

EVALKITSTKNX user guide and performance report

Introduction

The EVALKITSTKNX in Figure 1 is the evaluation kit of the STKNX integrated circuit: a miniature KNX-certified (Figure 2) transceiver for Twisted Pair medium TP1-256. This document describes how to use the EVALKITSTKNX, its characteristics, and explains the electrical choices of the peripheral components to the STKNX. In addition, Section 4 KNX physical layer performance vs. 8/2/2 tests contains the electrical results of the EVALKITSTKNX for the Physical Layer tests according to the System Conformance Testing specification 8/2/2.

The kit offers the user the possibility to both evaluate the performances of the STKNX circuit and to build the prototype of a KNX device. Configuration jumpers allow testing of every possible configuration offered by STKNX regarding power supply, fan-in and isolation. The system is controlled by the STM32F103RBT6 microcontroller and can be customized thanks to extension connectors compatible with Arduino and Morpho ST standard, by plugging a custom daughterboard or an existing STM32 Nucleo expansion board.

The EVALKITSTKNX also embeds the ST-LINK/V2-1 debugger/programmer to simplify project setup for the development of custom firmware.

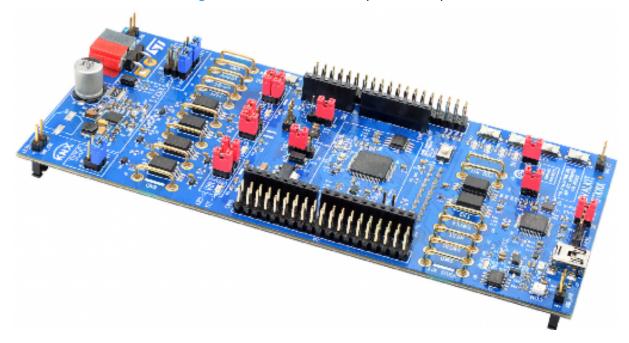


Figure 1. STKNX evaluation kit (70 x 155 mm)

Figure 2. STKNX certificate of conformity

KNX CERTIFICATE OF CONFORMITY

CERTIFICATE No: 447/14356/17

Delivered to

STMICROELECTRONICS INTERNATIONAL N.V. SWITZERLAND

This is to certify that the underneath listed product:

ST KITT 864L

Order number: STKNXTR Application program: STKNX

has been satisfactorily assessed by KNX Association as regards software (report No. A1/114/1/17 from 2/23/2017) under the rules of the KNX certification system against the requirements of the KNX specifications v2.1.

The certificate holder is granted right of entry of the above product into the KNX register of qualified products (established for the first time on 3/29/2017).

The certificate holder may use the KNX or EIB (see above) trademark in accordance with the relevant trademark rules, as laid down in the KNX trademark and certification documentation (KNX issue 02/2006).

Subject to continuing compliance with the rules and the declaration previously given this certificate has an unlimited validity.

Joost Demarest, CTO KNX Association

Date: 02 July 2018

AN5274 - Rev 3 page 2/121

1 EVALKITSTKNX presentation

Basic devices CPU Option KNX media interface Power Isolation option Power STKNX STM32 Isolation -USB2USAR USB PC interface Logic i/f JTAG connector Memory 411 Debug & control KNX Prog

Figure 3. EVALKITSTKNX functional block diagram

The STKNX transceiver and the STM32 controller sections make up the basic KNX node.

The STKNX section includes jumpers to configure and test the different possible settings of the circuit voltage regulators. The kit schematic indicates also the BOM changes that have to be applied to modify the DC-DC converter output voltage or the kit fan-in.

The default configuration of the EVALKITSTKNX is the following:

- Emulation of a KNX device with fan-in = 30 mA
- STKNX linear regulator voltage set to 3.3 V for CPU section supplying STKNX DC-DC converter voltage set to 5 V for external application.

The STM32 is connected to several peripherals:

- STKNX for KNX data transfer
- One key and one LED for the KNX programming function
- One EEPROM memory for configuration storing (not used by default firmware)
- · Four keys emulating basic sensors or for any other application purpose
- · Four LEDs emulating basic actuators or for any other application purpose
- Extension connectors for interfacing a daughterboard and customizing the kit.

Optional optocouplers are present to isolate the STKNX section if a non-safety voltage is present on the daughterboard (e.g., Remote Powered Device).

The debug section embeds a second STM32 which hosts:

- ST-LINK/V2-1 debugging environment for debugging purposes
- A mass-storage profile for ST-LINK development
- An isolated USB2UART connection to the target STM32 USART
- All of them, accessible from a single USB connector.

AN5274 - Rev 3 page 3/121

2 Quick start

2.1 System requirements

- A windows, Linux or Mac OSX PC
- · A type A to mini-B USB cable

2.2 Getting started

Follow the sequence below to configure the EVALIKITSTKNX, launch demo software, or prepare to develop your own application:

- Check that the jumpers on the kit are configured as described in Section 3.5.4.1 STKNX mode DC-DC 5 V (default) and that both jumpers M32 and M43 are open and M39 is connected. On the kit, the paired jumpers are named "Mxx" for the removable ones and "Jxx" for the soldered connectors.
- 2. Check that every gold colored jumper (see Figure 4 below) is connected. If one jumper is missing, it is possible to replace it with jumper M2 (redundant with M15 for GND connection)
- 3. Connect the kit to the KNX bus though the male connector J13. A female connector is supplied with the kit
- 4. Check that LED D13 (3V3) lights on
- 5. Connect your PC to the USB connector J31
- 6. Follow the instructions in the Quick Start Guide UM2409 available on www.st.com
- 7. If you disconnect the USB cable from the kit, please remove the golden jumper M37 (NRST).

AN5274 - Rev 3 page 4/121

3 EVALKITSTKNX hardware description

The description below relates to the electrical schematic and hardware layout of the EVALKITSTKNX available on www.st.com .

Note:

Note: On the kit, the paired jumpers are named "Mxx" for the removable ones and "Jxx" for the soldered connectors.

