an erased shadow Flash, then the SWT is
enabled

e If bit-0 of NVUSRO is cleared, then the SWT is disabled

Mode configuration and clocking

The SPC564Bxx and SPC56ECxx device family (as other SPC56xx devices) has several
operating modes (see Section C.1: Reference document). Out of reset the device leaves the
Reset mode and enters DRUN mode (see Figure 19).

g. Ifno valid RCHW is found by the SSCM, the watchdog is re-enabled (even if the SWT is disabled in the
NVUSRO register) before the device enters Static mode (see Section 2.1: Boot mechanism).

Doc ID 022384 Rev 2 25/49

€200z4d initialization and example code

AN3995

26/49

Figure 19. Mode entry diagram

SYSTEM MODES

Recoverable
HW failure

l

4
[

| ",
|
\)
Py
) I'I
|
| |

MNon-recoverable
failure

USER MODES
LOW POWER

SW request = .4—]
7

MODES

STANDBY

———— HW ftriggered transition
— > SW triggered transition

In order to use all of the available modes, they must be enabled in the Mode Enable register

(see Figure 20).

Figure 20. Mode Initialization Code

void MODE_Init (void)
ME.MER.R = 0x000025FF;
ME.RUNPC[0] .R = 0x000000FE;

CGM.SC_DC[0] .R = 0x83;
CGM.SC DC[1].R = 0x81;
CGM.SC _DC[2] .R = 0x81;

ME.MCTL.R = 0x30005AFO0;
ME.MCTL.R = O0x3000A50F;

while (ME.GS.B.S_MTRANS == 1);

/* Enable all modes */
/* Enable all peripherals in all modes */

/* Enable system clock for all peripherals assuming 120MHz system clock */
/* Max 32MHz.
/* Max 64MHz.
/* Max 64MHz.

Closest is 30MHz, Div+1=3 */
Closest is 60MHz, Div+1=2 */
Closest is 60MHz, Div+1=2 */

/* Re-enter DRUN mode to update the clock configuration */
/* DRUN Mode & Key */
/* DRUN Mode & Key */

/* Wait for mode transition complete */

Doc ID 022384 Rev 2

4

AN3995 €200z4d initialization and example code
Every peripheral (see Figure 21) has an associated control register which has 3 fields to
determine what happens when the MCU is in the following modes:

e Debug mode (DBG_F)

e Low Power mode (LP_CFG)

e Run Mode (RUN_CFG)

For Low Power and Run modes there are 8 sets of configuration registers that are
referenced by the LP_CFG and RUN_CFG fields from the peripheral control registers.
Each of these configuration registers have a bit for each Run or Low Power mode which
determines whether the peripherals referencing this register are clock gated or available in
that mode: this allows up to 8 different power schemes to be created with a different mix of
peripherals to be available in each Low Power or Run mode.

Figure 21. Peripheral Control Registers

0 1 2 3 4 5 6 7
ME_PCTLn

Peripheral Control
Reserved Registers — one per
peripheral

0 0 0 0 0 0 0 0

1 |

ME_LP_PCO ME_RUN_PCO

LFP - = 8 x Low Power and
ME_LF_PC1 ME_RUN_PC1 § x Run Mode config
ME_LP_PC2 ME_RUN_PC2 Tegisters
ME_LP_PC3 ME_RUN_PC3
ME_LP_PCa ME_RUN_PC4 One LP_PC[O..?] and one
VE LP PCs VE RUN PG5 RUN_PC[0..7]is

== == referenced from every
ME_LP_PC6 ME_RUN_PC6 ME_PCTLn register
ME_LP_PC7 ME_RUN_PC7

Out of reset, all of the peripheral control registers have value 0x0 which means they are
associated with ME_RUN_PCO for Run modes (and ME_LP_PCO for Low Power modes).
Setting ME_RUN_PCO to 0x0000_0OFE (see Figure 22), enables all peripherals in all Run
modes which is the baseline configuration used in this example (see Figure 20).

Figure 22. Run peripheral control registers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W
Reset 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 17 18 19 | 20 21 22 23 | 24 25 26 27 | 28 29 30 31
L
Rl O]| O 0 0 0 0 0 ol 21913 |e % w e @
2|22 |2 | x| < | W| x
W x|l | e |x|a|u |+

Reset 0 0 0 0 0 0 0 0

o
o
o
o
o
o
o
o

Doc ID 022384 Rev 2 27149

€200z4d initialization and example code AN3995

Note:

3.2.3

Note:

Note:

28/49

There are 3 peripheral clock groups on the SPC564Bxx and SPC56ECxx device family with
associated clock dividers. These allow all 3 peripheral clock groups independent clock
control so groups can be slowed down or even clock gated which helps with power saving.
For more details and for peripheral assignments, refer to the device Reference Manual (see
Section C.1: Reference document).

Peripheral group 1 can be clocked at a maximum of 32 kHz, peripheral groups 2 and 3 can
run at a maximum of 64 kHz. Care needs to be taken not to exceed these limits (see
Figure 20).

A peripheral clock group has to be specifically enabled or the peripherals is not accessible.
For the purpose of this example, all of the peripheral clock groups are enabled by writing to
the associated system clock divider registers even though all are not required.

Finally, in line with all clock and mode configuration, a mode transition must be made for all
the above changes to take effect.

For further information look at Mode Entry Module chapter in the device Reference Manual
(see Section C.1: Reference document).

In this case, DRUN mode is re-entered by writing a mode and key command sequence (see
Figure 20).

Clock & PLL configuration

The SPC564Bxx and SPC56ECxx device family is clocked by default from the 16 MHz IRC.
In order to attain the maximum performance of the device, the system clock speed needs to
be increased, up to 120 Mhz for the maximum system clock.

The device has several functional blocks that run at different frequency and for this reason
before the system clock is changed the user has to take some constraints into account (the
individual clock dividers must be set accordingly) to allow the device to run up to the
maximum of 120 MHz:

e The e200z0h core has a maximum clock speed of 80 Mhz;

e The FEC (Fast Ethernet Controller) requires its clock divider to be /2 if system clock is
> 80 MHz;

e The Flash register interface has a maximum operating frequency of 80 Mhz;
e The RAM needs an additional wait state if the system clock is above 64 Mhz;

The FEC is not used so in this case the divider is left at its default value.

