

STM32Cube MCU Package examples for the STM32WB series

Introduction

The STM32CubeWB MCU Package comes with a rich set of examples running on STMicroelectronics boards. The examples are organized by board, and are provided with preconfigured projects for the main supported toolchains (see figure below).

Figure 1. STM32CubeWB firmware components

⁽¹⁾ The set of middleware components depends on the product series.

1 Reference documents

The reference documents are available on www.st.com/stm32cubefw:

- Latest release of STM32CubeWB firmware package
- Getting started with STM32CubeWB for STM32WB Series (UM2550)
- STM32CubeWB Nucleo demonstration firmware (UM2551)
- Description of STM32WB HAL and low-layer drivers (UM2442)
- Developing applications on STM32Cube with FatFS (UM1721)
- Developing applications on STM32Cube with RTOS (UM1722)
- Building wireless applications with STM32WB Series microcontrollers (AN5289)

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

AN5155 - Rev 8 page 2/38

2 STM32CubeWB examples

The examples are classified depending on the STM32Cube level they apply to. They are named as follows:

Examples

The examples use only the HAL and BSP drivers (middleware components are not used). Their objective is to demonstrate the product/peripherals features and usage. They are organized per peripheral (one folder per peripheral, such as TIM). Their complexity level ranges from the basic usage of a given peripheral (as PWM generation using timer) to the integration of several peripherals (for example, how to use DAC for signal generation with synchronization from TIM6 and DMA). The usage of the board resources is reduced to the strict minimum.

Examples_LL

These examples only use the LL drivers (HAL drivers and middleware components are not used). They offer an optimum implementation of typical use cases of the peripheral features and configuration sequences. The LL examples are organized per peripheral (one folder for each peripheral), and run exclusively on the Nucleo boards.

Examples_MIX

These examples use only HAL, BSP and LL drivers (middleware components are not used). They aim at demonstrating how to use both HAL and LL APIs in the same application to combine their advantages:

- HAL drivers offer high-level function-oriented APIs, which have a high level of portability, as they hide product/IP complexity to end-users.
- LL drivers offer low-level APIs at register level with better optimization.

The examples are organized per peripheral (one folder for each peripheral), and run exclusively on the Nucleo board.

Applications

The applications demonstrate the product performance and how to use the available middleware stacks. They are organized by middleware (one folder per middleware, for example USB Host) or by product feature that require high-level firmware bricks (such as Audio). The integration of applications that use several middleware stacks is also supported.

Demonstrations

The demonstrations aim at integrating and running the maximum number of peripherals and middleware stacks to showcase the product features and performance.

Template project

The template projects allow the user to quickly build a firmware application using HAL and BSP drivers on a given board.

The examples are located under STM32Cube_FW_WB_VX.Y.Z\Projects\. They all have the same structure:

- \Inc folder, containing all header files.
- \Src folder, containing the sources code.
- \EWARM, \MDK-ARM, and \STM32CubeIDE folders, containing the preconfigured project for each toolchain.
- readme.txt file, describing the example behavior and the environment required to run the example.

To run the example, proceed as follows:

- 1. Open the example using your preferred toolchain.
- 2. Rebuild all files and load the image into target memory.
- 3. Run the example by following the readme.txt instructions.

Note:

Refer to "Development toolchains and compilers" and "Supported devices and evaluation boards" sections of the firmware package release notes to know more about the software/hardware environment used for the MCU Package development and validation. The correct operation of the provided examples is not guaranteed in other environments, for example when using different compiler or board versions.

The examples can be tailored to run on any compatible hardware: simply update the BSP drivers for your board, provided it has the same hardware functions (such as LED, LCD display, push-buttons). The BSP is based on a modular architecture that can be easily ported to any hardware by implementing the low-level routines.

Table 1 contains the list of examples provided with STM32CubeWB MCU Package.

Note:

STM32CubeMX-generated examples are highlighted with the STM32CubeMX icon. TrustZone® indicates that the example is Arm® TrustZone® enabled.

AN5155 - Rev 8 page 3/38

Reference materials available on www.st.com/stm32cubefw.

AN5155 - Rev 8 page 4/38

Table 1. STM32CubeWB firmware examples

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55 .USBDongle ⁽¹⁾	P-NUCLEO- WB55 .Nucleo68 ⁽¹⁾	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
Templates	-	Starter project	This projects provides a reference template that can be used to build any firmware application.	MX	-	MX	MX	X
		Total number	er of templates: 4	1	0	1	1	1
Templates_ LL	-	Starter project	This projects provides a reference template through the LL API that can be used to build any firmware application.	MX	-	MX	MX	X
		Total number	of templates_II: 4	1	0	1	1	1
	-	BSP	How to use the different BSP drivers of the external devices mounted on STM32WB5MM-DK board.	X	X	-	-	-
		ADC_AnalogWatchdog	How to use the ADC peripheral to perform conversions with an analog watchdog and out-of-window interrupts enabled.	-	-	MX	-	-
		ADC_MultiChannelSingleConversion	How to use the ADC to convert several channels using the sequencer in Discontinuous mode. Converted data are indefinitely transferred by DMA into an array (circular mode).	-	-	MX	MX	-
	ADC	ADC_Oversampling	How to use the ADC to convert a single channel but using the oversampling feature to increase resolution.	-	-	MX	-	-
Examples		ADC_SingleConversion_Trigge rSW_IT	How to use the ADC to convert a single channel at each software start. This example uses the interrupt programming model.	-	-	MX	MX	-
		ADC_SingleConversion_Trigge rTimer_DMA	How to use the ADC to convert a single channel at each trigger event from a timer. Converted data are indefinitely transferred by DMA into an array (circular mode).	-	-	MX	MX	-
	BSP	BSP_Example	This example describes how to use the BSP API.	-	-	MX	MX	X
	COMP	COMP_CompareGpioVsVrefInt _IT	How to configure the COMP peripheral to compare the external voltage applied on a specific pin with the internal voltage reference.	-	-	MX	MX	-
		COMP_CompareGpioVsVrefInt _Window_IT	How to make an analog watchdog using the COMP peripheral in Window mode.	-	-	MX	-	-