3.1 Power consumption characteristics

The typical current consumption characteristics of the EVALKITSTKNX measured in multiple configurations are shown in the following table.

Every test has been performed with V_{BUS} = 30 V, unless otherwise specified.

Table 1. EVALKITSTKNX power consumption figures

Symbol	Parameter	Conditions	Тур.	Unit
Idle I _{BUS}	Idle KNX bus power consumption	No transmission, no activity on bus STKNX voltage regulators enabled but not loaded	0.6	mA
Tx I _{BUS}	Transmit KNX bus power	STKNX transmitting 0/1 toggled(1)		A
	consumption	STKNX voltage regulators enabled but not loaded	21	mA
Rx I _{BUS}	Receive KNX bus power consumption	STKNX receiving 0/0 toggled(2)		
		STKNX voltage regulators enabled but not loaded		
Sys I _{BUS}	System KNX bus power consumption	CPU hosting typical firmware with Tapko demo protocol stack - no bus activity		mA
		CPU section supplied by STKNX linear regulator (3.3V) (see Section 3.5.4.1 STKNX mode DC-DC 5 V (default)) - V _{BUS} = 30V		
Sys I _{BUS}	System KNX bus power consumption	CPU hosting typical firmware with Tapko demo protocol stack - no bus activity		
		CPU section supplied by STKNX DC-DC converter (3.3V) (see Section 3.5.4.2 STKNX mode DC-DC 3V3) - V_{BUS} = 30V		
Sys I _{BUS}	System KNX bus power consumption	CPU hosting typical firmware with Tapko demo protocol stack - no bus activity		mA
		CPU section supplied by STKNX DC-DC converter (3.3V) (see Section 3.5.4.2 STKNX mode DC-DC 3V3) - V _{BUS} = 20V		
ICPU	CPU section power consumption (3V3_KIT)	CPU hosting typical firmware with Tapko demo protocol stack - no bus activity		mA
IOPTO-IN	KNX_TX optocoupler input stage consumption	Optocoupler LED off (KNX_TX = 3.3V)		mA
IOPTO-IN	KNX_TX optocoupler input stage consumption	Optocoupler LED on (KNX_TX = 0V)		mA
IOPTO-IN	KNX_TX optocoupler input stage consumption	KNX_TX toggling 0/1(1)		mA
IOPTO-OUT	KNX_TX optocoupler output stage consumption	Optocoupler LED off (KNX_TX = 3.3V)		mA
IOPTO-OUT	KNX_TX optocoupler output stage consumption	Optocoupler LED on (KNX_TX = 0V)		mA
IOPTO-OUT	KNX_TX optocoupler output stage consumption	KNX_TX toggling 0/1(1)	0.78	mA
ISTLINK	STLINK/V2-1 section power consumption (USB_VCC)	PC connected to USB J31 connector	50	mA

AN5274 - Rev 3 page 5/121

- (1) STKNX-TX signal is set high / 35 μs and Low / 173μs.
- (2) Alternate (Drop-35 µs + Equalization-69 µs) / (Null-104 µs) analog signal is applied on VBUS.

3.2 STKNX section

3.2.1 Electrical description

The STKNX circuit is assembled with every necessary discrete peripheral part in order to build the function of a KNX transceiver with a fan-in 30mA and a DC-DC converter with a 5 V output voltage.

This section represents the interface between the analog signal on KNX bus connected to J13 and the digital signals KNX_TX, KNX_RX, KNX_OK and VCC_OK connected to the microcontroller U11 GPIOs (PA6, PA7), PA0, PC13, PB13, respectively.

Figure 5. KNX signals during transmission


Agilent Technologies THU DEC 06 17:40:23 2018

break

AN5274 - Rev 3 page 6/121

Figure 6. KNX signals during reception

The discrete parts around STKNX have been selected according to the circuit datasheet recommendations, so the EVALKITSTKNX can be used as a reference for parts selection. It is also possible to use equivalent components with respect to the characteristics specified in the STKNX datasheet.

The capacitor Cgate requires specific attention:

Its capacitance directly determines the slope of the input current which is submitted to a specified limit in the test Section 4.4 Power Conversion (Load Changes) (8/2/2 - test 4.4).

- When selecting the capacitor in addition to voltage rating (≥ 10 V), the DC bias characteristic has to be
 checked in order to verify the capacitance change when the DC bias is tuned from approximately 2 V to 6
 V. If the capacitance dropped excessively, input current slope would be higher than expected, because the
 effective capacitance would be significantly lower than the nominal one. Usually capacitance drop is higher
 in smaller case capacitors.
- Figure 7. Recommended DC bias characteristic for Cgate illustrates fairly constant DC bias characteristic, recommended for Cgate (fan-in = 30 mA), while Figure 8. Non-recommended DC bias characteristic for Cgate illustrates a DC bias characteristic with strong capacitance drop.

AN5274 - Rev 3 page 7/121

Figure 7. Recommended DC bias characteristic for Cgate

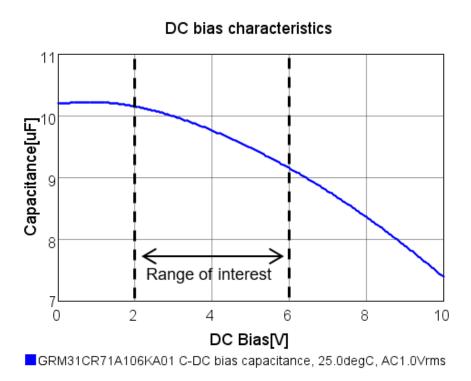
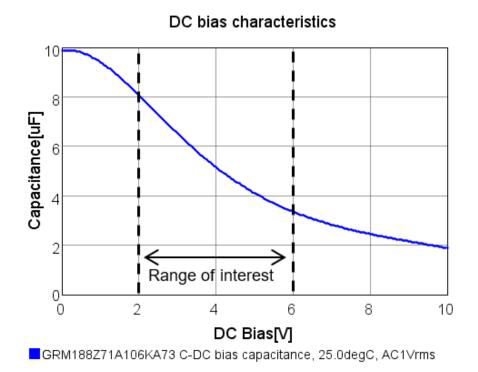



