

AN4658 Application note

Migration of applications from STM32F429/439 lines to STM32F446 line

Introduction

For more and more applications using STM32 products, it is important to easily migrate a project to a different microcontroller in the same product family.

Migrating an application to a different microcontroller is needed, for instance, when product requirements grow, putting extra demands on memory size, or requiring an increase in the number of I/Os. On the other hand, cost reduction objectives may force to switch to cheaper components and towards shrinking the PCB area.

This application note is intended to help the user to analyze the steps needed to migrate from existing designs based on STM32F429xx and STM32F439xx products to STM32F446xx devices. It groups together all the most important information and lists the key items to address.

In this document the comparisons are carried out for "fully featured" microcontrollers of the STM32F429/439 and STM32F446 lines, user must consider that some products may have less features (depending on actual part number).

Migrating between two devices within the same family can require in some cases hardware and/or software changes: the required ones are described in this document.

To benefit fully from the information in this application note, the user should be familiar with the STM32 microcontroller family.

This application note has to be read in conjunction with STM32F429xx/STM32F439xx and STM32F446xx reference manuals (RM0090 and RM0390, respectively) and datasheets available at www.st.com.

Table 1. Applicable products

Product type	Product lines
Microcontrollers	STM32F429/439 STM32F446

March 2015 DocID027496 Rev 1 1/24

AN4658

Contents

Contents

1	Hard	Hardware migration guide			
	1.1	Recommendations for board migration 5			
2	Perip	oheral migration guide			
	2.1	STM32 product cross-compatibility			
	2.2	Memory mapping 9			
	2.3	Flash memory			
	2.4	Flexible memory controller (FMC)11			
	2.5	Interrupts			
	2.6	RCC 13			
	2.7	RTC 14			
	2.8	PWR 15			
	2.9	U(S)ART			
	2.10	I2C 16			
	2.11	Audio interfaces			
	2.12	CRC 17			
	2.13	USB OTG 18			
	2.14	Digital camera interface (DCMI)			
	2.15	Secure digital input/output interface (SDIO)			
	2.16	ADC/DAC			
3	Cond	clusion			
4	Revi	sion history			

AN4658 List of tables

List of tables

Table 1.	Applicable products	. 1
Table 2.	Pinout comparison (LQFP packages)	. 5
Table 3.	Peripheral compatibility analysis	. 7
Table 4.	Peripheral bus mapping comparison	. 9
Table 5.	Flash memory comparison	10
Table 6.	FMC comparison	. 11
Table 7.	Interrupt vector comparison	. 12
Table 8.	Reset and Clock Controller comparison	. 13
Table 9.	RTC comparison	14
Table 10.	PWR comparison	. 15
Table 11.	PWR_CR register for STM32F446xx products	. 16
Table 12.	PWR_CSR register for STM32F446xx products	16
Table 13.	USART comparison	16
Table 14.	Audio interfaces comparison	. 17
Table 15.	SPI_I2SCFGR register for STM32F446xx products	
Table 16.	CRC features for STM32F429xx/439xx and STM32F446xx	. 17
Table 17.	USB comparison	18
Table 18.	DCMI comparison	19
Table 19.	DCMI_CR register for STM32F446xx products	
Table 20.	SDIO comparison	
Table 21.	SDIO_STA register for STM32F446xx products	20
Table 22.	SDIO_ICR register for STM32F446xx products	20
Table 23.	SDIO_CMD register for STM32F446xx products	20
Table 24.	Document revision history	23

List of figures AN4658

List of figures

Figure 1.	Compatible board design for LQFP100 package	6
Figure 2.	Compatible board design for LQFP144 package	6

1 Hardware migration guide

Except for the LQFP100 and LQFP144 packages, the STM32F446xx devices are fully pin-to-pin compatible with the STM32F429xx/439xx devices, allowing the user to try different peripherals, and reaching higher performance (higher frequency) for a greater degree of freedom during the development cycle.