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55	P-NUCLEO- WB55	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
					.USBDongle ⁽¹⁾	.Nucleo68 ⁽¹⁾		
	FLASH	FLASH_WriteProtection	How to configure and use the FLASH HAL API to enable and disable the write protection of the internal flash memory.	-	-	MX	MX	-
	GPIO	GPIO_EXTI	How to configure external interrupt lines.	-	-	MX	MX	-
	GPIO	GPIO_IOToggle	How to configure and use GPIOs through the HAL API.	-	-	MX	MX	-
		HAL_TimeBase	How to customize the HAL using a general- purpose timer as main source of timebase, instead of the SysTick.	-	-	MX	MX	-
	HAL	HAL_TimeBase_RTC_ALARM	How to customize the HAL using RTC alarm as main source of timebase, instead of the SysTick.	-	-	MX	-	-
	HAL	HAL_TimeBase_RTC_WKUP	How to customize the HAL using RTC wakeup as main source of timebase, instead of the SysTick.	-	-	MX	MX	-
Examples		HAL_TimeBase_TIM	How to customize the HAL using a general- purpose timer as main source of timebase instead of the SysTick.	-	-	MX	MX	-
	HSEM	HSEM_ProcessSync	How to use a hardware semaphore to synchronize two processes.	-	-	MX	-	-
	HSEIVI	HSEM_ReadLock	How to enable, take, then release a semaphore using two different processes.	-	-	MX	-	-
		I2C_TwoBoards_AdvComIT	How to handle multiple I2C data buffer transmissions/receptions between a master and a slave device, using an interrupt.	-	-	MX	-	-
		I2C_TwoBoards_ComDMA	How to handle I2C data buffer transmission/ reception between two boards, via DMA.	-	-	MX	MX	-
	I2C	I2C_TwoBoards_ComIT	How to handle I2C data buffer transmission/reception between two boards, using an interrupt.	-	-	MX	MX	-
		I2C_TwoBoards_ComPolling	How to handle I2C data buffer transmission/ reception between two boards in Polling mode.	-	-	MX	-	-
		I2C_TwoBoards_RestartAdvC omIT	How to perform multiple I2C data buffer transmissions/receptions between two boards in Interrupt mode and with restart condition.	-	-	MX	-	-

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55 .USBDongle ⁽¹⁾	P-NUCLEO- WB55 .Nucleo68 ⁽¹⁾	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
		PKA_ECDSA_Sign	How to compute a signed message regarding the elliptic curve digital signature algorithm (ECDSA).	-	-	MX	MX	-
		PKA_ECDSA_Sign_IT	How to compute a signed message regarding the elliptic curve digital signature algorithm (ECDSA) in interrupt mode.	-	-	MX	-	-
		PKA_ECDSA_Verify	How to determine if a given signature is valid regarding the elliptic curve digital signature algorithm (ECDSA).	-	-	MX	-	-
		PKA_ECDSA_Verify_IT	How to determine if a given signature is valid regarding the elliptic curve digital signature algorithm (ECDSA) in interrupt mode.	-	-	MX	MX	-
	PKA	PKA_ModularExponentiation	How to use the PKA peripheral to execute modular exponentiation. This enables text ciphering/deciphering.	-	-	MX	-	-
		PKA_ModularExponentiationC RT	How to compute the chinese remainder theorem (CRT) optimization.	-	-	MX	-	-
		PKA_ModularExponentiationC RT_IT	How to compute the chinese remainder theorem (CRT) optimization in Interrupt mode.	-	-	MX	-	-
Examples		PKA_ModularExponentiation_I T	How to use the PKA peripheral to execute modular exponentiation. This enables text ciphering/deciphering in Interrupt mode.	-	-	MX	-	-
		PKA_PointCheck	How to use the PKA peripheral to determine if a point is on a curve. This enables the validation of an external public key.	-	-	MX	-	-
		PKA_PointCheck_IT	How to use the PKA peripheral to determine if a point is on a curve. This enables the validation of an external public key.	-	-	MX	-	-
		PWR_LPRUN	How to enter and exit Low-power run mode.	-	-	MX	MX	-
		PWR_LPSLEEP	How to enter Low-power sleep mode and wake up from this mode by using an interrupt.	-	-	MX	MX	-
	PWR	PWR_PVD	How to configure the programmable voltage detector by using an external interrupt line. External DC supply must be used to supply V _{DD} .	-	-	MX	MX	-
		PWR_STANDBY_RTC	How to enter Standby mode and wake up from this mode by using an external reset or the RTC wakeup timer.	-	-	MX	MX	-

Level	Module	Project name	Description	STM32WB	P-NUCLEO- WB55	P-NUCLEO- WB55	NUCLEO-	B-WB1M-
	name			5MM-DK ⁽¹⁾	.USBDongle ⁽¹⁾	.Nucleo68 ⁽¹⁾	WB15CC ⁽¹⁾	WPAN1
	PWR	PWR_STOP2_RTC	How to enter Stop 2 mode and wake up from this mode using an external reset or RTC wakeup timer.	-	-	MX	-	-
		QSPI_ExecuteInPlace	How to execute a part of the code from the Quad- SPI memory. To do this, a section is created, where the function is stored.	MX	-	MX	-	-
	QSPI	QSPI_MemoryMapped	How to erase part of the Quad-SPI memory, write data in DMA mode and access the Quad-SPI memory in Memory-mapped mode to check the data in a forever loop.	MX	-	MX	-	-
		QSPI_ReadWrite_DMA	How to erase part of the Quad-SPI memory, write data in DMA mode, read data in DMA mode and compare the result in a forever loop.	MX	-	MX	-	-
		QSPI_ReadWrite_IT	How to erase part of the Quad-SPI memory, write data in Interrupt mode, read data in Interrupt mode and compare the result in a forever loop.	MX	-	MX	-	-
		RCC_CRS_Synchronization_I	How to configure the clock recovery service (CRS) in Interrupt mode, using the RCC HAL API.	-	-	MX	-	-
Examples	RCC	RCC_CRS_Synchronization_P olling	How to configure the clock recovery service (CRS) in Polling mode, using the RCC HAL API.	-	-	MX	-	-
		RCC_ClockConfig	The main purpose of this example is to serve as a reference for clock configuration operation needed by most of the BLE applications.	MX	-	MX	MX	-
	RNG	RNG_MultiRNG	How to configure the RNG using the HAL API. This example uses the RNG to generate 32-bit long random numbers.	-	-	MX	MX	-
	KNO	RNG_MultiRNG_IT	How to configure the RNG using the HAL API. This example uses RNG interrupts to generate 32-bit long random numbers.	-	-	MX	-	-
		RTC_Alarm	How to configure and generate an RTC alarm using the RTC HAL API.	-	-	MX	MX	-
	DTC	RTC_Calendar	How to configure the calendar using the RTC HAL API.	-	-	MX	-	-
	RTC	RTC_LSI	How to use the LSI clock source auto-calibration to get a precise RTC clock.	-	-	MX	-	-
		RTC_Tamper	How to configure the RTC HAL API to write/read data to/from RTC backup registers.	-	-	MX	MX	-