Figure 8. Non-recommended DC bias characteristic for Cgate

• Some optional components are also present on the schematic:

AN5274 - Rev 3 page 8/121

- C61 is present to avoid applying permanent voltage on pin KNX_TX as described in section "Transmitter" of the STKNX datasheet. Given the inductive impedance of KNX TP1 bus, forcing KNX_TX high for time duration longer than the one specified by the standard for active pulse (35 µs) can lead to excessive current drawn from the bus and should be avoided. Particular attention should be paid during firmware development in order to prevent conditions in which KNX_TX may be stuck high. C61 has been placed as a protection against such unexpected condition.
- R96-D16 pads are present to allow control of discharge and clamping of KNX_TX node at STKNX input because of C61 coupling capacitor. However, with default C61 value (1 nF) they are not necessary on EVALKITSTKNX design.
- R99-C62 are not populated. They offer a location for a filter to increase the ratio A1/A2 in the test 5.1-Pulse-Impedance. They have never been used on EVALKISTKNX.
- C7 is an option for an additional bulk capacitor on VDDHV rail. More bulk capacitor can store additional energy to supply the STKNX loads for a limited period of time after a loss of power of the bus (signaled by KNX OK going low), allowing the CPU to run shutdown routines or similar tasks.

Thanks to jumpers J7, J8 and J9, it is possible to test several configurations for the STKNX:

- DC-DC converter status (J8):
 - ON, input voltage = VDDHV
 - OFF, input voltage = GND or not connected
- Linear regulator status and supply (J7)
 - ON, input voltage = VDDHV
 - ON, input voltage = VDCDC: refer to datasheet for minimum supply input voltage
 - OFF, input voltage = VCCCORE
- Linear regulator output voltage (J9)
 - Output voltage = 3.3V
 - Output voltage = 5V

See Figure 27. Jumpers in STKNX section for more information.

The DC-DC converter output voltage can be changed (from 1 V to 12 V) by modifying the feedback resistors and capacitor. In the electrical schematic, a selection guide indicates the values to be applied to generate voltages 1 V, 3.3 V, 7.5 V and 12 V. If a different voltage is needed, please refer to STKNX datasheet to calculate the discrete components values.

The EVALKITSTKNX is originally configured as a device with a fan-in parameter equal to 30 mA. It is also possible optimize it for lower fan-ins by modifying the capacitors Cgate and Cvddhv. The recommended parts for fan-in = 10 mA and fan-in = 20 mA are indicated in the schematic.

Regarding Cvddhv, a minimum value is recommended. That means, higher values for Cvddhv can be used, generally to improve the sustainability to KNX bus drops. However, attention must be paid to the peak current during the switch on test not to exceed the KNX limits.

3.2.2 Layout recommendations

PCB layout is an important part of DC-DC switching converter design. A poor board layout can compromise important parameters of the DC-DC converter such as efficiency, output voltage ripple, line and load regulation and stability.

Good layout for the STKNX can be implemented by following the few simple design rules listed in this section. These rules have been applied to the STKNX routed area on the STKNX evaluation board (EVALKITSTKNX), where only the TOP and BOTTOM layers have been used from the four available, so it can be transposed on a low cost 2-layer PCB. It is then easy to implement the rules on a final KNX product.

AN5274 - Rev 3 page 9/121

Figure 9. STKNX area routed using top and bottom layers only

Refer to Figure 10 and Figure 11 below for the recommendations described below:

- Place CIN (C13) close to the STKNX and connect it between pins VIN and DCDC_GND directly on top layer (DCDC_LX trace crosses between CIN pads)
- Connect COUT (C24) to DCDC GND directly on top layer
- Keep the following power loops short:
 - CIN → DCDC_IN → DCDC_LX → L1 → COUT → CIN (green)
 - COUT → DCDC_GND → DCDC_LX → L1 → COUT (red)
 - $\qquad \text{CIN} \rightarrow \text{DCDC_IN} \rightarrow \text{DCDC_GND} \rightarrow \text{CIN (purple)}$
- Use properly sized traces or shapes for power paths (DCDC_IN, DCDC_GND, VDCDC, LX)
 - Keep FB/Feedback and SS/Soft-Start components (Rfbx, Cfb1, Css) away from switching / noisy node (DCDC_LX), shielding with quiet nets (DCDC_GND in the image) is recommended (black)
 - Connect DCDC_GND pin (16) and KNX_B pins (4 and 12) to the exposed pad shape below the IC, as shown in Figure 11, to ensure ground consistency
 - Place several GND vias on STKNX package exposed pad (x9 in EVALKITSTKNX).

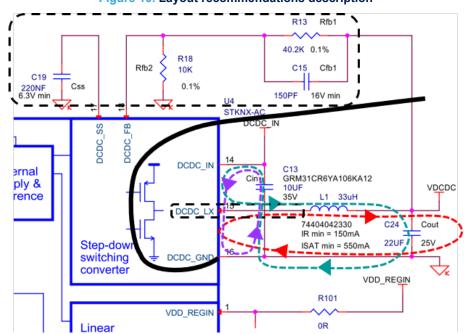


Figure 10. Layout recommendations description

AN5274 - Rev 3 page 10/121

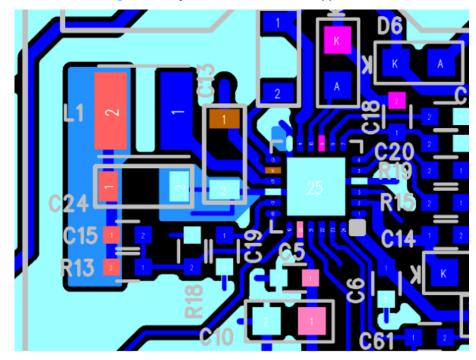


Figure 11. Layout recommendations application

RELATED LINKS

The source files of the PCB layout are available for download from the EVALKITSTKNX product page on the ST website

3.3 CPU section

The STM32F103RBT6 microcontroller has been selected as it is compatible with the free demo version of the Tapko KNX protocol stack "KAlstack". Along with the minimum peripheral components, the crystal (Y1), KNX programming LED, button (D9, S5) and optional AND gate (U12), it forms the complementary circuitry to the STKNX section to create the basic KNX transceiver function.