The transition from the STM32F429/439 lines to the STM32F446 line is simple since only a few pins are impacted, as summarized in *Table 2*.

idale 211 medit companies (2411 packages)						
STM32F429xx/439xx			STM32F446xx			
QFP100	QFP144	Pinout	QFP100	QFP144	Pinout	
48	-	PB11	48	-	VCAP1	
49	-	VCAP1	49	-	VSS	
-	70 ⁽¹⁾	PB11 (OTG_HS_ULPI_D4)	-	70 ⁽¹⁾	PB11	
-	48 ⁽¹⁾	PB2	-	48 ⁽¹⁾	PB2 (OTG_HS_ULPI_D4)	
-	95	VDD	-	95	VDDUSB	

Table 2. Pinout comparison (LQFP packages)

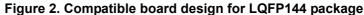
1.1 Recommendations for board migration

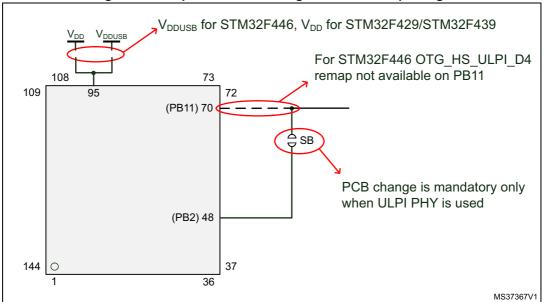
For the LQFP100 package PB11 is not available anymore and it is replaced by VCAP1.

For the LQFP144 the PCB change is mandatory only when an external ULPI PHY is used in USB HS mode, otherwise no PCB update is needed.

A dedicated VDDUSB supply is used on STM32F446 and it is available only on LQFP144, UFBGA144 and WLCSP81 packages.

The pin PDR_ON used on STM32F429 to enable power supervisor is now managed in static way.


Figure 1 and *Figure 2* show two examples of board designs migrating from STM32F429 to STM32F446.



For the LQFP144 the PCB change is mandatory only when an external ULPI PHY is used in USB HS mode, otherwise no PCB update is needed.

0 Ω resistor or soldering bridge present for the STM32F446 configuration, not present in other STM32F4xx configurations 75 76 49 48 PB11 not available Not populated when 0 Ω resistor for the STM32F446 or soldering bridge is present Populated when 0Ω resistor 100 0 or soldering bridge is present 25 MS37366V1

Figure 1. Compatible board design for LQFP100 package

2 Peripheral migration guide

2.1 STM32 product cross-compatibility

The STM32 microcontrollers embed a set of peripherals that can be classed in three categories:

- 1. Peripherals which are by definition common to all products. Those peripherals are identical, so they have the same structure, registers and control bits. There is no need to perform any firmware change to keep the same functionality at the application level after migration. All the features and behavior remain the same.
- 2. Peripherals which are shared by all products but have only minor differences (in general to support new features), so migration from one product to another is very easy and does not need any significant new development effort.
- 3. Peripherals which have been considerably changed from one product to another (new architecture, new features...). For this category of peripherals, migration will require new development at application level.

Table 3 summarizes the available peripherals and their compatibility between the STM32F429/439 and the STM32F446 lines.

Compatibility **Peripherals** STM32F429xx/439xx STM32F446xx **SW** Comments 512K Flash memory (in Bytes) 2M 256 128 System **SRAM** (112+16+64+64)(112+16)(in KBytes) 4 4 Backup General Purpose 10 10 _ Advanced control **Timers** 2 2 2 Basic 2

Table 3. Peripheral compatibility analysis

Table 3. Peripheral compatibility analysis (continued)

Peripherals		STM32F429xx/439xx	OTMOOF 440	Compatibility	
Perip	renpherais		S1M32F446XX	SW	Comments
	SPI / I2S	6/2	4/3	API enhancement to handle new I2S clock sources	New clock source for I2S on APB2
	FMPI2C	No	1	-	New peripheral (new IOs to support FM+)
	USART / UART	4 / 4	4 /2	-	-
Communication interfaces	USB OTG FS USB OTG HS	Yes	Yes	-	Dedicated V _{DDUSB} More endpoints on STM32F446
	CAN	2	2	-	-
	SAI	1	2	API enhancement to handle new SAI clock sources	New clock source added
	SDIO/SDMMC	Yes	Yes	-	New clock source is SYSCLK
	SPDIF-RX	No	4 parallel inputs	-	New peripheral
RNG		Yes	No	-	-
QuadSPI		No	Yes	-	New peripheral
FMC (memory controller)		Yes	Yes	-	-
Ethernet		Yes	No	-	-
HDMI-CEC		No	Yes	-	-
DCMI		Yes	Yes	-	-
WWDG		Yes	Yes	-	-
IWDG		Yes	Yes	-	-
CRC		Yes	Yes	-	-
LCD-TFT		Yes	No	-	-
DMA		DMA1-DMA2 (8 st	reams each)	-	Enhanced dynamic power consumption
Chrom-Art-Acce	lerator™ DMA2D	Yes	No	-	-
Crypto		Yes	No	-	-
Hash		Yes	No	-	-
GPIOs		Up to 168	Up to 114	-	-