Figure 23. System clock dividers configuration code(®

CGM.Z0_DCR.B.DIV = 0x1; /* Z0 clock divider to divide by 2 */
CGM.Flash DCR.B.DIV = 0x1; /* Flash register interface /2 (default) */

At this time the PLL can be used to change the system clock to the desired level (see
Figure 24).

All of the clock and PLL re-configuration can be achieved with a single mode re-entry but
there is also an option to effect a mode re-entry for each critical step in the process. It allows
an easy debug if the steps fail, in this way the problem can be identified easily.

r. In this application note the SRAM wait states configuration is done in the initialization code at startup (see
Section 3.1.7: Performance Hints Initialization)

Doc ID 022384 Rev 2 KYI

AN3995 €200z4d initialization and example code
Figure 24. PLL configuration code
void PLL Init (void) {

ME .DRUN.B.FXOSCOON = 1; /* Switch on external oscillator in DRUN mode */

/* Re-Enter DRUN mode (mode=0x3) to activate change */

ME.MCTL.R = O0x30005AFO0; /* Mode & Key */

ME.MCTL.R = 0x3000A50F; /* Mode & Key inverted */

while (ME.GS.B.S_MTRANS == 1); /* Wait for mode transition complete */

while (ME.GS.B.S_CURRENTMODE != 3); /* Error trap - if current mode is not */
/* DRUN (eg in safe mode), then loop */

while (ME.GS.B.S_FXOSC != 1); /* Wait for external OSC to stabilize */

/* Select External 0OSC as the FMPLL Reference Clock Source */

CGM.ACO0_SC.B.SELCTL = 0x0;

/* Configure PLL for 120MHz with 40MHz xtal: */

/* PLL frequency = (40 * NDIV)/(IDF * ODF) */

/* NOTE: VCO (PLL * ODF) must be between 256 and 512MHz */

CGM.FMPLL_CR.B.IDF = 0x4; /* Divide by 5 */

CGM.FMPLL_CR.B.ODF = 0x1; /* Divide by 4 */

CGM.FMPLL CR.B.NDIV = 60; /* Divide by 60 */

/* Enable PLL in DRUN mode. */

ME.DRUN.B.FMPLLON = 1;

/* Re-Enter DRUN mode (mode=0x3) to activate change */

ME.MCTL.R = O0x30005AFO0; /* Mode & Key */

ME.MCTL.R = 0x3000A50F; /* Mode & Key inverted */

while (ME.GS.B.S_MTRANS == 1); /* Wait for mode transition complete */

while (ME.GS.B.S_CURRENTMODE != 3); /* Error trap - if current mode is not */
/* DRUN (eg safe mode), then loop */

while (CGM.FMPLL CR.B.S LOCK == 0); /* wait for PLL to lock (will not lock */
/* until re-enter DRUN mode */

/* Finally set system clock to be PLL in DRUN mode */

ME.DRUN.B.SYSCLK = 0x4;

/* Re-Enter DRUN mode (mode=0x3) to activate change */

ME.MCTL.R = O0x30005AFO0; /* Mode & Key */

ME.MCTL.R = 0x3000A50F; /* Mode & Key inverted */

while (ME.GS.B.S_MTRANS == 1); /* Wait for mode transition complete */

while (ME.GS.B.S_CURRENTMODE != 3); /* Error trap - if current mode is not */
/* DRUN (eg safe mode), then loop */

while (ME.GS.B.S SYSCLK != 4){}; /* Final check - ensure ME_GS reports clk */
/* as system PLL(0x4) - fail if stuck here */

/* Enable CLKOUT pin so clock frequency can be verified */

CGM.OC_EN.B.EN = 1; /* Enable Output clock */

CGM.OCDS_SC.R = 0x23000000; /* And seclect output as system clock / 4 */

SIU.PCR[0] .R = 0xO0A04; /* PAO ALT2 function (Clkout), MAX SRC */

}
3.24 Configure Cache

The e200z4d processor supports a 4 Kbyte, 2 or 4-way set-associative, instruction cache
(ICache) with a 32-byte line size. The cache, as it is easy to understand, speeds up the
device performances because it decouples processor performance from system memory
performance (see Section 3.1.7: Performance Hints Initialization).

Doc ID 022384 Rev 2 29/49

€200z4d initialization and example code

3.2.5

Note:

30/49

In this application note, the 4-way mode has been chosen because it allows better
performance with respect to the 2-way mode.

Even if this initialization is strictly linked to performance increase, it's recommended to
enable it after the clocks because there is no telling what the Cache Controller or the
Tag/Data arrays do if their clock is changed. Look at section e200z4d Core in RM0070 for
details (see Section C.1: Reference document).

Starting the e200z0h core

After a reset, the e200z0h core is held in reset until it is released by writing a sequence of
registers from the e200z4d core:

e Write the €200z0h boot (start) address(® to the SSCM DPM Boot.

e Write 0x0000_5AF0 to the SSCM DPM Boot Key register

e Write 0x0000_A50F to the SSCM DPM Boot Key register

After the execution of the sequence (see Figure 17), the e200z0h executes code from the
start address defined in the DPM Boot register.

Any subsequent reset of the MCU results in the €200z0h being held in reset until the
sequence is carried out again by the e200z4d core.

If the e200z0h starting sequence is not performed well the device works (as single core)
only with e200z4d core.

s. This address has to be 4 byte aligned as the lower 2 bits in the BPM boot register are reserved and set to 0b00

Doc ID 022384 Rev 2 KYI

AN3995

AN3995

€200z4d initialization and example code

3.3

The e200z4d example code

After the basics initialization (see Section 3.2: e200z4d device configuration from C code),
the user configures the output pin (PE[4]) on which is connected a led (see e200z4d Core in

RMO0070, see Section C.1: Reference document), the e200z4d core toggles the pin and

then loops forever (see Figure 25).

In the meantime, the e200z0h core executes a similar code to toggle a led through a
contiguous port pin.

