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Application note

Current sharing in parallel diodes

Introduction
The use of diodes in parallel is commonly found in power electronic design. An important 
consideration for this practice is the current sharing between diodes due to the difference of 
electrical characteristics. This application note highlights the cause of the behavior of 
several diodes are connected in parallel. Some recommendations will be given to help the 
designer to produce a safe design. An electro-thermal model is described which simulates 
the current and junction temperature of each diode for given application conditions. This tool 
is illustrated using an example.
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1 Current sharing

1.1 The basics
Consider a simple example of two 5 A, 600 V ultrafast diodes in a TO-220 package 
(STTH5R06) connected in parallel and mounted on a common heat sink. Figure 1 shows 
the forward voltage VF of two STTH5R06 diodes (D1 and D2) versus forward current IF at 
different junction temperatures. Diodes D1 and D2 have a difference of forward voltage 
equal to 550 mV at Tj1 = Tj2 = 25 °C. This reference value will be expressed as:

∆VF(5A, 25 °C) = 550 mV. 

This system satisfies the equations:

Equation 1

IT(t) = IF1(t) + IF2(t)

Equation 2

VF1(t,IF1,Tj1) = VF2(t,IF2,Tj2)

In this first example IT(t) = 10 A = cst. For diode D1, having a lower forward voltage 
characteristic than D2, IF1 will be higher than IF2. When Tj1 = Tj2 = 25 °C (for example when 
the converter starts up) we get:

Equation 3

IF1 = 6.7 A, IF2 = 3.3 A (IT = 10 A)

and

Equation 4

VF1(6.7 A, 25 °C) = VF2(3.3 A, 25 °C) = 2.18 V

Figure 1. Two 5 A, 600 V ultrafast diodes (STTH5R06) connected in parallel
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1.2 Thermal effects
Two thermal effects need to be considered. The first one due to the negative temperature 
coefficient of VF is very well known. The second one, due to dependency of ⍺ VF on VF is 
practically unknown. 

1.2.1 Thermal effects due to the negative temperature coefficient of VF 

Assume that in thermal steady state equilibrium the junction temperature of these two 
diodes is equal to 125 °C. From Figure 1.b we can deduce:

Equation 5

IF1 = 6.1 A, IF2 = 3.9 A (IT = 10 A)

and 

Equation 6

VF1(6.1 A, 125 °C) = VF2(3.9 A, 125 °C) = 1.33 V

For D1, having higher forward current than D2, Tj1 will be higher than Tj2. Assuming now 
Tj1 = 150 °C and Tj2 = 125 °C we get:

Equation 7

IF1 = 6.7 A, IF2 = 3.3 A (IT = 10 A)

and 

Equation 8

VF1(6.7 A, 150 °C) = VF2(3.3 A, 125 °C) = 1.25 V

The negative temperature coefficient of the forward voltage drop ( ⍺ VF < 0) increases the 
current unbalance between each diode. It is practically true for every technology of diode 
excepted for silicon carbide diodes for which ⍺ VF > 0 in the operating area. The negative 
impact of this well-known thermal effect is in practice limited by the fact that all the diodes 
are generally mounted on a common heat sink (see Figure 12). The case temperature being 
approximately the same for each diode, the difference of junction temperature ∆Tj can be 
determined by:

Equation 9

∆Tj = RTH(j-c)∆P

Where RTH(j-c) is the junction to case thermal resistance and ∆P the difference of power 
losses between each diode. Generally ∆Tj is lower than 25 °C, limiting the current 
unbalance due to the temperature.
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1.2.2 Thermal effects due to the dependency of ⍺ VF versus VF 

The second thermal effect is linked to the dependency of temperature coefficient ⍺VF versus 
forward voltage drop VF. Figure 1.b shows that diode D1, having a lower voltage drop than 
D2, has at the same time, a lower absolute value of ⍺ VF. This law is confirmed by Figure 2 
giving the relationship between ⍺ VF and VF for different STTH5R06. Each point 
corresponds to one diode. ⍺ VF is measured for a forward current of 5 A.

This second thermal effect is favorable for current equilibrium and partially counteracts the 
first thermal effect.