Table 3. Peripheral compatibility analysis (continued)

Peripherals		STM32F429xx/439xx	STM22E446vv	Compatibility	
Peli	prierais	5 I WI32F429XX/439XX	31W32F446XX	sw	Comments
	Count	3	3	-	-
ADC (12 bits)	Number of channels	16 / 24	16 / 24	-	-
	Count	1	1	-	-
DAC (12 bits)	Number of channels	2	2	-	-
RCC		Yes	Yes	-	More flexibility, with additional clock sources to AHB, USB and audio peripherals. Dedicated input clock divider input for PLL. New LSE mode.

The Cube Hardware Abstraction Layer (HAL) is compatible between the STM32F429/F439 and STM32F446 lines.

2.2 Memory mapping

Address mapping has been slightly changed in the STM32F446xx vs. STM32F429xx/439xx, the differences are shown in *Table 4*, where a gray cell indicates that the feature is not available (NA).

Table 4. Peripheral bus mapping comparison

Peripheral	Bus	STM32F429xx/439xx Base address	STM32F446xx Base address
QuadSPI Register	AHB3	NA	0xA000 1000
RNG		0x5006 0800	NA
HASH	AHB2	0x5006 0400	NA
CRYP		0x5006 0000	NA
DMA2D		0x4002 B000	NA
ETHERNET MAC		0x40029000	NA
CPIOK	AHB1	0x4002 2800	NA
GPIOJ		0x4002 2400	NA
GPIOI		0x4002 2000	NA

Peripheral	Bus	STM32F429xx/439xx Base address	STM32F446xx Base address
LCD-TFT		0x4001 6800	NA
SPI6	APB2	0x4001 5400	NA
SPI5	AFDZ	0x4001 5000	NA
SAI2		NA	0x4001 5C00
UART8		0x4000 7C00	NA
UART7		0x4000 7800	NA
HDMI-CEC	APB1	NA	0x4000 6C00
I2S3ext	APB1	0x4000 4000	NA
SPDIFRX		NA	0x4000 4000
I2S2ext		0x4000 3400	NA

Table 4. Peripheral bus mapping comparison (continued)

2.3 Flash memory

Peripheral migration guide

The differences between the Flash interface of STM32F446 products vs. those of the STM32F429/439 lines are indicated in *Table 5* (a gray cell indicates that the feature is not available). For more information on programming, erasing and protection of STM32F446xx, please refer to the RM0390 reference manual.

Flash STM32F429xx/439xx STM32F446xx 0x0800 0000 - (up to) 0x081F FFFF 0x0800 0000 - up to 0x0807 FFFF Up to 2 Mbytes (split in 2 banks) Up to 512 Kbytes Main / Program memory 4 sectors of 16 Kbytes 4 sectors of 16 Kbytes 1 sector of 64 Kbytes 1 sector of 64 Kbytes 3 sectors of 128 Kbytes 6 sectors of 128 Kbytes Read while Write (RWW) **Features** NA **Dual Bank Boot** Wait states Up to 8 (depending on the supply voltage and frequency) One Time Programmable 512 bytes (OTP) memory 0x1FFF C000 - 0x1FFF C00F Option bytes 0x1FFF C000 - 0x1FFF C00F 0x1FFE C000 - 0x1FFE C00F 0x4002 3C00 Interface

Table 5. Flash memory comparison

, company (community			
Flash	STM32F429xx/439xx	STM32F446xx	
	nRST_STOP	nRST_STOP	
	nRST_STDBY	nRST_STDBY	
	WDG_SW	IWDG_SW	
Lloor option bytos	BOR_LEV[1:0]	BOR_LEV[2:0]	
User option bytes	BFB2	NA	
	SPRMOD	SPRMOD	
	DB1M	NA	
	nWRP	nWRP	

Table 5. Flash memory comparison (continued)

2.4 Flexible memory controller (FMC)

Table 6 presents the differences between the FMC features of STM32F429/439 and STM32F446 lines.