Figure 25. Application code: the main function

int main(int argc, char *argv[]) {

Environment Init(); /* Basic device Initilaizations */
/* (Modes,Pll,Start core 1,...) */

/* Example Code start here */
/* Loop forever Flashing an LED connected to Port PE[4] */
/* (core Z0 code blink contiguous led) */

SIU.PCR[PIN_NUMBER] .R = 0x0200; /* PE[4] to GPIO mode, output */
while (1) {

/* Invert LED output */

SIU.GPDO[PIN_NUMBER].R = (~(SIU.GPDO[PIN_NUMBER].R) & 0x01) ;

for (count=0; count<1000000; count++) ; /* wait a while */
return O0;

} /* End Of Main */

Doc ID 022384 Rev 2 31/49

€200z0h Initializations and example code AN3995

4

4.1

32/49

e200z0h Initializations and example code

The e200z0h core executes code from the start address defined in the DPM boot register
after the execution of the three write sequences over the SSCM registers (see
Section 3.2.5: Starting the e200z0h core).

As previously mentioned in this application note, with the exception of XBAR (see
Section 3.1.7: Performance Hints Initialization), the initialization code for the cores are
executed separately(t) and it means that the e200z0h has its own startup file (see
Section 4.1: e200z0h startup code).

€200z0h startup code

The startup code for the e200z0h is very simple because the user has to configure only few
topics.

The e200z0h is activated by the e200z4d core and for this reason the microcontroller
doesn't follow the normal boot sequence as for the primary core (see section e200z4d Core
in RM0070 see Section 2.1: Boot mechanism): this implies that there is no RCHW section in
the code (see Figure 26).

Whereas the e200z0h core doesn’t have either MMU, nor cache and considering the device
initializations done by e200z4d core (see Section 3: €200z4d initialization and example
code), the initialization code has to perform only two actions (see Figure 26):

1. Initialize SRAM ECC (second block) (see Section 3.1.3: Initialize the SRAM ECC);

2. Enable BTB (Branch Target Buffer) for the e200z0h core (see Section 3.1.7:
Performance Hints Initialization).

t. In order to simplify the work to the user it was suggested to have two separate projects for the two cores.

Doc ID 022384 Rev 2 KYI

AN3995

€200z0h Initializations and example code

Figure 26. e200z0h startup code

.LONG _start
.file "crt0_corez0_Flash.s"

.section .vletext boot, "vax"
.vle

#.global _start
.global__ghs_board memory init

__ghs _board memory init:

#/**/

#/* Initialize all SRAM space by copying all 32GPR's to RAM (fast) */

#/* Counter defines number of 32 x 32-bit words needed to write to RAM */
#/**/

e _or2i r5, _SRAM ADDR_z0@l

e lis r6, _SRAM SIZE_ZO0@h #/* SRAM size defined in the Locator */
e or2i r6, _SRAM SIZE z0el

e srwi r6, r6, 0x7 #/* Divide SRAM size by 128 bytes */
mtctr ré6 #/* Move to counter for use with "bdnz" */

sram_loop:
e stmw r0,0x0(r5) #/* Write all 32 registers to SRAM */

#/* (4bytes*32 registers) */

e bdnz sram loop #/* Loop for all of SRAM */

#/**/

#/* Enable Branch Target Buffers BTB */
#/**/

e 1lir0, 0x201
mtsprl013, r0

se blr #/* Jump to Caller */

#/* if you not use GHS crtO.ppc */

.type _ ghs_board memory init,e@function
.size _ ghs board memory init,$-_ ghs_board memory init

e lis r5, _SRAM ADDR_ZO@h #/* SRAM start address defined in the Locator */

e addi r5,r5,128 #/* Increment the RAM pointer to next 128byte */

#e bl main #/* Use this Branch and comment the previous */

Doc ID 022384 Rev 2

33/49

Application code example AN3995

Appendix A Application code example

Al

34/49

The example application code for e200z4d core discussed in this application note is
available for the user to use directly from the following pages.

Note that the formatting and alignment is configured for a normal text editor so the
formatting should be correctly aligned when pasted into a standard text editor with normal
spacing.

main.c file

#include "typedefs.h"
#include "MPC5646x.h"

#ifdef _ cplusplus
extern "C" {
#endif

/***

| external declarations

extern asm_init_cache (void) ;
/***

| defines and macros (scope: module-local)

/***

| typedefs and structures (scope: module-local)

/***

| global variable definitions (scope: module-exported)

/***

| global variable definitions (scope: module-local)

uint32_t count; /* counter used in delay loop */

const int PIN NUMBER = 68; /* PE4 %/
[Rk ok ok k ok ok k ok ok kkok

| function prototypes (scope: module-local)

static void SWT Disable (void) ;
static void MODE_Init (void) ;
static void PLL_Init (void) ;

static void Environment Init (void) ;
/***

| function implementations (scope: module-local)

[**xxxxxx yoid SWT Disable (void) ***xxxxxx/
//! This function disable the software watchdog
/%1

\brief Disable Software Watchdog Timer
\return No return value.
\retval void

\note Can also be disabled in Shadow row
*/
void SWT Disable (void)

{

Doc ID 022384 Rev 2

4

AN3995 Application code example

SWT.SR.R = 0xC520; /* Clear Soft lock bit in CR by writing */
SWT.SR.R = 0xD928; /* 0xC520 followed by 0xD928 to WSC field */
SWT.CR.B.WEN = 0x0; /* Clear Watchdog Enable Bit */

/******** void MODE_Init(void) *********/

//! This function initialize the modes

/1

\brief Enable system clock for all peripherals assuming 120MHz system cloc
\return No return value.
\retval void

\note None
*/
void MODE_Init (void)
ME.MER.R = 0x000025FF; /* Enable all modes */
ME.RUNPC[0] .R = 0x000000FE; /* Enable all peripherals in all modes */

/* Enable system clock for all peripherals assuming 120MHz system clock */
CGM.SC _DC[0] .R = 0x83; /* Max 32MHz. Closest is 30MHz, Div+1=3 */
CGM.SC _DC[1].R = 0x81; /* Max 64MHz. Closest is 60MHz, Div+1l=2 */
CGM.SC DC[2] .R = 0x81; /* Max 64MHz. Closest is 60MHz, Div+1=2 */