Optional components EEPROM memory and 32.768kHz crystal are present to extend the feature possibilities for a custom development.

Button S6 is used to reset the CPU after a firmware download.

— RELATED LINKS –

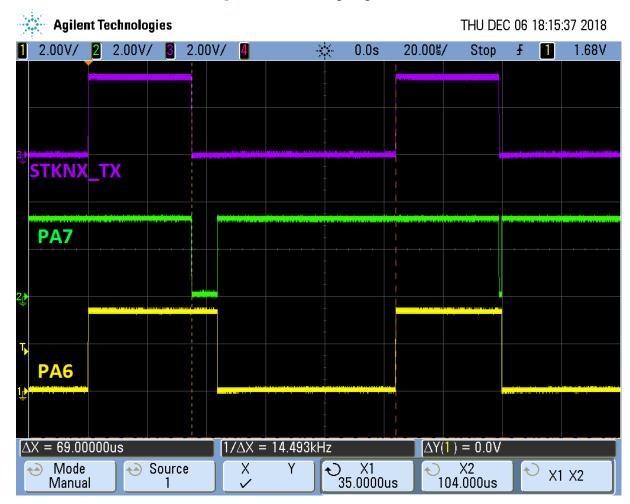
See the TAPKO Technologies GmbH website

3.3.1 KNX_TX signal generation

The KNX transmit signal KNX_TX can be generated in two different ways linked to the embedded firmware: with or without an AND gate.

3.3.1.1 KNX_TX generated from AND gate

The firmware STSW-KITSTKNX version 1.0.0 available at www.st.com requires the use of the AND gate U12 to generate the KNX transmit signal.


The two GPIOs, PA6 and PA7 are used and combined in the AND gate U12 to generate the waveform of the KNX digital signal to transmit a logic level "0". The GPIOs have been selected because they are multiplexed with the Timer TIM3 function of the STM32F103RBT6. The three channels CH1, CH2 and CH3 of the Timer TIM3 are necessary to manage internally the KNX transmit signal generation.

The following figure illustrates the generation of the KNX_TX signal.

AN5274 - Rev 3 page 11/121

Figure 12. Transmit signal generation

3.3.1.2 KNX_TX generated from one single GPIO (no AND gate)

STM32 MCU provides a feature called "one-pulse mode" (OPM) that can be used to generate the STKNX Tx signal without need for the AND gate U12.

The one-pulse mode (OPM) can be used together with the timer channels configured in output mode. It allows the timer to generate a pulse of a programmable width after a programmable delay on the timer channels configured in PWM1 or PWM2 output compare modes.

AN5274 - Rev 3 page 12/121

Figure 13. One pulse mode

Note:

Warning: In case the OPM is used to generate the Tx signal on pin PA6, don't forget to set PA7 to 1 if the AND gate is still present (case of EVALKITSTKNX)

RELTABLE: FInd more information on one-pulse-mode in Application note AN4776: "General-purpose timer cookbook"

3.3.2 Crystals oscillators

The load capacitor values of the 16 MHz and 32.768 kHz CPU oscillators have been adjusted on the EVALKITSTKNX PCB by measuring the oscillators' frequency drift across the -40°C/+85°C temperature range, and centering the frequency to the nominal value for T = 25°C.

Figure 14. 16MHz oscillator response and Figure 15. 32.768kHz oscillator response below display the frequency drift of the 16 MHz and 32.768 kHz oscillators, respectively, with the following load capacitors values:

- C31 = C32 = 15 pF
- C37 = C38 = 8.2 pF

AN5274 - Rev 3 page 13/121

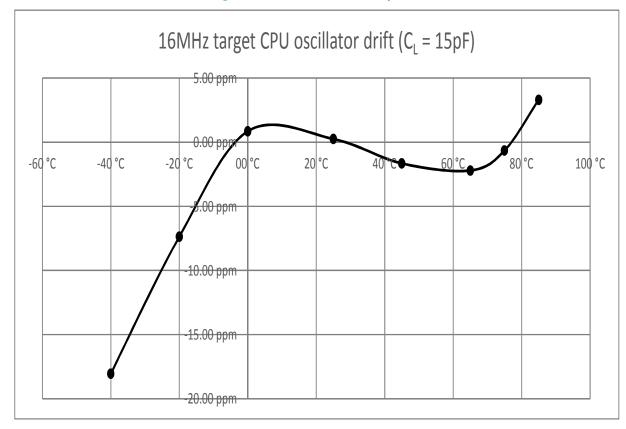
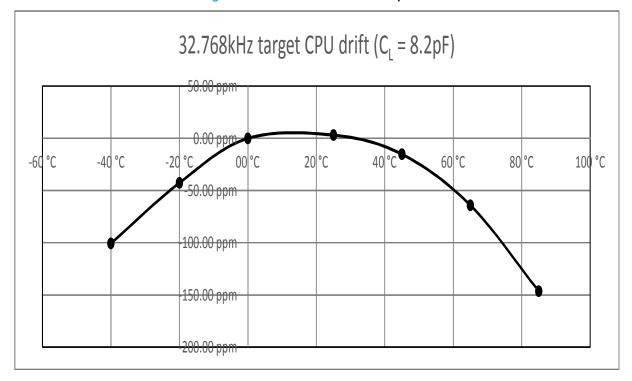



Figure 14. 16MHz oscillator response

AN5274 - Rev 3 page 14/121

3.3.2.1 Application and expansion section

On the EVALKITSTKNX, buttons S1 to S4 and LEDs D1 to D4 are connected to CPU GPIOs to offer the user the possibility to emulate basic sensors and actuators, or some other purpose. The LEDs can be disabled by removing the jumper M29, and the associated GPIOs become free.