STM32F446xx **FMC** STM32F429xx/439xx SRAM SRAM NOR/NAND memories NOR/NAND memories PSRAM (4 memory banks) PSRAM (4 memory banks) External memory interface - One bank of NAND Flash Two banks of NAND Flash memory with ECC hardware memory with ECC hardware 16-bit PC Card compatible devices Data bus width 8, 16 or 32 bits 8 or 16 bits Bank1 NOR/PSRAM/SRAM NOR/PSRAM/SRAM 4x64MB Bank2 NAND Flash Reserved 4x64MB Bank3 NAND Flash NAND Flash 4x64MB **FMC Bank** memory mapping Bank4 PC card Reserved 4x64MB

Table 6. FMC comparison

SDRAM

SDRAM Bank1 4x64MB

SDRAM Bank2 4x64MB **SDRAM**

FMC STM32F429xx/439xx STM32F446xx 0xD000 0000 to PC card 256 MB Reserved 0xDFFF FFFF 0xC000 0000 to NAND Bank2 256 MB NOR/RAM 256 MB 0xCFFF FFFF 0xA000 0000 to Registers Registers 0xAFFF FFFF Memory 0x9000 0000 to mapping swap SDRAM Bank2 256 MB QuadSPI 256 MB 0x9FFF FFFF (SWP_FMC=01b) 0x8000 0000 to SDRAM Bank1 256 MB NAND Bank3 256 MB 0x8FFF FFFF 0x7000 0000 to NAND Bank1 256 MB SDRAM Bank2 256 MB 0x7FFF FFFF 0x6000 0000 to NOR/RAM 256 MB SDRAM Bank1 256 MB 0x6FFF FFFF

Table 6. FMC comparison (continued)

2.5 Interrupts

Table 7 presents the interrupt vectors in the STM32F429/439 vs. the STM32F446 lines. Again, a gray cell indicates that the feature is not available.

Position	STM32F429xx/439xx	STM32F446xx
61	ETH	NA
62	ETH_WKUP	NA
79	CRYP	NA
80	HASH_RNG	NA
82	UART7	NA
83	UART8	NA
85	SPI5	NA
86	SPI6	NA
88	LCD-TFT	NA
89	LCD-TFT	NA
90	DMA2D	NA
91	NA	SAI2
92	NA	QUADSPI
93	NA	HDMI-CEC
94	NA	SPDIF-RX

Table 7. Interrupt vector comparison

Table 7. Interrupt vector comparison (continued)

Position	STM32F429xx/439xx	STM32F446xx
95	NA	FMP2C1
96	NA	FMPI2C1 error

2.6 RCC

The main differences related to Reset and Clock Controller in the STM32F446 line vs. the STM32F429/439 lines are presented in *Table 8*, where a gray cell indicates that the feature is not available.

Table 8. Reset and Clock Controller comparison

RCC	STM32F429xx/439xx	STM32F446xx		
AHB	180 MHz	180 MHz		
APB2	84 MHz	84 MHz		
APB1	42 MHz	42 MHz		
PLL	One clock input divider for all PLLs (M factor)	 New dedicated clock input divider for each PLL One input clock divider per PLL that needs to be configured before enabling the PLL 		
	HSI/HSE	HSI/HSE		
System clock (SYSCLK)	PLL P	PLL_P		
	FLL_F	PLL_R		
LSE modes	One LSE mode is available: low power.	 New LSE modes are available in STM32446: low power and high drive. User can select the LSE mode by configuring RCC_BDCR[LSEMOD] bit 		
	Peripherals clock sources			
USB OTG FS / SDIO	48 MHz from main PLL (PLLQ clock output)	48 MHz from main PLL (PLLQ clock output)		
(PLL48CLK)	-	48 MHz from PLLSAI (PLLSAIP clock output)		
SDIO	PLL48CLK	PLL48CLK		
	I LL40OLIX	System clock (SYSCLK)		
		System clock (SYSCLK)		
FMPI2C	NA	HSI clock		
		APB1 clock (PCLK1)		

