‘——— AN4500
” augmented

Application note

How to display size-optimized pictures on a 4-grey level E-Paper
from STM32 embedded memory

Introduction

This application note describes how to optimize the size of the black and white pictures to
be stored into the embedded flash memory of the STM32 microcontrollers and how to
display them on a E-Paper display.

The application note presents how to prepare and encode the black and white picture and
presents the software solution to decompress the picture to display it on a 4-grey level E-
Paper display.

The STM32 microcontrollers allow to interface the E-Paper display using specific
peripherals to send data/command to the E-Paper display controller, and to drive specific
GPIOs to manage the E-Paper control pins.

The application note and the associated software (STSW-STM32152) are based on
STM32L053 discovery kit (32L0538DISCOVERY) offering an embedded E-Paper display.
They can be reused easily for any STM32 microcontroller customer board with minor
changes (clock configurations, GPIOs definition according to the board schematics).

E-Paper display is a 2,1 inches active area containing 172x72 pixels, with 2-bit full display
capabilities. For more details about the E-Paper functionalities which would not be
presented into this application note, please refer to the GDE021A1 specification available
on the ST web.

Table 1. Applicable products, tools & software

Type Reference products
STM32 embedded software STSW-STM32152
STM32 MCU evaluation tools 32L0538DISCOVERY
October 2014 DocID026391 Rev 1 1/18

www.st.com

http://www.st.com

Contents AN4500

Contents
1 Implementationexample i 5
1.1 General OVeIVIEW e 5
1.2 STM32 configuration i 6
1.2.1 SPlperipheral 6
1.2.2 Systemclock 6
1.2.3 Specific GPIOs to control the E-Paperdisplay 6
1.3 E-Paper display configuration 6
1.4 Picture creation and size compression 8
1.4.1 Picture frame 9
1.5 Picture data expansion to load the embedded E-Paper RAM 11
2 Firmware description ittt 12
21 System configuration 12
2.2 Interrupt source 12
2.3 E-Paper powersupply 12
24 Major software functions description 12
3 Possible firmware optimization, 15
3.1 E-Paper consumption management 15
3.2 Partial update of the E-Paper display RAM 15
4 Revision history i 17
2/18 DoclD026391 Rev 1 Kys

AN4500 List of tables

List of tables

Table 1. Applicable products, tools & software. 1
Table 2. Ram address map.t 8
Table 3. High level software functions e 13
Table 4. EPD_IO_WriteReg function 13
Table 5. EPD_IO_WriteData function. 14
Table 6. Gde021a1_Drawlmage function. e 14
Table 7. E-Paper display module low powermodes. e 15
Table 8. Document revision history. 17

3

DocID026391 Rev 1 3/18

List of figures AN4500

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

4/18

Typical implementation design description. 5
Data entry mode and RAM configuration 7
Waveform look uptable e 8
Picture frame. e e 9
4 pictures displayed on the E-Paperdisplay. 9
90° right picture rotation e 10
C constant coding the picture frame. 10
Data expansion to load the E-Paper RAM 11

3

DocID026391 Rev 1

AN4500

Implementation example

1.1

Implementation example

General overview
The example presented in this application note provides typical hardware and software
implementation basics to interconnect with some E-Paper with one STM32 microcontroller.
Typically, the system embeds:

— One STM32 microcontroller

— An E-Paper display with external components used by the charge pump of the E-
Paper display driver embedded into the GDE021A1 E-Paper display module.

Figure 1. Typical implementation design description

Flash
memory
code +
pictures

STM32 Microcontroller A

SPI_MOSI

GDEO21A1 E-Paper display module

Yy

SPI SPI_SCK
EPAPER_D/C
EPAPER_CS

GPIO EPAPER_Reset
- EPAPER Busy

E-Paper display
172 x 72 pixels

Yvy

‘ E-Paper display controller

A A

E-Paper display
DC-DC
Circuit

E-Paper display
Capacitor circuit

A

EPAPER_Power_switch

GPIO Power Circuit

Y

MSv34173V1

Note:

3

The E-Paper display module is connected to the STM32 MCU via the SPI interface
receiving the data and commands to configure the display and to transfer the pictures into
the E-Paper module internal RAM buffer.