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55 .USBDongle ⁽¹⁾	P-NUCLEO- WB55 .Nucleo68 ⁽¹⁾	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
	RTC	RTC_TimeStamp	How to configure the RTC HAL API to demonstrate the timestamp feature.	-	-	MX	-	-
	SAI	SAI_AudioPlay	How to use the SAI HAL API to play an audio file in DMA circular mode and handle the buffer update. Refer to Projects\STM32WB5MM-DK\Examples\BSP.	X	-	-	-	-
		SPI_FullDuplex_ComDMA_Ma ster	Data buffer transmission/reception between two boards via SPI using DMA.	-	-	MX	MX	-
		SPI_FullDuplex_ComDMA_Sla ve	Data buffer transmission/reception between two boards via SPI using DMA.	-	-	MX	MX	-
	CDI	SPI_FullDuplex_ComIT_Maste	Data buffer transmission/reception between two boards via SPI in Interrupt mode.	-	-	MX	-	-
	SPI	SPI_FullDuplex_ComIT_Slave	Data buffer transmission/reception between two boards via SPI in Interrupt mode.	-	-	MX	-	-
		SPI_FullDuplex_ComPolling_ Master	Data buffer transmission/reception between two boards via SPI in Polling mode.	-	-	MX	-	-
Examples		SPI_FullDuplex_ComPolling_S lave	Data buffer transmission/reception between two boards via SPI in Polling mode.	-	-	MX	-	-
		TIM_DMA	How to use the DMA with TIMER Update request to transfer data from memory to the timer capture compare register 3 (TIMx_CCR3).	-	-	MX	-	-
		TIM_DMABurst	How to update the TIMER channel 1 period and duty cycle using the TIMER DMA burst feature.	-	-	MX	-	-
		TIM_InputCapture	How to use the TIMER peripheral to measure an external signal frequency.	-	-	MX	-	-
	TIM	TIM_OCActive	How to configure the TIMER peripheral in Output compare active mode (when the counter matches the capture/compare register, the corresponding output pin is set to its active state).	-	-	MX	MX	-
		TIM_OCInactive	How to configure the TIMER peripheral in Output compare inactive mode with the corresponding Interrupt requests for each channel.	-	-	MX	-	-
		TIM_OCToggle	How to configure the TIMER peripheral to generate four different signals at four different frequencies.	-	-	MX	-	-

STM32CubeWB example:	ANS
oles	55

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55	P-NUCLEO- WB55 .Nucleo68 ⁽¹⁾	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
		TIM_OnePulse	How to use of the TIMER peripheral to generate a single pulse when an external signal rising edge is received on the timer input pin.	-	-	X	-	-
	TIM	TIM_PWMInput	How to use the TIMER peripheral to measure the frequency and duty cycle of an external signal.	-	-	MX	MX	-
	11101	TIM_PWMOutput	How to configure the TIMER peripheral in PWM (pulse width modulation) mode.	-	-	MX	MX	-
		TIM_TimeBase	How to configure the TIMER peripheral to generate a timebase of one second with the corresponding interrupt request.	-	-	MX	-	-
	TSC	TSC_BasicAcquisition_Interrup t	How to use the TSC HAL API to perform continuous acquisitions of one channel in Interrupt mode.	-	-	X	-	-
		UART_Console	UART transmission (printf/getchar) via console with user interaction.	MX	-	MX	-	-
Examples		UART_HyperTerminal_DMA	UART transmission (transmit/receive) in DMA mode between a board and an HyperTerminal PC application.	-	-	MX	MX	-
Examples		UART_HyperTerminal_IT	UART transmission (transmit/receive) in Interrupt mode between a board and an HyperTerminal PC application.	-	-	MX	MX	-
	UART	UART_Printf	Re-routing of the C library printf function to the UART.	-	-	MX	MX	-
		UART_ReceptionToldle_Circul arDMA	How to use the HAL UART API for reception to IDLE event in circular DMA mode.	-	-	MX	-	-
		UART_TwoBoards_ComDMA	UART transmission (transmit/receive) in DMA mode between two boards.	-	-	MX	-	-
		UART_TwoBoards_ComIT	UART transmission (transmit/receive) in Interrupt mode between two boards.	-	-	MX	-	-
		UART_TwoBoards_ComPollin g	UART transmission (transmit/receive) in Polling mode between two boards.	-	-	MX	-	-
	WWDG	WWDG_Example	How to configure the HAL API to periodically update the WWDG counter and simulate a software fault that generates an MCU WWDG reset when a predefined time period has elapsed.	-	-	MX	MX	-

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55	P-NUCLEO- WB55	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
- Francisco					.USBDongle ⁽¹⁾	.Nucleo68 ⁽¹⁾		
Examples		Total number	r of examples: 152	8	1	100	42	1
		ADC_AnalogWatchdog_Init	How to use an ADC peripheral with an analog watchdog to monitor a channel and detect when the corresponding conversion data is outside the window thresholds.	-	-	MX	-	-
		ADC_ContinuousConversion_ TriggerSW	How to use an ADC peripheral to perform continuous conversions on a channel, from a software start.	-	-	X	-	-
		ADC_ContinuousConversion_ TriggerSW_Init	How to use an ADC peripheral to perform continuous conversions on a channel, from a software start.	-	-	MX	-	-
		ADC_ContinuousConversion_ TriggerSW_LowPower_Init	How to use an ADC peripheral with low-power features.	-	-	MX	-	-
		ADC_GroupsRegularInjected_I	How to use an ADC peripheral with both groups (regular and injected) in their intended use cases.	-	-	MX	-	-
		ADC_MultiChannelSingleConv ersion_Init	How to use an ADC peripheral to convert several channels. ADC conversions are performed successively in a scan sequence	-	-	-	MX	-
Examples_ LL	ADC	ADC_Oversampling_Init	How to use an ADC peripheral with oversampling.	-	-	MX	-	-
		ADC_SingleConversion_Trigge rSW_DMA_Init	How to use an ADC peripheral to perform a single conversion on a channel, at each software start. This example uses the DMA programming model (for polling or interrupt programming models, refer to other examples).	-	-	MX	-	-
		ADC_SingleConversion_Trigge rSW_IT_Init	How to use an ADC peripheral to perform a single conversion on a channel, at each software start. This example uses the interrupt programming model (for polling or DMA programming models, please refer to other examples).	-	-	MX	MX	-
		ADC_SingleConversion_Trigge rSW_Init	How to use an ADC peripheral to perform a single conversion on a channel at each software start. This example uses the polling programming model (for interrupt or DMA programming models, please refer to other examples).	-	-	MX	-	-
		ADC_SingleConversion_Trigge rTimer_DMA_Init	How to use an ADC peripheral to perform a single conversion on a channel at each trigger event from a timer. Converted data are indefinitely transferred by DMA into a table (circular mode).	-	-	MX	MX	-