RCC STM32F429xx/439xx STM32F446xx PLLI2SCLK PLLI2SCLK I2S_CKIN Clock source for I2S on APB1 HSE/HSI I2S_CKIN Main PLL (PLLR output clock) I2S PLLI2SCLK PLLI2SCLK I2S_CKIN Clock source for I2S on APB2 HSE/HSI NA Main PLL (PLLR output clock) PLLI2SQ(2) PLLI2SQ⁽¹⁾ PLLSAIQ(2) PLLSAIQ⁽¹⁾ SAI1 I2S CKIN⁽¹⁾ I2S CKIN⁽²⁾ NA Main PLL (PLLR output clock)(2) PLLI2SQ(2) PLLSAIQ(2) SAI2 NA I2S CKIN(2) Main PLL (PLLR output clock)⁽²⁾ Main PLL (PLLR output clock) SPDIF-RX NA LSE clock **HDMI-CEC** NA HSI clock divided by 488

Table 8. Reset and Clock Controller comparison (continued)

2.7 RTC

The STM32F446 and STM32F429/439 lines implement the same features on the RTC, as shown in *Table 9*.

Table 9. RTC comparison

RTC	STM32F429xx/439xx	STM32F446xx		
Calendar in BCD	Yes	Yes		
Calendar Sub seconds access	Yes	Yes		
Calendar synchronization on the fly	Yes	Yes		
Alarm on calendar	2 with subseconds			
Calendar Calibration	Calibration step: 3.81pp	ow: 8s / 16s / 32s m / 1.91ppm / 0.95 ppm pm +480ppm]		
Synchronization on mains	Yes	Yes		

14/24 DocID027496 Rev 1

^{1.} Configurable clock per SAI sub-block.

^{2.} Configurable clock per SAI block.

Table 9. RTC comparison

RTC	STM32F429xx/439xx	STM32F446xx			
Periodic wakeup	Yes Yes				
Timestamp	Yes Sec, Min, Hour, Date, Sub-seconds				
RTC alternate functions pin	RTC_AF0) → PC13			
KTC alternate functions pin	RTC_AF1 → PI8	RTC_AF1 → PA0			
RTC in Vbat	Yes	Yes			

2.8 PWR

In STM32F446 lines the PWR controller presents some differences vs. STM32F429/439 lines, as highlighted in *Table 10*, where a gray cell indicates that the feature is not available.

Table 10. PWR comparison

PWR		STM32F429xx/439xx	STM32F446xx
Power supplies		NA	Independent USB transceivers supply (V_{DDUSB}). V_{DDUSB} supplies USB DP/DM pins. When internal USB PHY is used, V_{DDUSB} range is from 3.0 to 3.6 V, and is completely independent from V_{DD} or V_{DDA} . When internal USB PHY is not used V_{DDUSB} can be connected to V_{DD} .
Power control registers	PWR_CR ⁽¹⁾	NA	Added bits: - PWR_CR[FMSSR]: used to Stop the Flash Interface while System is in Run mode - PWR_CR[FMSSR]: used to force Flash into STOP or Deep Power Down mode while System is in Run mode
	PWR_CSR ⁽²⁾	Only one wakeup pin available	Added / modified bits: - PWR_CSR [EWUP1] and PWR_CSR [EWUP2]: Wakeup Pin 1 and Wakeup Pin 2 Enable/Disable bits.

- 1. See *Table 11*
- 2. See *Table 12*

The added bits in PWR_CR and PWR_CSR registers are shown in *Table 11* and *Table 12*, respectively: the new features are highlighted in red, while blue indicates same feature with specification change or enhancement. Reserved bits are in light gray.

Table 11. PWR_CR register for STM32F446xx products

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	FISSR	FMSSR	UDE	N[1:0]	ODSWEN	ODEN									
	•														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Table 12. PWR_CSR register for STM32F446xx products

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	UDRE	Y[1:0]	ODSWRDY	ODRDY
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	VOSRDY	Res.	Res.	Res.	Res.	BRE	EWUP1	EWUP2	Res.	Res.	Res.	BRR	PVDO	SBF	WUF

2.9 U(S)ART

The STM32F446 includes the Same USART interface used in the STM32F429/439, as indicated in *Table 13*.