The extension connectors J21 to J26 are compatible with the ArduinoTM and ST morpho standard. They allow the user to connect an existing or custom daughterboard for specific application development, as illustrated in Figure 16. X-NUCLEO-LEDA1 board plugged on EVALKITSTKNX below.

Indeed, one application example has been internally developed by STMicroelectronics with the ST X-NUCLEO-LEDA1 daughterboard in order to realize a KNX LED dimming KNX actuator. See Section 3.5.4.4 Dimming mode (application example) for more information.

Note that some 0 Ω resistors are present to avoid conflict between KNX signals and Arduino/Morpho reserved signals.

Figure 16. X-NUCLEO-LEDA1 board plugged on EVALKITSTKNX

3.4 Isolation section

Optional optocouplers U2, U3, U5 and U8 are present on the kit to ensure a galvanic isolation between the STKNX section and the rest of the system, which is necessary in the development of a Remote Powered Device (RPD).

Two optocouplers are also permanently placed between the STLINK CPU and the target microcontroller USART in order to isolate the user PC if the USART only(b) is used. They follow the same rules as described below for the STKNX isolators. Also, jumpers M33 and M35 to M40 are removed to guarantee the PC isolation.

Note: Be careful, the PC cannot be isolated during debug

3.4.1 STKNX optocouplers enabling

Note that the optocouplers in the STKNX section are originally disconnected, unpowered and shorted with golden jumpers. To activate them, it is necessary to:

- · remove the x9 golden jumpers
- solder the power resistors R1 and R5
- solder the serial resistors R3, R6, R8, R9, R14, R16, R20, R21.

It is then not possible to use the STKNX voltage regulators to supply the system. The recommended setting for STKNX regulators is:

- DC-DC converter disabled: M8 = J8:3-4
- Linear regulator voltage = 3.3 V: M9 = J9:1-2 (to supply STKNX internal digital I/Os and optocouplers)

AN5274 - Rev 3 page 15/121

Linear regulator input = VDDHV: M7 = J7:1-2.

3.4.2 STKNX optocoupler connections

The Avago optocouplers ACPL-W61L-000E have been selected for their low forward LED current. We notice they are working in negative logic: that means, when the input diode is activated with a direct current I_F , the optocoupler output voltage Vo is set Low.

For this reason, the AND gate (U12) output signal KNX_TX is connected to the cathode of the optocoupler LED in order to realize a non-inverter function with the STKNX_TX input signal of the STKNX circuit.

The signals STKNX RX, STKNX OK and VCC OK driven by STKNX are managed differently:

- A logic inverter is used to drive the LED because direct LED driving would require excessive current to the STKNX digital outputs
- For the STKNX_RX signal, the inverter is connected to the anode of the LED in order to restore the correct polarity signal at CPU input (KNX RX)
- For the VCC_OK and KNX_OK signals, the inverter is connected to the cathode of the LED in order to guarantee consistent signal status when the bus in not powered
 - When there is no power on KNX bus, the two signals VCC_OK and KNX_OK must be set low at CPU input. In this situation, since the optocoupler LED is off (V_ISO_KNX = 0, STKNX section supply missing), the optocouler output is high. Thus, an additional inverter needs to be inserted at optocoupler output, to restore correct polarity at CPU input
 - Due to this second inverter inserted in VCC_OK and KNX_OK chains, it is necessary to control the
 optocoupler diode from its cathode to ensure a non-inverting function from STKNX outputs to CPU
 inputs.

3.4.3 Optocoupler LED current

An external resistor Rs is placed serially with the optocoupler LED, computed to a maximum value in order to limit the power consumption.

For calculations, we have to consider the worst cases about the available voltages to supply the LED.

- The minimum power supply voltage which can be applied is V_ISO_KNX = 3V, i.e. VCCCORE_{min} value extracted from STKNX datasheet. (the accuracy of U15 supplying V_ISO_KIT is tighter)
- The maximum voltage loss on the logic level applied: the worst case is VOH = 2.48 V (for I_{OH} = 4 mA) in AND gate U12 datasheet, meaning a voltage loss U_L = 0.52 V (the inverters U1-like have better performances).

The value of the LED serial resistor Rs can be calculated by:

$$R_{S} = \frac{VCCORE_{min} - U_{L} - V_{Fmax}}{I_{Fmin}} \tag{1}$$

where V_F is the forward voltage and I_F the forward current of the optocoupler LED.

To determine V_{Fmax} and I_{Fmin} , a simulation has been carried on with the optocoupler model since those two parameters are linked together: indeed, when V_F is maximum, I_F is not minimum, so the parameters given in the datasheet do not allow determining the optimum value for R_S .

AN5274 - Rev 3 page 16/121

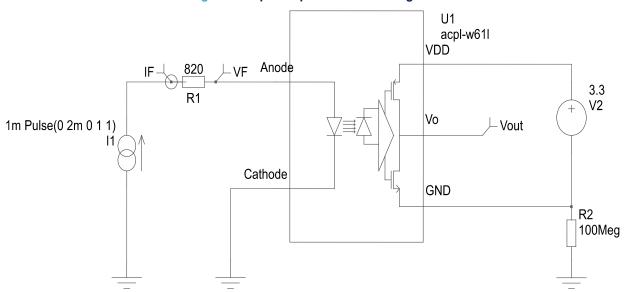


Figure 17. Optocoupler simulation diagram

The simulation has been executed from -40°C to +85°C (step 12.5°C). The result in Figure 18. Simulation results: -40°C to +85°C below shows that the maximum I_F current needed to activate the optocoupler output occurs at T = 35°C.