The pictures are stored into the internal flash program memory to minimize external
resources. It consists of four pictures displayed to promote the STM32L053 main features. It
is an endless application rolling back to the first picture when the 4th one has been
displayed on the E-Paper module.

The pictures could be stored into external memories (like SD cards or external flash
memory) if the embedded flash memory size is too small to content the application code +
the pictures library. In such case, there is probably no need to reduce the picture size and to
apply the expansion algorithm present into this application note. Data processing time will
be reduced since the picture is sent to the EPD’s buffer without any pre-processing.

DocID026391 Rev 1 5/18

Implementation example AN4500

1.2

1.21

1.2.2

1.2.3

1.3

6/18

STM32 configuration

General requirements

The developed example is mainly based on the STM32L053 discovery kit but the functional
and structural description is similar for most applications and platforms.

SPI peripheral

The communication between the MCU and the E-Paper display is served by the SPI
protocol. The MCU configures the SPI in master 8-bit mode with NSS managed by software.
There is no CRC needed here. The E-Paper display module can be written only through SPI
channel. This is why the MOSI line is defined and not the MISO line.

The frequency used for the communication is 2 MHz starting from the HSI set to 16 MHz
from which the prescaler by 8 is applied into the SPI baud rate generator.

System clock

For the application note, the high speed internal oscillator has been set to be the system
clock. There is no divider on the clock path, meaning that the APB and AHB bus frequencies
are 16MHz.

Specific GPIOs to control the E-Paper display

Some specifics signals are used to control E-Paper display:

e EPAPER_Reset: This signal is generated by the MCU to reset the E-Paper Registers
and to clear any on-going refresh.

e EPAPER_D/C: Data/Command line. This output generated by the MCU allows the E-
Paper display module to know if the value sent by the SPI identifies a command or a
data.

e EPAPER_CS: This is the Chip Select pin. This output generated by the MCU is used to
enable the SPI Slave embedded in the E-Paper display module.

e EPAPER_Busy: This signal comes from the E-Paper display module to inform the MCU
about the module status. When the software launches a refresh, the busy bit will be set
and no more action has to be done on the E-Paper display (no more command or data)
to avoid any corruption on the display.

e EPAPER_Power_switch: This GPIO is used to control an analog switch to power on/
power off the E-Paper display module to save power consumption depending the
application.

E-Paper display configuration

The E-Paper display used in the STM32L053 discovery kit is very configurable. It is
recommended to refer to the E-Paper specification (Model GDE021A1) to better assimilate
the way this application note is going to deal with the E-Paper module.

DoclD026391 Rev 1 KYI

AN4500

Implementation example

3

The E-Paper module internal RAM has to be filled with data coding the picture frame
through the MCU SPI interface (refer to Table 2: Ram address map for the RAM mapping).

The RAM address will be incremented or decremented after each write operation depending
on the E-Paper module configuration. The address counter may be updated in X or Y
direction. Each of the axis can be configured independently concerning the start/end
address for X and Y coordinates.

For this application note, the module has been configured to increment the address counter
in X direction from 0 to 71, then incrementing the Y position from 0 to 171.

Figure 2. Data entry mode and RAM configuration

X
—
SO S71

GO
-

RAM X start address : 0 (SO)
RAM Y start address : 0 (GO)

RAM X end address : 17 (0x11) -> (4 pixels coded on one RAM address)
RAM Y end address : 171 (OxAB)

y G171, —————»

MSv35943V1

The configuration used in this application note does not require the E-Paper display module
to enter in deep sleep mode after update operation. It means that the RAM data is retained
in between two update refresh cycles.

If the application requires to decrease consumption when there is no on-going update, it
could be possible to configure the E-Paper to reach the deep sleep mode. The consumption
is then reduced by a factor 10 (down to 2 pA), but the RAM content is not retained in such
case. As a drawback, it will no more be possible to refresh some part of the picture to
display in such case, and all the pixels of the full picture have to be reloaded in the RAM
through the SPI before refreshing the display.