/* Re-enter DRUN mode to update the clock configuration */
ME.MCTL.R = 0x30005AF0; /* DRUN Mode & Key */
ME.MCTL.R = 0x3000A50F; /* DRUN Mode & Key */

while (ME.GS.B.S_MTRANS == 1); /* Wait for mode transition complete */
1
/******** void PLL_Init(void) *********/
//! This function configure the PLL
/* !
\brief This function configure the PLL
\return No return value.
\retval void

\note Switch on osc, change mode and wait for osc ON

Configure and enable PLL, change mode and wait for PLL to lock
Set clock source as PLL, change mode and check clock is PLL

*/

void PLL Init (void) {

ME.DRUN.B.FXOSCOON = 1;/* Switch on external oscillator in DRUN mode */
/* Re-Enter DRUN mode (mode=0x3) to activate change */

ME.MCTL.R = 0xX30005AF0; /* Mode & Key */

ME.MCTL.R = 0x3000A50F; /* Mode & Key inverted */

while (ME.GS.B.S_MTRANS == 1); /* Wait for mode transition complete */

while (ME.GS.B.S_CURRENTMODE != 3);/* Error trap - if current mode is not DRUN (eg
in safe mode), then loop */

while (ME.GS.B.S_FXOSC != 1);/* Wait for external OSC to stabilize */

/* Select External OSC as the FMPLL Reference Clock Source */
CGM.ACO0_SC.B.SELCTL = 0x0;

/* Configure PLL for 120MHz with 40MHz xtal: PLL frequency = (40 * NDIV) / (IDF *
ODF) */

/* NOTE: VCO (PLL * ODF) must be between 256 and 512MHz */

CGM.FMPLL CR.B.IDF = 0x4; /* Divide by 5 */

CGM.FMPLL_CR.B.ODF = 0x1; /* Divide by 4 */

CGM.FMPLL CR.B.NDIV = 60; /* Divide by 60 */

/* Enable PLL in DRUN mode. */

KYI Doc ID 022384 Rev 2 35/49

Application code example AN3995

ME.DRUN.B.FMPLLON = 1;

/* Re-Enter DRUN mode (mode=0x3) to activate change */
ME.MCTL.R = 0x30005AF0; /* Mode & Key */

ME.MCTL.R = 0x3000A50F; /* Mode & Key inverted */

while (ME.GS.B.S_MTRANS == 1); /* Wait for mode transition complete */

while (ME.GS.B.S_CURRENTMODE != 3);/* Error trap - if current mode is not DRUN (eg
safe mode), then loop */

while (CGM.FMPLL_CR.B.S_LOCK == 0);/* wait for PLL to lock (will not lock until re-

enter DRUN mode */

/* Finally set system clock to be PLL in DRUN mode */
ME.DRUN.B.SYSCLK = 0x4;

/* Re-Enter DRUN mode (mode=0x3) to activate change */
ME.MCTL.R = 0x30005AF0; /* Mode & Key */

ME.MCTL.R = 0x3000A50F; /* Mode & Key inverted */

while (ME.GS.B.S_MTRANS == 1); /* Wait for mode transition complete */

while (ME.GS.B.S_CURRENTMODE != 3);/* Error trap - if current mode is not DRUN (eg
safe mode), then loop */

while (ME.GS.B.S SYSCLK != 4){}; /* Final check - ensure ME_GS reports clock as
system PLL (0x4) -- fail if stuck here */

/* Enable CLKOUT pin so clock frequency can be verified */
CGM.OC_EN.B.EN = 1; /* Enable Output clock */

CGM.OCDS_SC.R = 0x23000000; /* And seclect output as system clock / 4 */
SIU.PCR[0].R = 0x0A04; /* PAO ALT2 function (Clkout), MAX SRC */

[***xxxxx yoid Environment Init (void) xxxxxxxxx/
//! This function initialize the device
/*!

Called functions:

- SWT Disable() ;

- MODE_Init () ;

- PLL_Init();

- asm_init_ cache();

\brief This function configure the PLL
\return No return value.
\retval void

\note Start also the core 1
Set clock source as PLL, change mode and check clock is PLL

*/
void Environment Init (void) {

SWT_Disable(); /* Disable Software Watchdog Timer (Can also be disabled in Shadow
row) */

MODE_Init();/* Configure modes and activate all clocks for all peripherals */

CGM.Z0_DCR.B.DIV = 0x1l; /* 20 clock divider to divide by 2 */
CGM.Flash DCR.B.DIV = 0x1l; /* Flash register interface /2 (default) */

PLL Init(); /* Set system clock to 120MHz based on 40Mhz XTAL */
asm_init_cache(); /* Enable Cache 4WAY */

/* Start Z0 Core */

SSCM.DPMBOOT.R = 0x00180000; /* Start address of Z0 (2nd Flash block) */

SSCM.DPMKEY.R = 0x00005AF0; /* Write key 1 */
SSCM.DPMKEY.R = 0x0000A50F; /* Write key 2 */

}

/***

4

36/49 Doc ID 022384 Rev 2

AN3995

Application code example

| function implementations (scope: module-exported)

| o */
/*x*%xx%x int main(int argc, char *argv[]) *x**xx*xxx/
//! This is the main function
/*!
Called functions:
- Environment_Init ()
\param[in] argc (argument) see type definition
\param[in] *argv[] (list) type definition
\brief This code is a blink led example
\return function result.
\retval integer
\note
*/
int main(int argc, char *argvl(]) {
Environment Init () ;/* Basic device Initilaizations (Modes,Pll,Start core 1,...)
*/

/* Example Code start here */

/* Loop forever Flashing an LED connected to Port PE[4] (core Z0 code blink

contiguous led) */
SIU.PCR[PIN_NUMBER] .R = 0x0200; /* PE[4] to GPIO mode, output */

while (1) {
SIU.GPDO[PIN_NUMBER].R = (~(SIU.GPDO[PIN_NUMBER].R) & 0x01); /* Invert LED
output */
for (count=0; count<1000000; count++); /* wait a while */
Vi
return 0;