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55 .USBDongle ⁽¹⁾	P-NUCLEO- WB55 .Nucleo68 ⁽¹⁾	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
	ADC	ADC_TemperatureSensor	How to use an ADC peripheral to perform a single conversion on the internal temperature sensor and calculate the temperature in degrees Celsius.	-	-	X	-	-
		COMP_CompareGpioVsVrefInt _IT	How to use a comparator peripheral to compare a voltage level applied on a GPIO pin to the internal voltage reference (V _{REFINT}), in Interrupt mode. This example is based on the STM32WBxx COMP LL API. The peripheral initialization uses LL unitary service functions for optimization purposes (performance and size).	-	-	X	-	-
	COMP	COMP_CompareGpioVsVrefInt _IT_Init	How to use a comparator peripheral to compare a voltage level applied on a GPIO pin to the internal voltage reference (V _{REFINT}), in Interrupt mode. This example is based on the STM32WBxx COMP LL API. The peripheral initialization uses the LL initialization function to demonstrate LL initialization usage.	-	-	MX	-	-
Examples_ LL	CONIF	COMP_CompareGpioVsVrefInt _OutputGpio_Init	How to use a comparator peripheral to compare a voltage level applied on a GPIO pin to the internal voltage reference (V _{REFINT}). The comparator output is connected to a GPIO. This example is based on the STM32WBxx COMP LL API.	-	-	MX	-	-
		COMP_CompareGpioVsVrefInt _Window_IT_Init	How to use a pair of comparator peripherals to compare a voltage level applied on a GPIO pin to two thresholds: the internal voltage reference (V _{REFINT}) and a fraction of the internal voltage reference (V _{REFINT} /2), in interrupt mode. This example is based on the STM32WBxx COMP LL API. The peripheral initialization uses LL unitary service functions for optimization purposes (performance and size).	-	-	MX	-	-
	CORTEX	CORTEX_MPU	This example presents the MPU feature. It configures a memory area as privileged readonly, and attempts to perform read and write operations in different modes.	-	-	MX	-	-
	CRC	CRC_CalculateAndCheck	How to configure the CRC calculation unit to compute a CRC code for a given data buffer, based on a fixed generator polynomial (default value 0x4C11DB7). The peripheral initialization is done using LL unitary service functions for optimization purposes (performance and size).	-	-	MX	MX	-

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55 .USBDongle ⁽¹⁾	P-NUCLEO- WB55 .Nucleo68 ⁽¹⁾	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
	CRC	CRC_UserDefinedPolynomial	How to configure and use the CRC calculation unit to compute an 8-bit CRC code for a given data buffer, based on a user-defined generating polynomial. The peripheral initialization is done using LL unitary service functions for optimization purposes (performance and size).	-	-	MX	-	-
	CRS	CRS_Synchronization_IT	How to configure the clock recovery service in Interrupt mode through the STM32WBxx CRS LL API. The peripheral initialization uses LL unitary service functions for optimization purposes (performance and size).	-	-	MX	-	-
	CRS	CRS_Synchronization_Polling	How to configure the clock recovery service in polling mode through the STM32WBxx CRS LL API. The peripheral initialization uses LL unitary service functions for optimization purposes (performance and size).	-	-	MX	-	-
Examples_ LL	DMA	DMA_CopyFromFlashToMemo ry	How to use a DMA channel to transfer a word data buffer from flash memory to embedded SRAM. The peripheral initialization uses LL unitary service functions for optimization purposes (performance and size).	-	-	X	-	-
	DIVIA	DMA_CopyFromFlashToMemo ry_Init	How to use a DMA channel to transfer a word data buffer from flash memory to embedded SRAM. The peripheral initialization uses LL initialization functions to demonstrate LL initialization usage.	-	-	MX	MX	-
		EXTI_ToggleLedOnIT	How to configure the EXTI and use GPIOs to toggle the user LEDs available on the board when a user button is pressed. It is based on the STM32WBxx LL API. The peripheral initialization uses LL unitary service functions for optimization purposes (performance and size).	-	-	X	-	-
EXTI	EXTI_ToggleLedOnIT_Init	How to configure the EXTI and use GPIOs to toggle the user LEDs available on the board when a user button is pressed. This example is based on the STM32WBxx LL API. The peripheral initialization is done using LL initialization function to demonstrate LL initialization usage.	-	-	MX	мх	-	

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55	P-NUCLEO- WB55	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
				J	.USBDongle ⁽¹⁾	.Nucleo68 ⁽¹⁾		
	GPIO	GPIO_InfiniteLedToggling	How to configure and use GPIOs to toggle the on-board user LEDs every 250 ms. This example is based on the STM32WBxx LL API. The peripheral is initialized with LL unitary service functions to optimize performance and size.	-	-	X	-	-
	GPIO	GPIO_InfiniteLedToggling_Init	How to configure and use GPIOs to toggle the on-board user LEDs every 250 ms. This example is based on the STM32WBxx LL API. The peripheral is initialized with LL initialization function to demonstrate LL initialization usage.	-	-	MX	MX	-
	HSEM	HSEM_DualProcess	How to use the low-layer HSEM API to initialize, lock, and unlock hardware semaphore in the context of two processes accessing the same resource.	-	-	MX	-	-
	HSEIVI	HSEM_DualProcess_IT	How to use the low-layer HSEM API to initialize, lock, and unlock hardware semaphore in the context of two processes accessing the same resource.	-	-	MX	MX	-
Examples_ LL		I2C_OneBoard_AdvCommunic ation_DMAAndIT_Init	How to exchange data between an I2C master device in DMA mode and an I2C slave device in Interrupt mode. The peripheral is initialized with LL unitary service functions to optimize performance and size.	-	-	MX	-	-
		I2C_OneBoard_Communicatio n_DMAAndIT_Init	How to transmit data bytes from an I2C master device using DMA mode to an I2C slave device using Interrupt mode. The peripheral is initialized with LL unitary service functions to optimize performance and size.	-	-	MX	-	-
	I2C	I2C_OneBoard_Communication_IT	How to handle the reception of one data byte from an I2C slave device by an I2C master device. Both devices operate in Interrupt mode. The peripheral is initialized with LL unitary service functions to optimize performance and size.	-	-	X	-	-
		I2C_OneBoard_Communicatio n_IT_Init	How to handle the reception of one data byte from an I2C slave device by an I2C master device. Both devices operate in Interrupt mode. The peripheral is initialized with LL initialization function to demonstrate LL initialization usage.	-	-	MX	-	-
		I2C_OneBoard_Communicatio n_PollingAndIT_Init	How to transmit data bytes from an I2C master device using Polling mode to an I2C slave device using Interrupt mode. The peripheral is initialized with LL unitary service functions to optimize performance and size.	-	-	MX	-	-