The Waveform Look Up Table (LUT) used here (default one, without any temperature
range). For more details, please refer to the GDE021A1 specification.

DocID026391 Rev 1 7/18

Implementation example AN4500

1.4

8/18

Figure 3. Waveform look up table

/* Look-up table for the epaper (90 bytes) */
const unsigned char init_data[]={
0x82,0x00,0x00,0x00,0xAA,0x00,0x00,0x00,
OxAA,0xAA,0x00,0x00,0xAA,0xAA,0xAA,0x00,
0x55,0xAA,0xAA,0x00,0x55,0x55,0x55,0x55,
OxAA,0xAA,0xAA,0xAA,0x55,0x55,0x55,0x55,
OxAA,0xAA,0xAA,0xAA,0x15,0x15,0x15,0x15,
0x05,0x05,0x05,0x05,0x01,0x01,0x01,0x01,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x41,0x45,0xF1,0xFF,0x5F,0x55,0x01,0x00,
0x00,0x00,};//waveform

The E-Paper RAM mapping for this application note is organized like described in the
Table 2: Ram address map.

Table 2. Ram address map

X-ADDR (SOURCE)
S0 S$1 S2 S3 S4 S5 S6 S7 S68 S69 S70 S71
00h 01h 11h
o | oon | DBO DBO DBO DBO DB1 DB1 DB1 DB1 DB17 |DB17 |DB17 |DB17
[7.6] [5.4] 13.2] [1.0] [7.6] [5.4] 3.2] [1.0] el [5.4] 13.2] [1.0]
_le1|om |PB18 [DBI8 |DB18 |DB18 |DBte |DB19 |DB19 |DB19 DB35 |DB35 |DB35 |[DB35
O [7.6] [5.4] 13.2] [1.0] [7.6] [5.4] 13.2] [1.0] el [5.4] 13.2] [1.0]
Sl
o
a
c1E
s>+ [G1 | oan | DB306O | DB3060 | DB3060 | DB306O | DB3061 | DB3061 | DB3061 | DB30GT DB3077 | DB3077 | DB3077 | DB3077
70 [7.6] [5.4] 13.2] [1.0] [7.6] [5.4] 3.2] [1.0] el [5.4] 13.2] [1.0]
G1 | ogn | DB3078 | DB3078 | DB3078 | DB3078 | DB3079 | DB3079 | DB3079 | DB3079 DB3095 | DB3095 | DB3095 | DB3095
71 [7.6] (5.4] 13.2] [1.0] 17.6] |[5.4] 3.2] [1.0] el [5.4] 13.2] [1.0]

Each RAM address stores 4-pixels, each pixel coded in 4-grey level. The SPI of the STM32
is configured to set the transfer with the MSB first feature, like requiered by the E-Paper
display module.

The picture needs to be coded following these constraints. For more details, please refer to
Section 1.4: Picture creation and size compression.

Picture creation and size compression

The picture to display on the E-Paper module has to be built in a smart way in order to get a
corresponding software constant well formatted. It would be easier to process it to display it
on the E-Paper module.

DoclD026391 Rev 1 KYI

AN4500 Implementation example

This picture is embedded into the internal non-volatile flash program area of the
STM32L053. The picture has in consequence to be compressed in a specific format
allowing to code 1-bit by pixel to save space memory. In consequence, the picture will be
coded in black and white and no more as a 4-grey level picture.

As the E-Paper display RAM module needs to receive a 2-bit by pixel encoding mode, an
expansion processing starting from the picture stored into the non-volatile flash program
memory is requiered. This operation will be managed by the software (please refer to the
section Section 1.5: Picture data expansion to load the embedded E-Paper RAM)

1.4.1 Picture frame

Picture frame can be edited using the well-known “PAINT” software from Windows for

instance. Blank picture has to be edited at first (like in Figure 4: Picture frame). The blank
frame is 172x72 pixels.