Figure 2. Dependency of ⍺ VF versus VF for STTH5R06
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Equation 11

VF1(IF1,Tj1) = VF2(IF2,Tj2) = … = VFn(IFn,Tjn)

Tj2 = … = Tjn

Figure 3. Worst case situation of n diodes connected in parallel

To ensure a safe design, the more stressed diode (D1) has to work within its specified 
limits in terms of junction temperature, rms current, and transient surge current capability. 
The goal of the simulation tool presented in Section 2 is to address this question.
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VF1(5.3 A, 150 °C) = VF2(2.7 A, 125 °C) = 1.15 V

In this particular case, the resulting forward characteristic of the 2 medium diodes is 
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when Tj1 = 150 °C and Tj2 = 125 °C.
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Figure 4. Worst case situation of n diodes connected in parallel

We now use, the same approach to compare reverse recovery charges: QRR at IT = 10 A 
and VR = 400 V, versus dIF/dt for different configurations. Consider the method employed 
with an example. In the case of diode D1 (Tj1 = 150 °C) in parallel with D2 (Tj2 = 125 °C) for 
IT = 10 A we get IF1 = 6.7 A and IF2 = 3.3 A. Since IT = IF1 + IF2, we have:

Equation 13

dIT/dt =dIF1/dt + dIF2/dt

If dIT/dt = 300 A/µs, we get dIF1/dt = 200 A/µs and dIF2/dt = 100 A/µs. Figure 5.b 
shows the switching oscillograms of D1 at IF1 = 6.7 A, dIF1/dt = 200 A/µs, Tj1 = 150 °C 
and that of D2 at IF2 = 3.3 A, dIF2/dt = 100 A/µs, Tj2 = 125 °C. In these conditions 
accurate measurements give:

Equation 14

QRR(D1)(6.7 A, 200 A/µs, 150 °C) = 125 nC, QRR(D2)(3.3 A, 100 A/µs, 125 °C) = 59 nC

So QRR of D1 in parallel with D2 is:

Equation 15

QRR(D1 + D2) = QRR(D1) + QRR(D2) = 184 nC

Assume now two diodes D1 are connected together. Obviously the current will be well 
balanced so we have: IF1 = 5 A, dIF1/dt = 150 A/µs, Tj1 = 125 °C. Measurements give:

Equation 16

QRR(D1)(5 A, 150 A/µs, 125 °C) = 80 nC

Equation 17

So QRR(2 D1) = 2 • QRR(D1)(5 A, 150 A/µs, 125 °C) = 160 nC
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In the same way we obtain:

Equation 18

So QRR(2 D2) = 2 • QRR(D2)(5 A, 150 A/µs, 125 °C) = 150 nC

It is interesting to note that while D1 has a lower forward voltage drop than D2, the reverse 
recovery charges are higher for D1.

Figure 5. Switching oscillograms of D1 and D2

Using this method for different dIT/dt we get the diagrams shown in Figure 6.

Figure 6. QRR at IT = 10 A and VR = 400 V versus dIT/dt for different configurations
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To summarize, the VF and QRR comparison between two STTH5R06 in parallel having a 
dispersion of ∆VF(5A, 25 °C) = 550 mV with the ideal case constituted by medium diodes 
indicates that these characteristics are close when junction temperatures are identical. 
When the junction temperature difference between D1 and D2 increases, VF tends to 
decrease slightly and QRR tends to increase slightly. We cannot make a general conclusion 
from a particular case, but this example shows the general trend and illustrates a method 
which can be employed for others configurations.

1.5 Considerations of maximum dispersion: ∆VFmax (I0, 25 °C)
The above considerations show the key impact of the maximum dispersion 
∆VFmax(I0, 25 °C) on the current imbalance. For a designer it is not always easy to know this 
value. However, the following information can be given:

• ∆VFmax(I0, 25 °C) increases with the voltage rating (VRRM). That means the forward 
voltage dispersion of 600 V ultrafast diodes will be higher than the dispersion of 200 V 
ultrafast diodes. The same consideration can be applied between 200 V ultrafast 
diodes and 100 V Schottky diodes and between 100 V Schottky diodes versus 45 V 
Schottky diodes.

• For ultrafast diodes having the same VRRM ∆VFmax(I0, 25 °C) is higher for faster diode 
families. For example, If we consider 600 V ST ultrafast diodes, R family (Rapid) has 
higher dispersion than the L family (Low VF).

• Practically all ST common cathode diodes in the same package can be connected in 
parallel without any precaution. Since these diodes are on the same die, 
∆VFmax(I0, 25 °C) is very low.

• Low voltage Schottky diodes (VRRM < 60 V) can also be connected in parallel without 
precaution.

• Sometimes, designers fix by establishing a maximum ∆VFmax(I0, 25 °C) for all diodes 
connected in parallel to ensure a safe design. A good value can be: 
∆VFmax(I0, 25 °C) = 40 mV. With this value, the current will be equitably shared 
between each diode and the thermal effects will become negligible.