STM32CubeWB examples	AN5155

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55 .USBDongle ⁽¹⁾	P-NUCLEO- WB55 .Nucleo68 ⁽¹⁾	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
Examples_ LL		I2C_TwoBoards_MasterRx_SI aveTx_IT_Init	How to handle the reception of one data byte from an I2C slave device by an I2C master device. Both devices operate in Interrupt mode. The peripheral is initialized with LL unitary service functions to optimize performance and size.	-	-	MX	MX	-
	I2C	I2C_TwoBoards_MasterTx_Sla veRx_DMA_Init	How to transmit data bytes from an I2C master device using DMA mode to an I2C slave device using DMA mode. The peripheral is initialized with LL unitary service functions to optimize performance and size.	-	-	MX	MX	-
		I2C_TwoBoards_MasterTx_Sla veRx_Init	How to transmit data bytes from an I2C master device using Polling mode to an I2C slave device in Interrupt mode. The peripheral is initialized with LL unitary service functions to optimize performance and size.	-	-	MX	-	-
		I2C_TwoBoards_WakeUpFrom Stop2_IT_Init	How to handle the reception of a data byte from an I2C slave device in Stop 2 mode by an I2C master device. Both devices operate in Interrupt mode. The peripheral is initialized with LL unitary service functions to optimize performance and size.	-	-	MX	-	-
		I2C_TwoBoards_WakeUpFrom Stop_IT_Init	How to handle the reception of a data byte from an I2C slave device in Stop 1 mode by an I2C master device. Both devices operate in Interrupt mode. The peripheral is initialized with LL unitary service functions to optimize performance and size.	-	-	MX	-	-
	IWDG	IWDG_RefreshUntilUserEvent _Init	How to configure the IWDG peripheral to ensure periodical counter update and generate an MCU IWDG reset when a user push-button (SW1) is pressed. The peripheral is initialized with LL unitary service functions to optimize performance and size.	-	-	MX	MX	-
	LPTIM	LPTIM_PulseCounter	How to use the LPTIM peripheral in Counter mode to generate a PWM output signal and update its duty cycle. This example is based on the STM32WBxx LPTIM LL API. The peripheral is initialized with LL unitary service functions to optimize performance and size.	-	-	X	-	-

P-NUCLEO

NUCLEO-

Module

name

Project name

Description

How to configure the TIMER peripheral to generate three center-aligned PWM and

Level

P-NUCLEO

.Nucleo68⁽¹⁾

5MM-DK(1)

.USBDongle⁽¹⁾

NUCLEO-

WB15CC(1)

B-WB1M-

WPAN1

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55	P-NUCLEO- WB55 .Nucleo68 ⁽¹⁾	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
Examples_ LL		USART_Communication_Tx_I T_Init	How to configure GPIO and USART peripheral to send characters asynchronously to HyperTerminal (PC) in Interrupt mode. This example is based on STM32WBxx USART LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	-	-	MX	-	-
	USART	USART_Communication_Tx_I T_VCP_Init	How to configure GPIO and USART peripheral to send characters asynchronously to HyperTerminal (PC) in Interrupt mode. This example is based on STM32WBxx USART LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	-	-	MX	-	-
		USART_Communication_Tx_I nit	How to configure GPIO and USART peripherals to send characters asynchronously to an HyperTerminal (PC) in Polling mode. If the transfer cannot be completed within the allocated time, a timeout enables exiting from the sequence with a Timeout error code. This example is based on STM32WBxx USART LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	-	-	MX	MX	-
		USART_Communication_Tx_V CP_Init	How to configure GPIO and USART peripherals to send characters asynchronously to an HyperTerminal (PC) in Polling mode. If the transfer cannot be completed within the allocated time, a timeout enables exiting from the sequence with a Timeout error code. This example is based on STM32WBxx USART LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	-	-	MX	-	-
		USART_WakeUpFromStop1_I nit	How to configure GPIO and USART1 peripherals to enable the characters received on USART_RX pin to wake up the MCU from low-power mode.	-	-	MX	-	-
		USART_WakeUpFromStop_Ini t	How to configure GPIO and USART1 peripherals to enable the characters received on USART_RX pin to wake up the MCU from low-power mode.	-	-	MX	-	-
	UTILS	UTILS_ConfigureSystemClock	How to use UTILS LL API to configure the system clock using PLL with HSI as source clock.	-	-	MX	-	-

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55	P-NUCLEO- WB55	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
					.USBDongle ⁽¹⁾	.Nucleo68 ⁽¹⁾		
	UTILS	UTILS_ReadDeviceInfo	How to read the UID, Device ID and Revision ID and save them into a global information buffer.	-	-	MX	MX	-
Examples_ LL	WWDG	WWDG_RefreshUntilUserEven t_Init	How to configure the WWDG to periodically update the counter and generate an MCU WWDG reset when a user button is pressed. The peripheral initialization uses the LL unitary service functions for optimization purposes (performance and size).	-	-	MX	MX	-
		Total number	of examples_II: 118	0	0	92	26	0
	ADC	ADC_SingleConversion_Trigge rSW_IT	How to use the ADC to perform a single ADC channel conversion at each software start. This example uses the interrupt programming model (for polling and DMA programming models, please refer to other examples). It is based on the STM32WBxx ADC HAL and LL API. The LL API is used for performance improvement.	-	-	MX	-	-
	CRC	CRC_PolynomialUpdate	How to use the CRC peripheral through the STM32WBxx CRC HAL and LL API.	-	-	MX	-	-
	DMA	DMA_FLASHToRAM	How to use a DMA to transfer a word data buffer from flash memory to embedded SRAM through the STM32WBxx DMA HAL and LL API. The LL API is used for performance improvement.	-	-	MX	MX	-
Examples_ MIX	I2C	I2C_OneBoard_ComSlave7_1 0bits_IT	How to perform I2C data buffer transmission/ reception between one master and two slaves with different address sizes (7-bit or 10-bit). This example uses the STM32WBxx I2C HAL and LL API (LL API usage for performance improvement) and an interrupt.	-	-	MX	-	-
	PWR	PWR_STOP1	How to enter Stop 1 mode and wake up from this mode by using external reset or wakeup interrupt (all the RCC function calls use RCC LL API for minimizing footprint and maximizing performance).	-	-	MX	MX	-
		SPI_FullDuplex_ComPolling_ Master	Data buffer transmission/reception between two boards via SPI in Polling mode.	-	-	MX	-	-
	SPI	SPI_FullDuplex_ComPolling_S lave	Data buffer transmission/reception between two boards via SPI in Polling mode.	-	-	MX	-	-
		SPI_HalfDuplex_ComPollingIT _Master	Data buffer transmission/reception between two boards via SPI in Polling (LL driver) and Interrupt modes (HAL driver).	-	-	MX	MX	-