Figure 4. Picture frame

172 pixels

72 pixels

MSv34174V1

Then the picture to display has to be put inside this frame. If a text has to take place in the
picture, the dedicated font “small fonts” may be used to offer a convenient display for the
text.

The picture displayed to illustrate this application note are presented in Figure 5: 4 pictures
displayed on the E-Paper display.

Figure 5. 4 pictures displayed on the E-Paper display

USB Crystal-less ADC 12-bit
Low-power timer 16-bit capable
Low-power UART True EEFROM
87 pA I MHz CORTEX™MO0+
400nA stop 64 KB Flash
3.5ps wakeup 8KB BAM

)

DocID026391 Rev 1 9/18

Implementation example AN4500

To obtain a constant coding the picture in a convenient way to minimize the data processing,
it is interesting to rotate the picture by 90° right (Figure 6: 90° right picture rotation). In such
a way, as illustrate into the Figure 7, the number of bytes into the constant will code all the
pixels and will be an integer multiple of the total number of the pixels in the full frame.

Figure 6. 90° right picture rotation

r =
2 5 O
R
e 7 o
£ 2
a £ @
-5 g
E:‘.I
I
o4 3 &

Then, each picture has to be saved with PAINT with the format .bomp picture with a
monochrome bitmap type.

In order to get the C-constant directly encoded with the picture to display, it is interesting to
save the picture in XBM-X11 format, using for instance the freeware Xnview. Here is the file
format obtained after this operation (Figure 7: C constant coding the picture frame). The
constant can be directly used and declared in the C project.

Figure 7. C constant coding the picture frame
L

#define x_width 72
#define x_height 172
/static\uint878t x_bits[] ={ .
*\Q@Q/ 0x00, 0x00, 0xe0, 0x7f, 0x00, 0x00, 0x00, 0x00,) w_
_—"" 0x00, 0x00, 0x00, Oxff, Oxff, 0x07, 0x00, OXOO,}TxTJ , T~

First 8-pixels starting from — 0x00, 0x00, Oxe0, Oxff, Oxff, Ox7f, 0x00, 0x00, 0x00, T~
X- RAM address =0 and 0x00, 0x00, Oxf8, Oxff, Oxff, Oxff, 0x01, 0x00, 0x00, =

Y-RAM address =0 0x00, 0x00, Oxfc, Off, Oxff, Oxff, Ox03,0x00,0x00, ~ Y.<AMaddress =0 and8 last
LSB bit correspond to S0 0x00, 0x00, Oxff, Oxff, OXff, Off, OxOf, 0x00, 0x00, ~PXelsontheline (MSB bitis

0x00, 0xc0, Oxff, Oxff. Oxff, Oxff, OX3f. Ox0O, OX0O, the 72th pixel)

0x00, Oxe0, Oxff, Oxff, Oxff, Oxff, Ox7f, 0x00, 0x00,
Y-RAM address 0x00, 0xf0, Oxff, Oxff, Oxff, Oxff, Oxff, 0x00, 0x00,
0x00, Oxe8, 0xf8, Oxff, Oxff, Oxff, Oxff, 0x01, 0x00,
0x00, 0x74, O0xf7, Oxff, Oxff, Oxff, Oxff, 0x03, 0x00,
0x00, 0x76, Oxf7, Oxff, Oxff, Oxff, Oxff, 0x07, 0x00,
0x00, 0x77, Oxf7, Oxff, Oxff, Oxff, Oxff, OxOf, 0x00,
0x80, 0x77, Oxf7, Oxff, Oxff, Oxff, Oxff, Ox1f, 0x00,

Last Y-RAM address position 0x00, 0x00, 000, 0x00, 0x08, 000, 0x00, 0x00, 0x00,
is the 172th line (G171 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 000,

Using this picture formatting allows to reduce by 2 the size of each picture, meaning that the
picture’s weight is 1.5KB against 3KB in 4-grey level mode.

3

10/18 DocID026391 Rev 1

AN4500

Implementation example

1.5

Picture data expansion to load the embedded E-Paper RAM

The software has been developed to read efficiently the constant generated into the xbm file
and to display it. Depending on the application, there are different optimizations axis for the
software and the E-Paper display configuration. Some of them are described in the
Section 2: Firmware description.