Table 13. USART comparison

U(S)ART	STM32F429xx/439xx	STM32F446xx			
UART/USART	4 / 4	4/2			
Baudrate	up to 4x11	.25 Mbit/s			
Clock	Single clo	ck domain			
Data	Word length: progra	mmable (8 or 9 bits)			
Interrupt	10 interrupt sources with flags				
Features	LIN mode SPI Master IrDA SIR ENDEC block Hardware flow control (CTS/RTS Continuous communication using Multiprocessor communication Single-wire half-duplex communic	DMA			

2.10 I2C

The STM32F446xx implements exactly the same features on the I2C interface (I2C1, I2C2 and I2C3) as the STM32F429xx/439xx.

2.11 Audio interfaces

The STM32F429/439 and STM32F446 lines implement the same features on the SPI, apart from I2S. This is clear from *Table 14*, where a gray cell indicates that the feature is not available. The added bit in SPI_I2SCFGR register is shown in *Table 15*, where the new feature is highlighted in red, and reserved bits are in light gray.

Audio interfaces	Description	STM32F429xx/439xx	STM32F446xx		
	Instances	x6 x2 (SPI/I2S)	x4 x3 (SPI/I2S)		
SPI/I2S	Features	I²S Full duplexSPI TI mode supportSPI Motorola support	 3 I²S Half duplex SPI TI mode support SPI Motorola support Enhanced clock source for I2S on APB1 and APB2 		
	Modifications	NA	Added bit SPI_I2SCFGR ⁽¹⁾ [ASTREN]: allows to configure the I2S peripheral in asynchronous start mode.		
	Instances	x1 (SAI)	x2 (SAI)		
SAIs	Features	Clock source for each SAI sub-block to target independent audio frequency sampling	Internal synchronization between the two SAIs. Clock source for each SAI block to target independent audio frequency sampling.		
SPDIFRx	Instances	NA	x1 (SPIDIFRx)		

Table 14. Audio interfaces comparison

Table 15. SPI_I2SCFGR register for STM32F446xx products

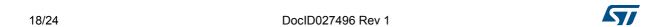
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	Res.	Res.	ASTREN	I2SMOD	I2SE	1280	CFG	PCMSYNC	Res.	1288	STD	CKPOL	DAT	LEN	CHLEN

2.12 CRC

The STM32F446xx implements CRC (Cyclic redundancy check) unit calculation similarly to STM32F429xx/439xx, the main features are listed in *Table 16*.

Table 16. CRC features for STM32F429xx/439xx and STM32F446xx

CRC	STM32F429xx/439xx and STM32F446xx
Features	Single input/output 32-bit data register CRC computation done in 4 AHB clock cycles (HCLK) for the 32-bit data size General-purpose 8-bit register (can be used for temporary storage) Uses CRC-32 (Ethernet) polynomial: 0x4C11DB7 Handles 32-bit data size


^{1.} See *Table 15*

2.13 **USB OTG**

The STM32F446xx and STM32F429xx/439xx implement similar USB peripherals, as shown in *Table 17*, where a gray cell indicates a not available feature.

Table 17. USB comparison

	14516 17. 005 001	T
USB	STM32F429xx/439xx	STM32F446xx
	Universal Serial Bus Revision 2.0 Full support for the USB On-The-Go (USB OTG) USB internal connect/disconnect feature with an internal connect/disconnect.	ernal pull-up resistor on the USB D + (USB_DP) line
	NA	Independent V_{DDUSB} power supply allowing lower V_{DD} (down to 1.8 V) while using USB
	FS n	node
Features	bidirectional control endpoint IN endpoints (Bulk, Interrupt, Isochronous) OUT endpoints (Bulk, Interrupt, Isochronous)	bidirectional control endpoint IN endpoints (Bulk, Interrupt, Isochronous) OUT endpoints (Bulk, Interrupt, Isochronous)
	HS r	node
	6 bidirectional endpoints (including EP0) 12 Host mode channels	
	FS n	node
Buffer	Management of up to 4 Tx FIFOs (1 for each IN end point) + 1 Rx FIFO	Management of up to 6 Tx FIFOs (1 for each IN end point) + 1 Rx FIFO
memory	HS r	node
	4 KB to	tal RAM
	FS n	node
Low- power	USB suspend and resume	USB suspend and resume Link Power Management (LPM) support
modes	HS r	node
	LPM not supported	LPM supported

2.14 Digital camera interface (DCMI)

The STM32F429xx/439xx and STM32F446xx products have similar DCMI peripherals, as can be seen in *Table 18*, where a gray cell indicates that the feature is not available.