STM32CubeWB examples	
CubeWI	
B exam	AN5
ples	5155

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55	P-NUCLEO- WB55 .Nucleo68 ⁽¹⁾	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
		BLE_Mesh_Model_Sensor	This is the implementation of a BLE Mesh Sensor Model (client and server) as specified by the BLE SIG.	X	-	-	-	-
		BLE_Mesh_ThermometerSens or	This is the implementation of a BLE Mesh Vendor profile as specified by the BLE SIG.	X	-	-	-	-
		BLE_Ota	OTA implementation to download a new image into the user flash memory.	-	-	X	X	-
		BLE_Peripheral_Lite	How to communicate with simple BLE peripheral with the features minimum activated.	-	-	X	-	-
	BLE	BLE_Peripheral_Lite_EventCal lbacks	How to communicate with simple BLE peripheral with minimum activated features with implemented BLE API event callbacks functions.	-	-	X	-	-
		BLE_Power_Peripheral	This application is to demonstrate that a BLE_Power_Peripheral application can be created using CubeMX.	-	-	MX	-	-
A		BLE_Proximity	How to use the Proximity profile as specified by the BLE SIG.	-	-	X	-	-
Applications		BLE_RfWithFlash	How to demonstrate the capability to erase/write the flash memory while a point-to-point communication using BLE component is active.	-	-	X	-	-
		BLE_Sensor	This example demonstrates the capabilities of STM32WB5MM Discovery kit with the use of board sensors.	MX	-	-	-	-
		BLE_TransparentMode	How to communicate with the STM32CubeMonitor-RF tool using the Transparent mode.	MX	-	MX	MX	-
		BLE_TransparentModeVCP	How to communicate with the STM32CubeMonitor-RF tool using the Transparent mode.	-	X	-	-	-
		BLE_p2pClient	How to demonstrate point-to-point communication using BLE component (as GATT client).	-	X	MX	MX	-
		BLE_p2pClient_Ext	Demontrates a BLE scanner with connections from an extended and a legacy advertising Two Nucleo STM32WB55xx boards (MB1355C) are used, one acting as GATT client, and one as GATT server.	-	-	X	X	-

S		
STM32CubeWB examples		
beWB	>	
exampl	N51	
D	55	

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55	P-NUCLEO- WB55 .Nucleo68 ⁽¹⁾	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
	BLE_Threa	BLE_Thread_Static	How to use BLE and Thread applications in Static concurrent mode.	-	-	X	-	-
		BLE_Zigbee_Dyn	How to use BLE and Zigbee® applications (acting as router) in Dynamic concurrent mode.	-	-	X	-	-
	BLE_Zigbe e	BLE_Zigbee_Dyn_SED	How to use BLE and Zigbee applications (acting as sleep end device) in Dynamic concurrent mode.	-	-	-	-	-
		BLE_Zigbee_Static	How to use BLE and Zigbee applications in Static concurrent mode.	-	-	X	-	-
	CKS	CKS_Crypt	How to use the CKS feature to store AES cryptographic keys in secure area.	-	-	X	-	-
	Demonstra tions	Audio_BVLINKWB	This demonstration firmware is based on STM32Cube Function pack for STM32WB MCUs featuring full-duplex audio streaming over Bluetooth 5.0 using Opus codec.	X	-	-	-	-
Augliodion		FreeRTOS_Mutexes	How to use mutexes with CMSIS RTOS API.	-	-	MX	MX	-
Applications		FreeRTOS_Queues	How to use message queues with CMSIS RTOS API.	New	-	MX	-	-
		FreeRTOS_Semaphore	How to use semaphores with CMSIS RTOS API.	-	-	MX	-	-
	FreeRTOS	FreeRTOS_SemaphoreFromIS	How to use semaphore from ISR with CMSIS RTOS API.	-	-	MX	-	-
		FreeRTOS_ThreadCreation	How to implement thread creation using CMSIS RTOS API.	-	-	MX	-	-
		FreeRTOS_ThreadFlags	How to perform thread flagging using CMSIS RTOS API.	-	-	New	-	-
		FreeRTOS_ThreadFlagsFromI SR	This application shows the usage of CMSIS-OS ThreadFlags API from ISR context.	-	-	New	-	-
		FreeRTOS_Timers	How to use timers of CMSIS RTOS API.	-	-	MX	-	-
	Mac_802_ 15_4	Mac_802_15_4_Coordinator	How to use MAC 802.15.4 Association and Data exchange.	-	-	X	-	-

STM32CubeWB examples	
beWB exa	AN5
amples	5155

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55 .USBDongle ⁽¹⁾	P-NUCLEO- WB55 .Nucleo68 ⁽¹⁾	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
		Mac_802_15_4_FFD	How to use MAC 802.15.4 Association and Data exchange.	-	-	X	-	-
	Mac_802_	Mac_802_15_4_LPM_Periodic _Transmit	How to use MAC 802.15.4 data transmission with Stop 1 low power mode enabled.	-	-	X	-	-
	15_4	Mac_802_15_4_Node	How to use MAC 802.15.4 Association and Data exchange.	-	-	X	-	-
		Mac_802_15_4_RFD	How to use MAC 802.15.4 Association and Data exchange.	-	-	X	-	-
	Phy_802_1 5_4	Phy_802_15_4_Cli	How to create a "PHY_802.15.4 command line interface" application on STM32WB55xx boards using terminals.	-	-	X	-	-
		Thread_Cli_Cmd	How to control the Thread stack via Cli commands.	-	X	MX	-	-
		Thread_Coap_DataTransfer	How to transfer large blocks of data through the CoAP messaging protocol.	-	X	MX	-	-
Applications		Thread_Coap_Generic	How to build Thread application based on CoAP messages.	X	X	MX	-	-
		Thread_Coap_Generic_Ota	How to build Thread application based on CoAP messages.	-	-	X	-	-
	Thread	Thread_Coap_Generic_Threa dX	How to build Thread application based on Coap messages. (using ThreadX) This application requires two STM32WB55xx boards.	-	-	X	-	-
	medd	Thread_Coap_MultiBoard	How to use CoAP for sending message to multiple boards.	-	-	MX	-	-
		Thread_Coap_Secure	How to build Thread application based on CoAP Secure messages.	-	-	X	-	-
		Thread_Commissioning	How to use Thread commissioning process.	-	-	MX	-	-
		Thread_FTD_Coap_Multicast	How to exchange multicast CoAP messages.	-	X	MX	-	-
		Thread_NVM	How to configure NVM for Thread applications.	-	-	X	-	-