Figure 8: Data expansion to load the E-Paper RAM illustrates the way the C-constant

(coding the picture in monochrome 1-bit format) is processed to be loaded into the E-Paper
RAM module.

Figure 8. Data expansion to load the E-Paper RAM

C-Constant
(Picture coding)
#define x_width 72
#tdefine x_height 172
static char x_bits[] = {
> —(0x80, 0x77, Oxf7, Oxff, Oxff, Oxff, Oxff, Ox1f, 000,
% LW ey
[__——40x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
e B
- i
|
/ \
/ ‘ 0x80 0x77 Monochrome 4-Grey level
/ i[9 0 0 i1 \
“/' 4 0 ‘ 1
) 1 ‘ 00
| S UNG P 4,;//:7” LA
[RAM Y =0 (GO) 11 [11 [11 [11]o00 | 00 [00 [00 [11 [00 00 | oo\fl [
SO S1 S2 S3 [S4 S5 S6 S7 S8 S9 S10 S11(S12 S13 S14 S15
\‘ | RAM X = 00h RAM X = 01h RAM X = 02h RAM X = 03h
\ i
\ |
i
“\\ | 00h 00h
i o[ofo[oJofo]o [0 o[ofofo[o]o0]o]o
\ i AMIRAL AL 001D 10110
\ I
S :
’</// L YA AY , S =1 z/;///;"" v Y]) >\
RAMY=171(G171) [11 [11 [12 [11 [21 [11 [11 11 | 11 11311\11[11\11\11\f1\ ——————— e
SO S1I S2 S3 |S4 S5 S6 S7 S8 SS9 S10 S11(S12 S13 S14 S15
RAM X = 00h RAM X = 01h RAM X = 02h RAM X = 03h

3

The software is minimizing the data processing time to perform this data expansion
operation. If the data read from the C-Constant is read equal to 0, the software writes
directly 2 bytes at FFh in the corresponding RAM Address pointed out by X and Y RAM
address pointers. Indeed, the white level is coded 11b in 4-Grey Level in the RAM whereas
it is coded Ob into the C-constant. Each byte coded into the C-Constant represents 8 pixels
and so 2 RAM addresses, each of them coding 4 pixels in 4-grey levels.

In case of there is at least one pixel defined as black pixel from the C-Constant value, the
software data processing is launched to extend the 1-bit monochrome coding into the 4-grey
level coding like represented in Figure 8: Data expansion to load the E-Paper RAM.

X and Y RAM address pointers are managed by the hardware of the E-Paper display
module each time a data is written in SPI mode when it is in data entry mode (for more
details, please refer to the GDE021A1 E-Paper display specification).

DocID026391 Rev 1 11/18

Firmware description AN4500

2 Firmware description

The application note is based on a software (reference STSW-STM32152) which runs on a
STM32L053 discovery kit. This section describes the main functions and software features
to address the E-Paper display module and to manage picture size compression/ expansion
to save memory space for pictures storage.

The software displays 4 pictures in rolling mode, with a temporisation of 5s between each
display refresh cycle.

2.1 System configuration

The STM32L053 discovery kit has been configured to run at 16MHz from the internal HSI16
RC-oscillator.

The SPI is running at 2MHz to communicate with the E-Paper display module for command
and data sending.

The systick is used to control delays between each picture display refresh, and to manage
the E-Paper initialization.

2.2 Interrupt source

The only interruption source used in the software is the systick interrupt which allows to
increment a counter to manage the HAL_Delay() function.

2.3 E-Paper power supply

The E-Paper power supply is switched ON thanks to the GPIO PB10 in the main.c file. Then
it always remains powered in this application.

24 Major software functions description

High level software functions used by this application note are presented and described in
the Table 3: High level software functions.