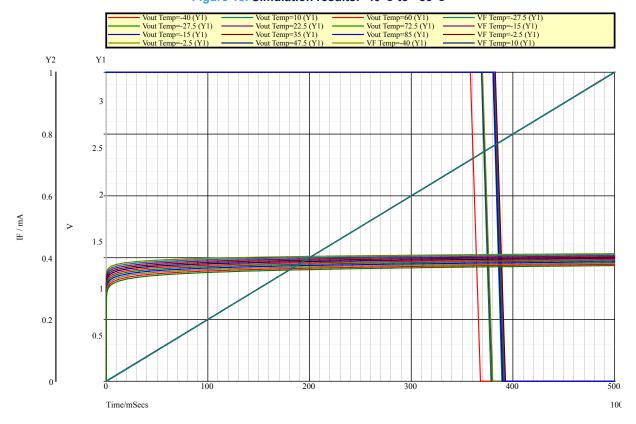
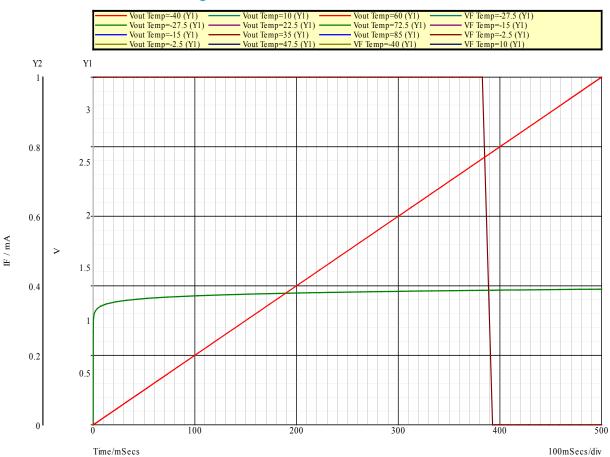


Figure 18. Simulation results: -40°C to +85°C

In Figure 19. Simulation results for T = 35°C below (simulation @ T = 35°C extracted), we can read that:


- I_F min = 0.78 mA
- V_F min = 1.28 V

AN5274 - Rev 3 page 17/121

According to Eq. (1), we calculate R_S = 1.53 k Ω . So, in EVALKITSTKNX, the serial resistor has been fixed to 1.2 k Ω (taking into account the resistor's tolerance).

Figure 19. Simulation results for T = 35°C

Once R_S is fixed to 1.2 k Ω , the minimum voltage to be applied across the resistor and the optocoupler input has been measured on one board over the full temperature range (diode controlled from anode). The results in Figure 20. Optocoupler threshold current show that the maximum necessary voltage is < 2.18 V, which is compatible with the minimum available voltage applied: VCCCORE_{min} - U_L = 3 V - 0.52 V = 2.48 V (refer to Eq. (1)).

AN5274 - Rev 3 page 18/121

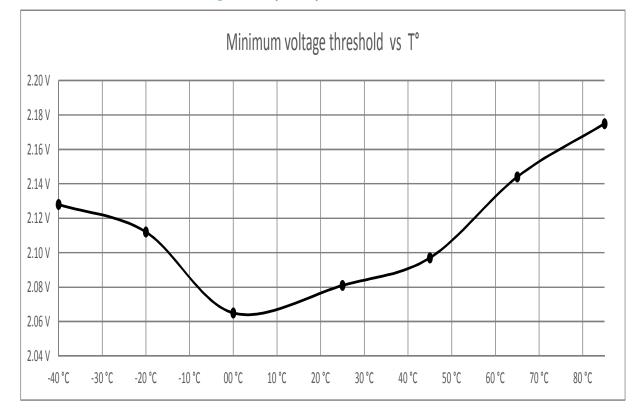
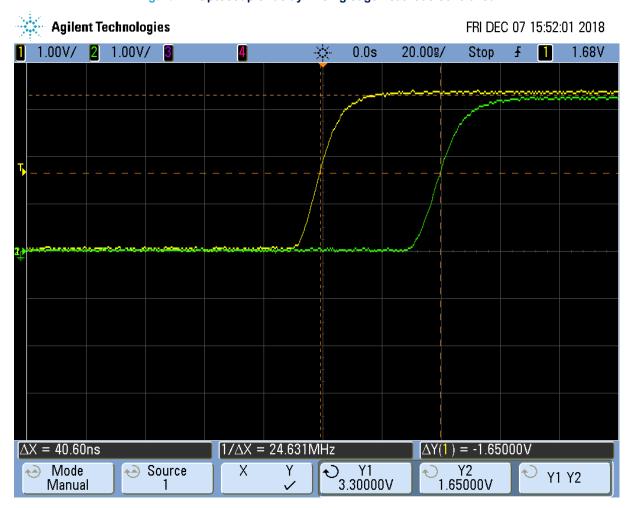


Figure 20. Optocoupler threshold current

3.4.4 Optocouplers propagation delay

The KNX System Conformance Testing specification chapter 8/2/2 allows a maximum value (1 µs worst case) for the propagation delay of the transmitted and received signals through the KNX transceiver (i.e. STKNX).


Since this delay measurement is done between the microcontroller I/Os and the KNX bus, the propagation delay of the optocoupler is included and remains negligible compared to the 1 µs maximum value specified.

As shown in the figures below from Figure 21. Optocoupler delay - rising edge - cathode controlled to Figure 24. Optocoupler delay - falling edge - anode controlled, the maximum propagation delay through the optocouplers 63 ns, with R_S = 1.2 k Ω meets the requirement.