Level	Module	Droject name Description	STM32WB	P-NUCLEO- WB55	P-NUCLEO- WB55	NUCLEO-	B-WB1M- WPAN1	
	name			5MM-DK ⁽¹⁾	.USBDongle ⁽¹⁾	.Nucleo68 ⁽¹⁾	WB15CC ⁽¹⁾	WPAN1
		Thread_Ota	How to update over-the-air (OTA) firmware application and Copro Wireless binary using Thread.	-	-	X	-	
		Thread_Ota_Server	How to update over-the-air (OTA) firmware application and Copro Wireless binary using Thread.	-	-	X	-	-
	Thread	Thread_RCP	This application is used to demonstrate the OpenThread Border router feature using an STM32WB device.	-	-	X	-	-
		Thread_SED_Coap_FreeRTO S	How to exchange a CoAP message using the Thread protocol.	-	-	MX	-	-
		Thread_SED_Coap_Multicast	How to exchange a CoAP message using the Thread protocol.	-	X	MX	-	-
		Thread_Udp	How to transfer data using UDP.	-	-	X	-	-
	TouchSens ing	TouchSensing_1touchKey	Use of the STMTouch driver with one touchkey sensor.	-	-	X	-	-
Applications		TouchSensing_1touchkey	Use of the STMTouch driver with one touchkey sensor.	MX	-	-	-	-
		CDC_Standalone	How to use USB device application based on the Device Communication Class (CDC) following the PSTN sub-protocol on the STM32WB MCUs.	-	-	MX	-	-
	USB_Devi ce	DFU_Standalone	Compliant implementation of the device firmware upgrade (DFU).	-	MX	MX	-	-
		HID_Standalone	How to use of the USB device application based on the human interface (HID).	-	MX	MX	-	-
		Zigbee_APS_Coord	How to use the APS layer in an application with a centralized Zigbee network.	-	-	X	-	-
	7:	Zigbee_APS_Router	How to use the APS layer in an application with a centralized Zigbee network.	-	-	X	-	-
	Zigbee	Zigbee_Commissioning_Client _Coord	How to use Commissioning cluster as a client on a centralized Zigbee network.	-	-	X	-	-
		Zigbee_Commissioning_Serve r_Router	How to use Commissioning cluster as a client on a centralized Zigbee network.	-	-	X	-	-

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55	P-NUCLEO- WB55	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
	name			SIMINI-DK	.USBDongle ⁽¹⁾	.Nucleo68 ⁽¹⁾	WB15CC('/	WPAN1
		Zigbee_OTA_Server_Coord	How to use the OTA cluster on one OR multiple devices. Router(s) is/are receiving and updating on a parallel way, the same OTA New image sent by the ZC.	-	-	X	-	-
		Zigbee_OnOff_ChannelsAgility _SED	How to use the OnOff cluster on a device on a Sleepy End Device (SED) acting as a Client within a Centralized Zigbee network.	-	-	X	-	-
		Zigbee_OnOff_ChannelsAgility _ZC	How to use the OnOff cluster on a device acting acting as a Server with Coordinator role within a Centralized Zigbee network.	-	-	X	-	-
		Zigbee_OnOff_ChannelsAgility _ZR	How to use the OnOff cluster on a device acting as a Client with Router role within a Centralized Zigbee network.	-	-	X	-	-
	Zigbee	Zigbee_OnOff_Client_Distrib	How to use the OnOff cluster on a device acting as a Client within a distributed Zigbee network.	-	-	MX	-	-
		Zigbee_OnOff_Client_ED	How to use the OnOff cluster on a End Device acting as a Client within a Centralized Zigbee network.	-	-	MX	-	-
Applications		Zigbee_OnOff_Client_Router	How to use the OnOff cluster on a device acting as a Client with Router role within a Centralized Zigbee network.	X	X	MX	-	-
		Zigbee_OnOff_Client_Router_ FreeRTOS	How to use the OnOff cluster on a device acting as a Client with Router role within a Centralized Zigbee network using FreeRTOS.	-	-	X	-	-
		Zigbee_OnOff_Client_Router_ Ota	How to use an updated OnOff cluster Zigbee application previously downloaded via OTA.	-	-	X	-	-
		Zigbee_OnOff_ClientRouter_T hreadX	How to use the OnOff cluster on a device acting as a Client with Router role within a Centralized Zigbee network.	-	-	X	-	-
		Zigbee_OnOff_Client_SED	How to use OnOff cluster as a client on a centralized Zigbee network.	-	-	X	-	-
		Zigbee_OnOff_Coord_NVM	How to use OnOff cluster with persistent data on a centralized Zigbee network.	-	-	X	-	-
		Zigbee_OnOff_Router_NVM	How to use OnOff cluster with persistent data on a centralized Zigbee network.	-	-	X	-	-
		Zigbee_OnOff_Server_Coord	How to use OnOff cluster as a server on a centralized Zigbee network.	X	X	MX	-	-