} /* End Of Main */
#ifdef _ cplusplus

}

#endif

Doc ID 022384 Rev 2

37/49

Application code example

AN3995

A.2

#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*
#/*

#/*
#/*
#/*

crt0_corez4 Flash.s

**/

DESCRIPTION: */

This is the initialization (crt0) file for SPC5646X devices running*/
from Flash in VLE mode */
*/
CONFIGURATIONS: */
(1) Configures the Reset Config Half word for VLE */
(2) Configures MMU TLB entry 1 for 128KB RAM at 0x4000_0000 */
(3) Configures peripherals space (IPBridge) on MMU TLB entry 2 */
(4) Initialises the ECC in the SRAM by writing all words */
(5) Copies Flash MMU (MMU TLB entry 0) Code and Flash Wait states */

reduction code to RAM, runs it and return back to Flash */

(6) Configure wait states for SRAM and Flash */
(7) Configure Crossbar (XBAR)*/

(8) Enable SPE */

(9) Enable BTB */

*/
This code contains also a function to enable */
the Instruction Cache in 4WAY configuration*/
*/
*/
(16MB VLE) Flash */
(128KB VLE) RAM */
(1GB VLE) Platform Peripherals */
*/

configuration is:

0x0000_0000 to 0x00FF_FFFF
0x4000_0000 to 0x4001_FFFF
0xC000_0000 to OxFFFF_FFFF

***/
RCHW Configuration (and referencing of start label for linker) */
***/
.section .rchw

.LONG 0x015A0000 #/* RCHW: VLE bit,
.LONG _start

.file "crtO_corez4 Flash.s"

Valid Bood Identifier Ox5A */

.section .vletext boot,
.vle

nyax"

#.global _start
.global__ghs_board memory init
.global asm_init_cache

.equ MPROADDR, OxFFF04000
.equ MPROVALUE, 0x76543210#/* Flash PORT1l: Priority to corez4 (instruct.)*/
.equ SGPCROVALUE, 0x0
.equ MPR1ADDR, OxFFF04100
.equ MPR1VALUE, 0x76543201#/* Flash PORT1l: Priority to corez4 (data)*/
.equ SGPCR1VALUE, 0x1
.equ MPR2ADDR, O0xFFF04200
.equ MPR2VALUE, 0x54376201#/* PRAMO: Priority to corez4 (data)*/
.equ SGPCR2VALUE, 0x1
.equ MPR3ADDR, O0xFFF04300
.equ MPR3VALUE, 0x54301276#/* PRAM1l: Priority to corezO(data)*/
.equ SGPCR3VALUE, 0x4
.equ MPR7ADDR, OxFFF04700
.equ MPR7VALUE, 0x54327106#/* PBRIDGE: Priority to corez4 (data)*/
.equ SGPCR7VALUE, 0x1
#/* start: */#/* uncomment this line and comment the following one */

#/* you don't use GHS libraries (take care to configure

SDA/Stack/..pointers */

38/49

Doc ID 022384 Rev 2

574

AN3995 Application code example

__ghs_board_memory_init:

#/**/

#/* MMU configuration code for SRAM */
#/* TLBl, Entry 1 128KB 0x4000_0000 to 0x4001_FFFF */
#/**/
e lis r3, 0x1001
mtmas0 r3 #/* MASO */

e lis r3, 0xC000
e or2i r3, 0x0380
mtmasl r3 #/* MAS1 = 0xC0000380 (128Kb) */

e lis r3, 0x4000
e or2i r3, 0x0028
mtmas2 r3 #/* MAS2 = 0x40000028 */

e lis r3, 0x4000
e_or2i r3, 0x003F
mtmas3 r3 #/* MAS3 = 0x4000003F */

tlbwe #/* Write the entry to the TLB */

#/**/

#/* MMU configuration code for Peripheral Area (IPBridge) */
#/* TLB1, entry 2 1GB 0xC000 0000 to OXFFFF_FFFF */
#/**/

e lis r3, 0x1002 #/* MASO, Configure TLB1l, Entry 2 */

mtmas0 r3

e_lis r3, 0xC000 #/* MAS1 = 0xCOOOOAQO0 */

e _or2i r3, 0x0A00

mtmasl r3

e_lis r3, 0xC000 #/* MAS2 = 0xCO00002A */

e _or2i r3, 0x002A

mtmas2 r3

e_lis r3, 0xC000 #/* MAS3 = 0xCO00003F */

e_or2i r3, 0x003F

mtmas3 r3

tlbwe #/* Write the entry to the TLB */

#/**/

#/* Initialize all SRAM space by copying all 32GPR's to RAM (fast) */
#/* Counter defines number of 32 x 32-bit words needed to write to RAM */
#/**/
e lis r5, _SRAM ADDR_Z4@h #/* SRAM start address defined in the linker file */
e_or2i r5, _SRAM _ADDR_Zz4el

e lis r6, _SRAM SIZE Z4@h #/* SRAM size defined in the linker file */
e_or2i r6, _SRAM SIZE_ z4el

e srwi r6, r6, 0x7 #/* Divide SRAM size by 128 bytes */
mtctr ré6 #/* Move to counter for use with "bdnz" */

sram_loop:

e stmw 1r0,0x0(r5) #/* Write all 32 registers to SRAM */

e addi r5,r5,128 #/* Increment the RAM pointer to next */
#/* 128byte (4bytes*32 registers) */

e bdnz sram loop #/* Loop for all of SRAM */

#/**/

#/* Flash Wait States and MMU configurations code will be copied to SRAM*/
#/* to avoid inconsistencies */

KYI Doc ID 022384 Rev 2 39/49

Application code example AN3995

#/**/

e b conf sram#/* Copy code between conf sram code begin and conf sram code_end to
SRAM */

conf sram code begin:#/* ---- Start of block that will be copied to RAM */

#/**/

#/* Configure the Flash wait states and the prefetch buffers -> copy to RAM*/
#/* Code is copied to RAM first, then executed, to avoid executing code */
#/* from Flash while wait states are changing. */
#/**/
#/* PFCRO = 0x294BFDFD (settings for 120MHz) */