AN5274 - Rev 3 page 19/121

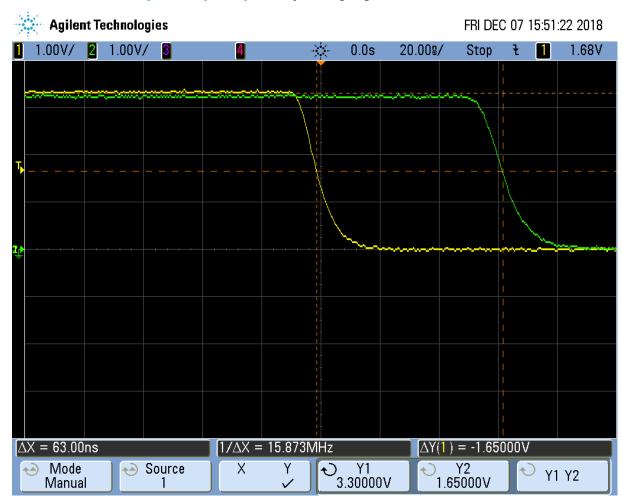


Figure 21. Optocoupler delay - rising edge - cathode controlled

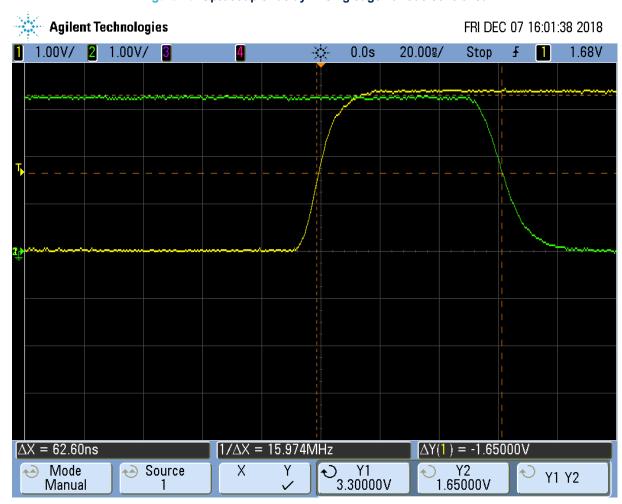

AN5274 - Rev 3 page 20/121

Figure 22. Optocoupler delay - falling edge - cathode controlled

AN5274 - Rev 3 page 21/121

Figure 23. Optocoupler delay - rising edge - anode controlled

AN5274 - Rev 3 page 22/121

Agilent Technologies FRI DEC 07 16:02:34 2018 1.00V/ 1.00V/ 0.0s 20.00%/ Stop ł 1.68V 1 $\Delta Y(1) = -1.65000V$ $\Delta X = 42.80$ ns $1/\Delta X = 23.364MHz$) Y1 3.30000V Mode Χ 🔂 Source Y1 Y2 1.65000V Manual

Figure 24. Optocoupler delay - falling edge - anode controlled

Measurements have been performed in the following sections to verify that the EVALKITSTKNX remains compatible with chapter 8/2/2 test specifications when optocouplers are enabled:

- Section 4.13.2.1 Signals waveforms for fan-in 10mA kit not isolated,
- Section 4.13.2.4 Signals waveforms for fan-in 30mA kit isolated,
- Section 4.14.2.2 Signals waveforms for fan-in 10mA kit isolated,
- Section 4.14.2.4 Signals waveforms for fan-in 30 mA kit isolated

3.5 EVALKITSTKNX power supply configuration

The EVALKITSTKNX can be powered in several alternative ways. You can supply the kit exclusively via USB connector (for SW development), exclusively via KNX bus (to demonstrate all the STKNX power capabilities), or partially from the expansion board.

The modular design lets you perform all the necessary tests before building your own prototype.

The block diagram in Figure 25. EVALKITSTKNX block diagram with power supply routes shows the STKNX evaluation kit divided into five logical sections:

- 1. STKNX
- KNX CPU
- 3. Expansion connectors
- STLINK debug
- 5. Embedded regulators

These sections are able to transfer or receive (or both) power to and from the other sections.

AN5274 - Rev 3 page 23/121

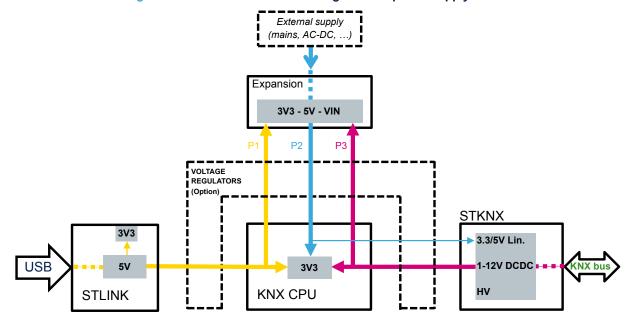


Figure 25. EVALKITSTKNX block diagram with power supply routes

Regarding the power supply paths:

- Path P1 supplies the kit and any daughterboards through the USB connector, which is good for firmware editing and debugging. No supply is required (except KNX bus if bus communication is expected).
- Path P2 allows supplying the whole kit from the expansion board
- Path P3 supplies the entire kit through the STKNX device.

Note: When the USB cable is removed, you have to disconnect jumper M37 in order to release the target CPU reset pin.

It is also possible to mix the three paths modes, thanks to two voltage regulators (5 V and 3.3 V) on the kit. However, when the CPU section is not supplied from STKNX, it is necessary to ensure that the CPU section is powered before the voltage on KNX bus is established, otherwise the two digital outputs KNX_OK and VCC_OK source abnormally the CPU section from digital connections.

You can configure and evaluate several power supply configurations through the jumpers on the kit.

Note: The EVALKITSTKNX must be powered off before any modification of the jumper positions.

The jumpers also offer an easy way to measure the power consumption of each kit section by connecting an ampere meter at the jumper position.

AN5274 - Rev 3 page 24/121

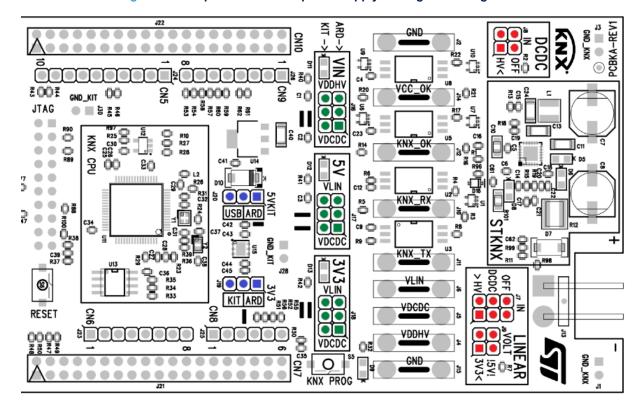
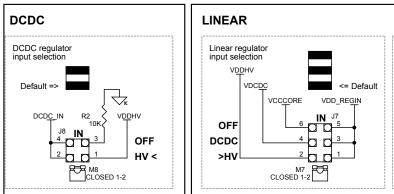



Figure 26. Jumper locations for power supply routing and configuration

3.5.1 Jumpers in STKNX section

Note: The paired jumpers are named Mxx for the removable ones and Jxx for the soldered connectors.