Table 18. DCMI comparison

DCMI	STM32F429xx/439xx	STM32F446xx					
Parallel interface	8-, 10-, 12-	and 14-bits					
Embedded synchronization	Yes	Yes					
External line and frame synchronization	Yes	Yes					
Crop feature	Yes	Yes					
	8/10, 12, 14 bits progressive vid	deo (monochrome or raw bayer)					
	RGB565 progressive video						
	YCbCr4:2:2						
Supported data formats	8/10, 12, 14 bits progressive video (monochrome or raw bayer)						
	NA	YCbCr – Y only (Black and White)					
	NA	Half resolution image extraction					
	Compressed JPEG						
DCMI control register ⁽¹⁾	NA	Added bits: - DCMI_CR [BSM] and DCMI_CR [OEBS]: allows configuring the byte selection for capture - DCMI_CR [LSM] and DCMI_CR [OELS]: allows configuring the line selection for capture					

^{1.} See *Table 19*

The added bits in DCMI registers are shown in *Table 19*, the new features are highlighted in red, and reserved bits are in light gray.

Table 19. DCMI_CR register for STM32F446xx products

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	OELS	LSM	OEBS	ı	BSM
15	14	13	12	11	10	9	8	. 7	6	5	4	3	2	1	0
Res.	ENABLE	Res.	Res.	E	OM	FCRC		VSPOL	HSPOL	PCKPOL	ESS	JPEG	CROP	CM	CAPTURE

2.15 Secure digital input/output interface (SDIO)

The STM32F429xx and STM32F446xx products implement very similar SDIO module. The key differences are listed in *Table 20*, where a gray cell indicates that the feature is not available.

Table 20. SDIO comparison

SDIO	STM32F429xx/439xx	STM32F446xx							
Features	Full compliance with MultiMediaCard System Specification Version 4.2 Full compliance with SD Memory Card Specifications Version 2.0 Full compliance with SD I/O Card Specification Version 2.0								
	Full support of the CE-ATA features	NA							
SDMMC registers ⁽¹⁾	-	CE-ATA protocol related features removed from specification (updated SDIO_STA, SDIO_ICR and SDIO_CMD registers)							

^{1.} See Table 21, Table 22 and Table 23.

The added bits in DCMI registers are shown in *Table 21*, *Table 22* and *Table 23*, where the changes are highlighted in red, and reserved bits are in light gray.

Table 21. SDIO_STA register for STM32F446xx products

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	SDIOIT	RXD AVL	TXD AVL	RX FIFOE	TX FIFOE	RX FIFOF	TX FIFOF
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RX FIFO HF	TX FIFO HE	RXACT	TXACT	CMD ACT	DBCK END	Res.	DATA END	CMDS ENT	CMDR END	RX OVERR	TXUND ERR	DTIME OUT	CTIME OUT	DCRC FAIL	CCRC FAIL

Table 22. SDIO_ICR register for STM32F446xx products

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	SDIO ITC	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	Res.	Res.	Res.	Res.	DBCK ENDC	Res.	DATA	CMD SENTC	CMD RENDC	RX	TX UNDERRC	DTIME OUTC	CTIME	DCRC FAILC	CCRC FAILC

Table 23. SDIO_CMD register for STM32F446xx products

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	Res.	Res.	Res.	SDIO Suspend	CPSM EN	WAIT PEND	WAIT INT	WAIT	RESP	CMDINDEX					

20/24 DocID027496 Rev 1

2.16 ADC/DAC

The STM32F446 and the STM32F429/439 lines implement the very same features on the ADC and DAC peripherals.

Conclusion AN4658

3 Conclusion

This application note is a useful complement to datasheets and reference manuals as it provides a simple guide to migrate from an existing design based on STM32F429xx/439xx devices to one using STM32F446xx products.

AN4658 Revision history

4 Revision history

Table 24. Document revision history

Date	Revision	Changes
18-Mar-2015	1	Initial release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