#/* APC and RWSC = 0b101 (5 additional hold cycles) */

#/* WWSC = 0bl101 (5 wait) */

#/* B02_PO_DPFE = 0Obl (enabled) */

#/* B02_PO_IPFE = 0bl (enabled) */

#/* B02_PO_PFLIM = 0blx (prefetch on miss or hit) x/
#/* B02 PO _BFE = 0Obl (enabled) */ sla

e lis r3, 0x294B
e or2i r3,0xFDFD #/* NOTE: OxaDaD = OxaFaF */

e lis r4, OxC3F8 #/* PFCRO ADDRESS HIGH */
e_or2i r4, 0x801C#/* PFCRO ADDRESS LOW */
e stw r3, 0(r4)

se_isync

msync

#/* PFAPR = O0x0300FFFF
e lis r3, OxFFOO#/* Round-robin arbitration-Prefetching enabled. */
e or2i r3, OxFFFF#/* Both read and write accesses */
e_lis r4, O0xC3F8#/* PFAPR ADDRESS HIGH */
e_or2i r4, 0x8024#/* PFAPR ADDRESS LOW */
e stw r3, 0(r4)
se_isync
msync

#/**/

#/* MMU configuration code for Flash (TLBl entry 0) -> copy to RAM */

#/* TLB1l entry 0, 0x0000_0000 to OxO0FF FFFF overwriting existing TLB */

#/* infact MMU have configured the small 4 KB block at the reset vector. */

#/* NOTE: this configuration allows access to all device Flash */
#/**/

#/* ---- MMU configuration (TLB1l, Entry 0) for Code Flash:this block will be copied
to RAM */

e lis r3, 0x1000 #/* MASO, Configure TLB1l, Entry 0 */
mtmas0 r3

e lis r3, 0xC000 #/* MAS1 = 0xC0000700 (16MB) */

e _or2i r3, 0x0700

mtmasl r3

e lis r3, 0x0000 #/* MAS2
e _or2i r3, 0x0020

mtmas2 r3

e lis r3, 0x0000 #/* MAS3 = 0x0000003F */
e_or2i r3, 0x003F

mtmas3 r3

tlbwe #/* Write the entry to the TLB */

0x00000020 */

#/* Configuration done...Jump to Flash again */
e _lis r24, run_from Flasheh
e _or2i r24, run_from Flashel
se_mtctr r24

40/49 Doc ID 022384 Rev 2

4

AN3995 Application code example

se_bctr #/* Return to Flash (when running from RAM) */

conf sram code end:#/* ---- End of block that will be copied to RAM */

conf_ sram:
#/* Calculate number of bytes to copy (data between labels) */
e lis r3, conf_sram code_begine@h
e or2i r3, conf_sram code_beginel
e _lis r4, conf_sram code_endeh
e _or2i r4, conf_sram code_endel
subf r4, r3, r4
mtctr r4 #/* Move to counter register the number of bytes to copy */

e lis r5, _SRAM ADDR_Z4@h #/* SRAM start address defined in the linker file */
e_or2i r5, _SRAM _ADDR_ Zz4el

copy_configuration code:#/* Copy configuration code from Flash to RAM */
e _lbz r6, 0(r3)
e stb r6, 0(r5)
e addi r3, r3, 1
e_addi r5, r5, 1
e bdnz copy configuration code#/* Loop is based on the value of counter */

e lis r24, _SRAM ADDR_Z4@h #/* SRAM start address defined in the linker file */
e or2i r24, SRAM ADDR Zz4@l

se_mtctr r24
se bctr #/* Jump to the SRAM Start address */

run_from Flash:
#/**/
#/* Configure SRAM wait states to 1 */
#/* RAM needs an additional wait state if the system clock is above 64 Mhz */
#/**/
e lis r3, 0x4000#/* 1l-wait state for RAM access */
e or2i r3, 0x0

e lis r4, OxFFF4#/* ECSM */
e or2i r4, 0x0024

e stw r3, 0(r4)

se_isync

msync

#/**/
#/* Configure XBAR */
#/**/

#/* Configure Master Priority Register 0 */

e lis r4, MPROVALUE@h#/* MPRO Conf. High Value */

e or2i r4, MPROVALUE@l #/* MPRO Conf. Low Value */

e lis r5, MPROADDR@h#/* MPRO Address High Value */

e or2i r5, MPROADDR@l#/* MPRO Address Low Value */

se_stw r4,0x0(r5) #/* Store Value */

#/* Configure Slave General Purpose Control Register 0 */
e lis r4, SGPCROVALUE@h#/* SGPCRO High Value High Value */
e or2i r4, SGPCROVALUE@l #/* SGPCRO Low Value */

se_stw r4,0x10(r5) #/* Store Value (SGPCRO address is 0x10 bytes after MPRO)*/

#/* Configure Master Priority Register 1 */

KYI Doc ID 022384 Rev 2 41/49

Application code example AN3995

42/49

e lis r4, MPR1VALUE@h#/* MPR1 Conf. High Value */
e or2i r4, MPR1VALUE@l #/* MPR1l Conf. Low Value */

e lis r5, MPR1ADDR@h#/* MPR1 Address High Value */
e or2i r5, MPR1ADDR@l#/* MPR1 Address Low Value */
se_stw r4,0x0(r5) #/* Store Value */

#/* Configure Slave General Purpose Control Register 1 */
e lis r4, SGPCR1VALUE@h#/* SGPCR1 High Value High Value */
e or2i r4, SGPCRIVALUEe@l #/* SGPCR1 Low Value */

se_stw r4,0x10(r5) #/* Store Value (SGPCR1l address is 0x1l0 bytes after MPR1)*/

#/* Configure Master Priority Register 2 */
e lis r4, MPR2VALUE@h#/* MPR2 Conf. High Value */
e or2i r4, MPR2VALUEe@l #/* MPR2 Conf. Low Value */

e lis r5, MPR2ADDR@h#/* MPR2 Address High Value */
e or2i r5, MPR2ADDR@l#/* MPR2 Address Low Value */
se_stw r4,0x0(r5) #/* Store Value */

#/* Configure Slave General Purpose Control Register 2 */
e lis r4, SGPCR2VALUE@h#/* SGPCR2 High Value High Value */
e or2i r4, SGPCR2VALUEel #/* SGPCR2 Low Value */

se_stw r4,0x10(r5) #/* Store Value (SGPCR2 address is 0x1l0 bytes after MPR2)*/

#/* Configure Master Priority Register 3 */
e lis r4, MPR3VALUE@h#/* MPR3 Conf. High Value */
e or2i r4, MPR3VALUE@l #/* MPR3 Conf. Low Value */

e lis r5, MPR3ADDR@h#/* MPR3 Address High Value */
e or2i r5, MPR3ADDR@l#/* MPR3 Address Low Value */
se_stw r4,0x0(r5) #/* Store Value */