The CS (Chip Select) pin of the E-Paper is controlled by a MCU GPIO each time a display
processing phase is launched. The HAL macro allows to control it directly:

EPD_CS_LOW() or EPD_CS_HIGH()

3

12/18 DocID026391 Rev 1

AN4500

Firmware description

3

Table 3. High level software functions

Function name

Description

BSP_EPD_Drawlmage(uint16_t
Xpos, uint16_t Ypos, uint16_t
Xsize, uint16_t Ysize, uint8_t
*pdata)

This function calls the others high level functions needed to
display one specific picture on the E-Paper display.

BSP_EPD_RefreshDisplay(void)

This function is used to launch the E-Paper refresh command.lt
waits for the BUSY signal deassertion from the E-Paper module.

EPD_RESET_HIGH()
EPD_RESET_LOW()

This macro is used to generate the reset signal to the E-Paper
display thanks to a MCU GPIO.

BSP_EPD_Init()

Configure the E-Paper:

- Sleep mode

- RAM X start/end address: 00h/11h

- RAMY start/end address: 00h/ABh

- RAM X counter: 00h

- RAMY counter: 00h

- Disable RAM bypass and GSO0 to GS3 for the display transition
- Display update: CLK ON + Charge Pump ON + pattern display

Only the most relevant low level functions are detailed below.
e EPD_IO_WriteReg function
This function implements all the needed operations to send a command to the E-Paper

display module.

Table 4. EPD_IO_WriteReg function

Function name

EPD_Write_Com

Prototype void EPD_I10O_WriteReg(uint8_t Reg)

Behavior description

Send the command to the E-Paper display module thanks to the SPI MOSI

line
Input parameters The command to send to the E-Paper display module.
OQutput parameter None
Return value None

Required preconditions | None

Called functions SPIx_Write(), EPD_CS_LOW(), EPD_CS_HIGH(), EPD_DC_LOW()

This function is going to transmit a single byte identifying the command (for more details
about the command values and their meaning, please refer to the GDE021A1 E-Paper

display specification)

e EPD_IO_WriteData function
This function implements all the needed operations to send a data to the E-Paper

display module.

DocID026391 Rev 1 13/18

Firmware description

AN4500

Table 5. EPD_IO_WriteData function

Function name

EPD_Write_Com

Prototype

void EPD_IO_WriteData(uint8_t RegValue)

Behavior description

Send the data to the E-Paper display module thanks to the SPI MOSI line

Input parameters

The data to send to the E-Paper display module for display configuration,
or to load the RAM module with the picture to display.

Output parameter None
Return value None
Required preconditions | None

Called functions

SPIx_Write(), EPD_CS_LOW(), EPD_CS_HIGH(), EPD_DC_HIGH()

This function is going to transmit a single data byte which could be either a data used to
configure the E-Paper register or a data corresponding to the picture to display (for more
details about the command values and their meaning, please, refer to the GDE021A1 E-
Paper display specification).

e gde021a1_Drawlmage function

This function prepares the 2 expanded bytes data from the 8-bit data read from the 1-bit
XBM files. It reorders the 2-bit pixels in the byte in a proper way to fill-in the RAM (refer to
Figure 8: Data expansion to load the E-Paper RAM).

Table 6. Gde021a1_Drawlmage function

Function name

Processing_8_pixels

Prototype

gde021a1_Drawlmage(uint16_t Xpos, uint16_t Ypos, uint16_t Xsize,
uint16_t Ysize, uint8_t *pdata)

Behavior description

2-bytes data preparation (expansion) to load the E-Paper RAM display and
byte reordering to fill-in the RAM with the pixels information placed at the
right place

Input parameters

Data to send to the E-Paper display module, the start and the end
addresses of the matrix X/Y as well as the size of each of them.

preconditions

Output parameter None
Return value None
Required None

Called functions

EPD_IO_WriteReg(uint8_t Reg), EPD_IO_WriteData(uint8_t RegValue)

14/18

3

DocID026391 Rev 1

AN4500

Possible firmware optimization

3

3.1

3.2

3

Possible firmware optimization

There are few axis to optimize the code and/or to reduce the power consumption.