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55	P-NUCLEO- WB55 .Nucleo68 ⁽¹⁾	NUCLEO- WB15CC ⁽¹⁾	B-WB1M- WPAN1
Level	Zigbee	Zigbee_OnOff_Server_Coord_ FreeRTOS	How to use OnOff cluster as a server on a centralized Zigbee network.	-	-	X	-	-
		Zigbee_OnOff_Server_Distrib	How to use OnOff cluster as a server on a distributed Zigbee network.	-	-	MX	-	-
Applications		Zigbee_PollControl_Client_Co ord	How to use Poll Control cluster as a client on a centralized Zigbee network.	-	-	X	-	-
		Zigbee_PollControl_Server_S ED	How to use Poll Control cluster as a server on a centralized Zigbee network.	-	-	X	-	-
		Zigbee_PowerProfile_Client_C oord	How to use Power Profile cluster as a client on a centralized Zigbee network.	-	-	X	-	-
		Zigbee_PowerProfile_Server_ Router	How to use Power Profile cluster as a server on a centralized Zigbee network.	-	X	X	-	-
		Zigbee_PressMeas_Client_Ro uter	How to use Pressure Measurement cluster on a centralized Zigbee network with device acting as router.	-	-	X	-	-
		Zigbee_PressMeas_Server_C oord	How to use Pressure Measurement cluster on a centralized Zigbee network with device acting as server.	-	-	X	-	-
		Zigbee_SE_Msg_Client_Coord	How to use Smart Energy Messaging cluster on a centralized Zigbee network with device acting as coordinator (client).	-	-	X	-	-
		Zigbee_SE_Msg_Server_Rout er	How to use Smart Energy Messaging cluster on a centralized Zigbee network with device acting as router (server).	-	-	X	-	-
		Zigbee_TempMeas_Client_Ro uter	How to use TempMeas as a client on a centralized Zigbee network.	X	-	-	-	-
		Zigbee_TempMeas_Server_Co ord	How to use Temperature Measurement cluster as a server on a centralized Zigbee network.	X	-	-	-	-
		Zigbee_custom_ls_Client_Rou ter	How to use the Custom long string cluster on a device acting as a Client with Router role within a centralized Zigbee network.	-	-	X	-	-
		Zigbee_custom_ls_Server_Co ord	How to use the Custom long string cluster on a device acting as a server with coordinator role within a centralized Zigbee network.	-	-	X	-	-
	Total number of applications: 176				19	126	14	2

	-
	_
	7
	7
	O
	_
•	CT
	7
	ОТ

Level	Module name	Project name	Description	STM32WB 5MM-DK ⁽¹⁾	P-NUCLEO- WB55 .USBDongle ⁽¹⁾	P-NUCLEO- WB55 .Nucleo68 ⁽¹⁾	WB15CC(1)	B-WB1M- WPAN1
Total number of projects: 472			25	20	332	90	5	

Revision history

Table 2. Document revision history

Date	Version	Changes				
19-Feb-2019	1	Initial release.				
17-Mar-2020	2	Added Zigbee middleware in Figure 1. STM32CubeWB firmware components. Added STM32CubeWB Nucleo demonstration firmware (UM2251) in Section 1: Reference documents. Added \STM32CubeIDE in the list of project folders in Section 2: STM32CubeWB examples. Updated Table 1. STM32CubeWB firmware examples				
09-Nov-2020	3	Updated folder hosting the examples and its structure in Section 2: STM32CubeWB examples. Table 1. STM32CubeWB firmware examples: Suppressed NUCLEO-WB35CE board Removed CORTEXM_SysTick and I2S_Audio examples Added BLE_Custom, BLE_HeartRateFreeRTOS_ANCS, BLE_HeartRate_ANCS, BLE_MeshLightingLPN, BLE_MeshLightingProvisioner, BLE_RfWithFlash, BLE_Thread_Dyn, BLE_Thread_Dyn_SED, BLE_Zigbee_Dyn_BLE_Zigbee_Dyn_NVM, BLE_Zigbee_Dyn_SED, LLD_BLE, Phy_802_15_4, Thread_Upd, Zigbee_APS_Coord, Zigbee_APS_Router, Zigbee_Commissioning_Client_Coord and Zigbee_Commissioning_Client_Router, Zigbee_Diagnostic_Server_Coord, Zigbee_Diagnostic_Client_Router, Zigbee_Diagnostic_Server_Coord, Zigbee_DoorLock_Client_Router, Zigbee_DoorLock_Server_Coord, Zigbee_IAS_WD_Client_Router, Zigbee_IAS_WD_Server_Coord, Zigbee_OTA_Client_Router, Zigbee_IAS_WD_Server_Coord, Zigbee_OTA_Client_Router, Zigbee_OnOff_Client_Router, Zigbee_OnOff_Client_SeD, Zigbee_OnOff_Coord_NVM, Zigbee_OnOff_Router_NVM, Zigbee_PollControl_Client_Coord, Zigbee_PollControl_Server_SED applications				
26-Apr-2021	4	 Updated Table 1. STM32CubeWB firmware examples: Added STM32WB5MM-DK kit and associated examples. Added CORTEX CORTEXM_SysTick, UART_Console and UART_ReceptionToldle_CircularDMA examples. Updated BLE applications; added Zigbee_custom_ls_Client_Router, Zigbee_custom_ls_Server_Coord, Zigbee_OnOff_Client_Router_FreeRTOS, and Zigbee_OnOff_Server_Coord_FreeRTOS. 				
07-Jul-2021	5	Updated Table 1. STM32CubeWB firmware examples with the support for the Nucleo-WB15CC board Updated the list of available projects: NUCLEO-WB15CC BLE_LLD Applications: BLE_LLD_Chat, BLE_LLD_Lowpower P-NUCLEO-WB55.Nucleo BLE_LLD Applications: BLE_LLD_Chat, BLE_LLD_Proximity P-NUCLEO-WB55.Nucleo Thread Applications: Thread_RCP STM32WB5MM-DK Demonstration Applications: Audio_BVLINKWB,BLE_HeartRate, BLE_Mesh_ThermometerSensor, BLE_Sensor, BLE_TransparentMode, BLE_p2pServer, BLE_LLD_Chat, Thread_Coap_Generic, Zigbee_TempMeas_Client_Router, Zigbee_TempMeas_Server_Coord, Zigbee_OnOff_Client_Router, Zigbee_OnOff_Server_Coord. Removed BLE_Zigbee_Dyn_NVM application form the supported list.				
02-Dec-2021	6	Updated Table 1. STM32CubeWB firmware examples: Added BLE_HeartRate_ota, BLE_MeshLightingLPN, BLE_MeshLightingPRFNode, BLE_Ota, BLE_p2pServer_ota, BLE_Mesh_Model_Sensor, BLE_AT_Server, BLE_LLD_Datarate, Thread_RCP_Cli_Cmd. Added Templates_LL for NUCLEO-WB15CC. Minor text edits across the whole table.				
30-Nov-2022	7	Added support for the B-WB1M-WPAN1 board. Updated Section 1: Reference documents. Updated Table 1. STM32CubeWB firmware examples.				
01-Dec-2025	8	Updated Figure 1. STM32CubeWB firmware components. Updated Table 1. STM32CubeWB firmware examples. Minor text edits across the whole document.				

AN5155 - Rev 8 page 36/38

Contents

1	Reference documents	2
2	STM32CubeWB examples	3
Rev	rision history	6

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics - All rights reserved

AN5155 - Rev 8 page 38/38