#/* Configure Slave General Purpose Control Register 3 */
e lis r4, SGPCR3VALUE@h#/* SGPCR3 High Value High Value */
e or2i r4, SGPCR3VALUE@l #/* SGPCR3 Low Value */

se_stw r4,0x10(r5) #/* Store Value (SGPCR3 address is 0x10 bytes after MPR3)*/

#/* Configure Master Priority Register 7 */
e lis r4, MPR7VALUE@h#/* MPR3 Conf. High Value */
e or2i r4, MPR7VALUEe@l #/* MPR3 Conf. Low Value */

e lis r5, MPR7ADDR@h#/* MPR7 Address High Value */
e or2i r5, MPR7ADDR@l#/* MPR7 Address Low Value */
se_stw r4,0x0(r5) #/* Store Value */

#/* Configure Slave General Purpose Control Register 3 */
e lis r4, SGPCR7VALUE@h#/* SGPCR7 High Value High Value */
e or2i r4, SGPCR7VALUEe@l #/* SGPCR7 Low Value */

se_stw r4,0x10(r5) #/* Store Value (SGPCR7 address is 0x1l0 bytes after MPR7)*/

#/**/

#/* Enable Signal Processing extension (SPE) in Machine State Register */
#/**/
mEfMSR r3
e or2is r3, 0x0200
mtMSR r3

#/**/

#/* Enable Branch Target Buffers BTB */

4

Doc ID 022384 Rev 2

AN3995

Application code example

#/**/
e 1ir0, 0x201
mtsprl013, rO0

se blr #/* Jump to Caller */

#e bl main #/* Use this Branch and comment the previous if you not use GHS
crt0.ppc */

.type _ ghs board memory init,@function
.size _ ghs board memory init,$- ghs board memory init

#**
invalidate and enable the instruction cache (4WAY)
#**
asm_init cache:

e _lis r3, 0x0

e or2i r3,0x0002

mtllcsrl r3

loop invalid cache:
msync
mfllcsrl r3
e and2i.r3,2
se_bne loop_invalid cache

inst cache enable (4way)
e lis r3, 0x0
e _or2i r3, 0x0011#(use 0x0001 for 2way)
mtllcsrl r3

se_blr

Doc ID 022384 Rev 2 43/49

Linker file AN3995

Appendix B Linker file

The linker files for the two projects are quite similar but of course the code Flash and the
SRAM memory space are located at different addresses for the two cores.

Table 4 shows the memory partitioning between the two cores:

Table 4. Memory partition schema

Memory area Memory range Size
€200z4d code Flash 0x0000_0000 - 0x0017_FFFF 1.5M
€200z4d SRAM 0x4000_0000 - 0x4001_FFFF 128K
€200z0h code Flash 0x0018_0000 - 0x002F_FFFF 1.5M
€200z0h SRAM 0x4002_0000 - 0x4003_FFFF 128K

As discussed previously the e200z0h linker file doesn’t provide any RCHW section because
the core is started by the e200z4d.

Below is showed the GHS (GreenHlills) linker file for e200z4d core:

DEFAULTS {
Flash SIZE = 3M /* 3M Internal Flash */
Flash ADDR= 0x0

Flash SIZE Z4 = 1536K /* 1.5M Internal Flash for Z4 Core */
Flash ADDR_Z4= 0x0

Flash SIZE 70 = 1536K/* 1.5M Internal Flash for Z0 Core */
Flash ADDR Z0= 0x00180000

SRAM SIZE = 256K /* 256K od SRAM */
SRAM_ADDR = 0x40000000
SRAM SIZE Z4 = 128K /* 128K od SRAM for z4 Core */
SRAM ADDR Z4= 0x40000000
SRAM SIZE Z0 = 128K /* 128K od SRAM for 70 Core */
SRAM ADDR %0 = 0x40020000

stack_size = 16k
heap_size = 32k

}

MEMORY {

// 3M Internal Flash
Flash rsvdl: ORIGIN = 0x00000000, LENGTH = 0x10

Flash _memory z4:0RIGIN = ., LENGTH = Flash SIZE Z4-0x10
Flash memory zO0:ORIGIN = ., LENGTH = Flash SIZE Z0
Flash_rsvd2: ORIGIN = ., LENGTH = 0

// 128KB of internal SRAM starting at 0x40000000
sram_rsvdl: ORIGIN = 0x40000000,LENGTH = 0

sram_reset: ORIGIN = ., LENGTH = 0
sram_memory_ z4: ORIGIN = ., LENGTH = SRAM_SIZE_ Z4
sram_memory z0: ORIGIN = SRAM ADDR_Z0, LENGTH = SRAM SIZE ZO
sram_rsvd2: ORIGIN = ., LENGTH = 0
44/49 Doc ID 022384 Rev 2 1S7]

AN3995 Linker file

}
!/

// Program layout for starting in ROM, copying data to RAM,
// and continuing to execute out of ROM.

//
SECTIONS
{
.rchw : > Flash_rsvdl
/7
// ROM SECTIONS
/7
.vletext boot: {} > Flash memory z4 /* VLE Code */
.text D>
.vletext: >
.fixaddr {} > /* Required for */
.fixtype {} > /* compatibility with */
.secinfo {} > . /* GHS provided startup */
.syscall {} > ./* code */
.rodata : {*(.rdata) *(.rodata)} > . /* Read Only Data */
.ROM.dataROM(.data) : {} > . /* Store Initialised RAM Variables */
.ROM.sdata ROM(.sdata) : {} > . /* temporarily in Flash */
.ROM.sdata2ROM (.sdata2): {} > . /* temporarily in Flash */
.xcptn ALIGN(0x10000) : {} > . /* Exception Vector Table (IVPR) - align 64K
boundary */
.isrvectbl ALIGN (0x800) : {} > . /* ISR Vector Table - must be 2K aligned */
!/
// RAM SECTIONS
/7
.data : {} > sram memory z4 /* Initialised Data */
.bss : {} > . /* Uninitialised Data */
.sdabase ALIGN (16): {} > ./* Base location for SDA Area */
.sdata : {} > /* Small Initialised Data (Areal) */
.sbss {} > /* Small Uninitialised Data (Areal)*/
.sdata2 {} > /* Small Initialised Constant Data */
.sbss2 {} > /* Small Uninitialised Data (Area2)*/
.heap ALIGN(16) PAD(heap_ size) : o>
.stack ALIGN(16) PAD(stack_size) : >