Current sharing AN4381

10/16 DocID025436 Rev 1

1.6 Layout recommendation
The basic recommendation is to use a symmetrical layout as illustrated in Figure 7.

Figure 7. Good and bad layouts

If the layout is not symmetrical, the connection resistors will increase the current imbalance. 
In contrast, a symmetrical layout will balance the current in each diode. To have a real 
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diodes. Adding the small resistance in series with each diode can be a good way to balance 
the current. On the other hand this solution will generate more power losses and will 
decrease the efficiency of the converter. We can observe in Figure 4.b that the resistance of 
the diode RD increases with lower forward current IF. So paralleling will be easier for lower 
current. The dependency of RD versus IF can also be considered as a compensation effect 
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2 Electro-thermal model of diodes in parallel

2.1 DC Forward characteristic model
The first step is to construct a forward characteristic model of the diode (see Figure 8). 

Figure 8. Model of the forward characteristic of the diode

This is defined by the following current generator IF depending on Tj and VF

Equation 19

Each coefficient ai(Tj) is of the form:

Equation 20

 a0(Tj) = a00 + a01Tj + a02Tj
2 + a03Tj

3

Figure 9 and Figure 10 give respectively ai(25 °C) and a0j coefficients for a STTH5R06.

Figure 9. ai(25 °C) coefficients of STTH5R06 
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Figure 10. a0i coefficients of STTH5R06 

Figure 11 illustrates the precision of this model.

Figure 11. Forward characteristic comparison between model and measurement
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2.2 Full system model
Having now obtained a good model of the forward characteristic of the diode, we can 
construct the model of the total system. Without loss of generality, we consider the simple 
example represented in Figure 12. It consists of two STT5R06 diodes mounted on the same 
heat sink. The total current IT(t) is rectangular with a switching period TS = 10 µs, a duty 
cycle δ = 0.5 and a peak current IP = 10 A. The full model of this system is also shown in 
Figure 12. We can distinguish the electrical model defined in the previous paragraph from 
the thermal model. In this example the case temperature of the heat sink is constant and is 
equal to Tcase = 100 °C. It is important to understand that these two models will work 
together. VF1 and VF2 depend on Tj1 and Tj2 which depend on the power losses in the 
diodes (P1 and P2). Thus Tj1 and Tj2 depend upon VF1 and VF2

Figure 12. Full system model

In this application note we consider only conduction losses. This hypothesis is justified not 
only for Schottky and silicon carbide diodes but also for the major applications using 
ultrafast diodes. Effectively, major switching losses, due to reverse recovery charges, are 
generally dissipated in the companion switch (MOSFET or IGBT) and do not affect the 
current imbalance of the diodes. For applications for which switching losses generated in 
the diodes are not negligible versus conduction losses, it is possible to complete the model. 
This more complex model is not covered in this application note.

2.3 Simulation results
The simulations were performed with STTH5R06 having different values of 
∆VFmax(5 A, 25 °C). Figure 13 shows the forward voltage characteristic of seven 
STTH5R06 diodes at Tj = 25 °C and gives ∆VFmax(5 A, 25 °C) versus the reference diode 
Dref having the highest VF. 
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Figure 13. STTH5R06 with different ∆VFmax(5 A, 25 °C)

Figure 14 represents the variation current and junction temperature versus time of each 
diode for respectively ∆VFmax(5 A, 25 °C) equal to 100 mV, 300 mV, 400 mV and 600 mV. 
The current imbalance and the difference of junction temperature between Dref and the 
other diode increase with ∆VFmax(5 A, 25 °C). Even for ∆VFmax(5 A, 25 °C) = 600 mV, the 
difference of junction temperature is low (< 6 °C), in this example the thermal effect of 
negative ⍺ VF < 0 is weak. Up to ∆VFmax(5 A, 25 °C) = 300 mV the current imbalance is low 
(IDref = 4.37 A, I6 = 5.63 A).

Figure 14. Simulation results
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2.4 Comments about simulation
This simulation can be easily extrapolated to more complex configurations integrating n 
diodes, more accurate thermal models (for example Cauer type circuit thermal model) 
including models of the heat sink, layout resistors, more complex IT(t) current wave forms. If 
designers are only interested in knowing steady state current and junction temperature it is 
possible to reduce the calorific capacity (CTH) to gain simulation time. This tool can be used 
to analyze both current imbalance and difference of temperature for transient surge 
currents. 

3 Conclusions

This application note shows the impact of forward voltage dispersion is generally more 
critical than thermal effects for the current imbalance problem. To perform a safe design it is 
important to be sure the most stressed diode works within its specified limits in the worst 
case situation. The simulation tool described allows estimation of the junction temperature 
and current of each diode for transient and steady state phases.
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