E-Paper consumption management

In this application note, the software switches ON the power for the E-Paper permanently.
Depending on the application, power consumption may be critical and the software may
want to act for a drastic power consumption reduction. Two modes are offered by the E-
Paper like described into Table 7: E-Paper display module low power modes.

Table 7. E-Paper display module low power modes

E-p | Consumption
“raper low power (typical) Contribution Drawback
modes
@3,3V
DC/DC converter OFF
No more clock, No output ;
SI d 35UA ' Th t
eep mode ! load, RAM retention © consumption
guaranty
RAM is no more retained, it
DC/DC converter OFF means that_ partial picture refresh
Deep sleep mode 2 UA No more clock No outout is not possible after wake-up.
load. N RAM, tonti PUl | The RAM content needs to be
oad, No retention completely reloaded with the
new picture to display.

Normally in most of the application, the E-Paper refresh rate should be long enough to
prefer to let the E-Paper entering in deep sleep mode when it is not busy. It could cost less
in term of power consumption to reload the RAM with the picture to display through the SPI
(3096 bytes). In opposite, if the refresh rate is quite fast, it could be better to enter in sleep
mode rather the deep sleep mode to maintain the RAM content to allow partial display area
refresh with a minor runtime for the MCU. The user has to evaluate the best solution in term
of power consumption and the time to refresh the picture according to his goals.

The STM32L053 discovery kit used to run this application note software allows to pilot a
MOSFET from a dedicated GPIO (PB10) to switch OFF totally the power consumption,
disconnecting the E-Paper main power supply. In such case, the screen for sure is still
displaying the picture but the module doesn’t consume anymore current. It is a kind of deep
sleep mode “plus”. In such case, the module may consume more when the application will
switch it ON and when the charge pump will be reactivated.

Partial update of the E-Paper display RAM

The application may require time to time to refresh partially the display. In such case, the
digital interface of the E-Paper display module may configure the X and Y RAM address
pointers and the corresponding counters to load only the part of the display which changes.

DocID026391 Rev 1 15/18

Possible firmware optimization

AN4500

16/18

The remaining data to display are still in the E-Paper RAM if the sleep mode is set during
the E-Paper initialisation phase rather than the deep sleep mode (and the power supply
maintained on the E-Paper). It has two effects, to minimize the number of bytes to transfer

by the MCU to the E-Paper RAM and so to minimize the MCU/CPU runtime to do this
operation.

DocID026391 Rev 1

3

AN4500

Revision history

4

3

Revision history

Table 8. Document revision history

Date

Revision

Changes

15-Oct-2014

1.0

Initial release

DocID026391 Rev 1

17/18

AN4500

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics — All rights reserved

3

18/18 DocID026391 Rev 1

	Table 1. Applicable products, tools & software
	1 Implementation example
	1.1 General overview
	Figure 1. Typical implementation design description

	1.2 STM32 configuration
	1.2.1 SPI peripheral
	1.2.2 System clock
	1.2.3 Specific GPIOs to control the E-Paper display

	1.3 E-Paper display configuration
	Figure 2. Data entry mode and RAM configuration
	Figure 3. Waveform look up table
	Table 2. Ram address map

	1.4 Picture creation and size compression
	1.4.1 Picture frame
	Figure 4. Picture frame
	Figure 5. 4 pictures displayed on the E-Paper display
	Figure 6. 90° right picture rotation
	Figure 7. C constant coding the picture frame

	1.5 Picture data expansion to load the embedded E-Paper RAM
	Figure 8. Data expansion to load the E-Paper RAM

	2 Firmware description
	2.1 System configuration
	2.2 Interrupt source
	2.3 E-Paper power supply
	2.4 Major software functions description
	Table 3. High level software functions
	Table 4. EPD_IO_WriteReg function
	Table 5. EPD_IO_WriteData function
	Table 6. Gde021a1_DrawImage function

	3 Possible firmware optimization
	3.1 E-Paper consumption management
	Table 7. E-Paper display module low power modes

	3.2 Partial update of the E-Paper display RAM

	4 Revision history
	Table 8. Document revision history