_SRAM SIZE= SRAM SIZE;// Labels Used for Initialising SRAM ECC
_SRAM ADDR= SRAM ADDR;// Labels Used for Initialising SRAM ECC

_SRAM SIZE Z4= SRAM SIZE Z4;// Labels Used for Initialising SRAM ECC
_SRAM ADDR_Z4= SRAM ADDR_Z4;// Labels Used for Initialising SRAM ECC
_SRAM SIZE Z0= SRAM SIZE Z0;// Labels Used for Initialising SRAM ECC
_SRAM ADDR_Z0= SRAM ADDR_Z0;// Labels Used for Initialising SRAM ECC

!/
// These special symbols mark the bounds of RAM and ROM memory.
// They are used by the MULTI debugger.

//
__ghs_ramstart = MEMADDR (sram_rsvdl) ;
__ghs_ramend = MEMENDADDR (sram_memory z4) ;
__ghs_romstart = MEMADDR (Flash rsvdl);

KYI Doc ID 022384 Rev 2 45/49

Linker file AN3995

__ghs_romend = MEMENDADDR (Flash_rsvd2) ;
//

// These special symbols mark the bounds of RAM and ROM images of boot code.
// They are used by the GHS startup code (_start and _ ghs ind crto).

//
__ghs_rambootcodestart = 0;
__ghs_rambootcodeend = 0;
__ghs_rombootcodestart = MEMADDR (Flash memory z4) ;
__ghs_rombootcodeend = MEMENDADDR (Flash memory z4) ;

4

46/49 Doc ID 022384 Rev 2

Further information

Further information

Reference document

1. SPC564Bxx, SPC56ECxx 32-bit MCU family built on the Power Architecture® for

automotive body electronics applications (SPC564Bxx, SPC56ECxx datasheet, Doc ID

2. SPC564Bxx, SPC56ECxx 32-bit MCU family built on the embedded Power
Architecture® (SPC564Bxx, SPC56ECxx RM0070 Doc ID 18196)

AN3995
Appendix C
C1l

17478)
C.2

Acronyms and abbreviations

A short list of acronyms and abbreviations used in this document is reported in (Section C.1:
Reference document) for completeness.

Table 5. Acronyms and abbreviations
Terms Meanings
BAM Boot assist module
CR Control register
DMA Direct memory access
ECC Error correcting code
GPIO General purpose input/output
MC_CGM Clock generation module
MC_ME Mode entry
MCM Miscellaneous control module
MMU Memory management unit
MPU Memory protection unit
NVM Not-volatile memory
PLL Phase locked loop
SoC System on chip
SoR Sphere of replication
SSCM System status and configuration module
ST STMicroelectronics
SWT Software watchdog timer
TLB Translation lookaside buffer

Doc ID 022384 Rev 2

47/49

Revision history

AN3995

Revision history

48/49

Table 6. Document revision history
Date Revision Changes
10-Nov-2011 1 Initial release.
17-Sep-2013 2 Updated disclaimer.

Doc ID 022384 Rev 2

4

AN3995

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

KYI Doc ID 022384 Rev 2 49/49

	1 Application example description
	2 Microcontroller boot
	2.1 Boot mechanism
	Table 1. Boot mode selection
	2.1.1 Bootable sectors and RCHW
	Figure 1. Boot sector structure
	Table 2. RCHW field description

	3 e200z4d initialization and example code
	3.1 Creating e200z4d Flash boot file
	3.1.1 MMU remarks
	Figure 2. SPC564Bxx/SPC56ECxx block diagram
	Table 3. Example of MMU configuration

	3.1.2 Configure MMU for SRAM
	Figure 3. MMU configuration code for SRAM

	3.1.3 Initialize the SRAM ECC
	Figure 4. SRAM ECC initialization code

	3.1.4 Configure MMU for Flash
	Figure 5. MMU configuration code for Flash
	Figure 6. Code to copy configuration code from Flash to SRAM

	3.1.5 Configure MMU for Peripheral Bridge
	Figure 7. MMU configuration code for peripherals area

	3.1.6 Memory initialization
	Figure 8. Booting flow using GHS startup libraries
	Figure 9. Startup file: __ghs_board_memory_init
	Figure 10. Startup file: branch to GHS startup libraries

	3.1.7 Performance Hints Initialization
	Figure 11. Startup file: enable BTB and SPE
	Figure 12. Startup file: Flash Configuration code
	Figure 13. Startup file: SRAM wait states configuration code
	Figure 14. Startup file: XBAR register configuration values
	Figure 15. Startup file: XBAR configuration code
	Figure 16. Cache Configuration Code

	3.2 e200z4d device configuration from C code
	Figure 17. Environment configurations code
	3.2.1 Disable watchdog
	Figure 18. SWT disabling code

	3.2.2 Mode configuration and clocking
	Figure 19. Mode entry diagram
	Figure 20. Mode Initialization Code
	Figure 21. Peripheral Control Registers
	Figure 22. Run peripheral control registers

	3.2.3 Clock & PLL configuration
	Figure 23. System clock dividers configuration code
	Figure 24. PLL configuration code

	3.2.4 Configure Cache
	3.2.5 Starting the e200z0h core

	3.3 The e200z4d example code
	Figure 25. Application code: the main function

	4 e200z0h Initializations and example code
	4.1 e200z0h startup code
	Figure 26. e200z0h startup code

	Appendix A Application code example
	A.1 main.c file
	A.2 crt0_corez4_Flash.s

	Appendix B Linker file
	Table 4. Memory partition schema

	Appendix C Further information
	C.1 Reference document
	C.2 Acronyms and abbreviations
	Table 5. Acronyms and abbreviations

	Revision history
	Table 6. Document revision history