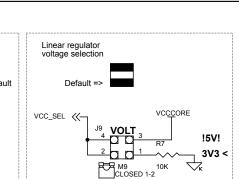


Figure 27. Jumpers in STKNX section

J8 lets you control the STKNX DC-DC switching converter (VDCDC):

- M8 pos 1-2: DC-DC enabled (default setting)
- M8 pos 3-4: DC-DC disabled

Note:

DC-DC voltage can be configured through the external resistor divider on the DCDC_FB pin of the STKNX. See the STKNX datasheet for more information.

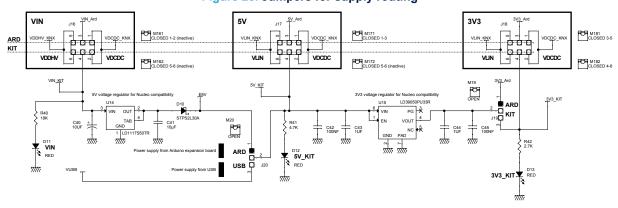
J7 lets you control the STKNX linear voltage regulator (VCCCORE):

- M7 pos 1-2: regulator fed by VDDHV (default setting)
- M7 pos 3-4: regulator fed by VDCDC

AN5274 - Rev 3 page 25/121

 M7 pos 5-6: regulator disabled: in this case, VCCCORE must be supplied externally and always AFTER VDDHV. So, VCCCORE should be supplied by some power supply derived from VDDHV or conditioned to VDDHV presence.

J9 allows to configure the voltage output of STKNX linear regulator (VCCCORE):


- M9 pos 1-2: VCCCORE = 3.3 V (default setting)
- M9 pos 3-4: VCCCORE = 5 V

Note:

Be careful with 5 V output mode as it may damage the kit if 3.3 V components, like STM32, should mistakenly receive 5 V supply.

3.5.2 Jumpers for power supply routing

Figure 28. Jumpers for supply routing

Jumpers J16, J17 and J18 allow connection between power supply sources and loads.

Figure 29. Power supply routing with J16, J17 and J18

In the example below, J17 allows the following:

- Use STKNX DC-DC to supply the kit (pos. 2-4) and/or the Arduino daughterboard (pos. 1-3)
 - Do not use STKNX DC-DC (pos. 1-2)
- Use STKNX linear regulator to supply the kit (pos. 4-6) and/or the Arduino daughterboard (pos. 3-5), or vice versa supply STKNX VCCCORE from the kit or Arduino
 - Do not use STKNX linear regulator (pos. 5-6)
- Supply kit from Arduino or vice versa (pos. 3-4). The same principle applies to J16 and J18.

AN5274 - Rev 3 page 26/121

3.5.3 Jumpers for kit regulator routing

When it is not possible to use the STKNX DC-DC or linear regulator, you can use regulators U14 (5 V) and U15 (3.3 V) as an alternative. Jumpers J19 and J20 allow routing U14/5 V and/or U15/3.3 V to the Arduino board, the kit, or to STKNX VCCCORE.

J20 is also used to supply the kit via USB source.

- RELATED LINKS

3.6.1 Kit power supply from USB connector on page 30

3.5.4 Power supply configuration examples

3.5.4.1 STKNX mode DC-DC 5 V (default)

Figure 30. STKNX mode DC-DC 5 V

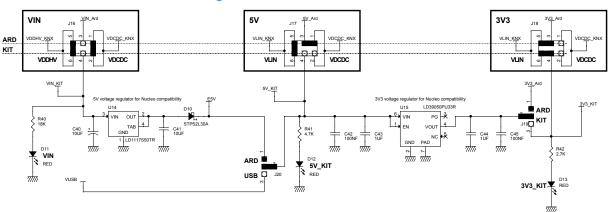
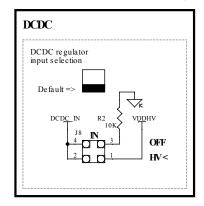
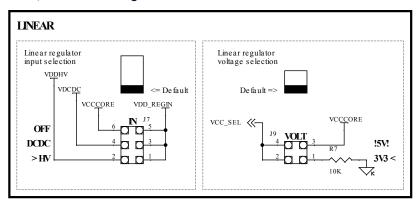




Figure 31. J7, J8 and J9 config for DC-DC 5 V mode

The default kit configuration is shown above:

- The STKNX linear regulator supplies the CPU section
- The STKNX DC-DC converter is available for the Arduino daughterboard
- The kit regulators are not used
- On the STKNX side, the DC-DC converter (5 V) and linear regulator are active
- Jumper M37 must be removed in order to release the target CPU reset pin
- Both jumpers M32 and M43 are open and M39 is connected.

AN5274 - Rev 3 page 27/121

3.5.4.2 STKNX mode DC-DC 3V3

Figure 32. STKNX mode DC-DC 3V3

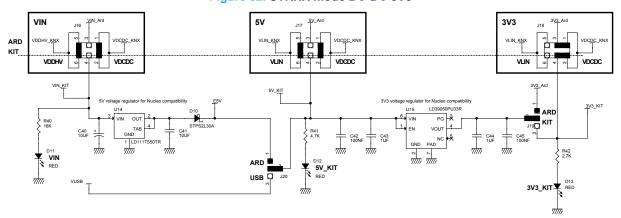
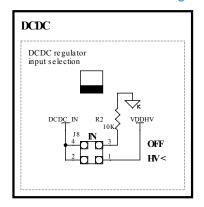
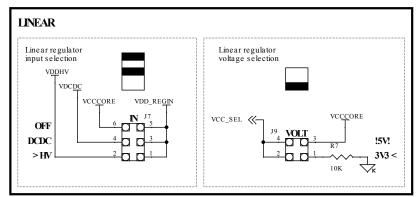




Figure 33. J7, J8 and J9 config for DC-DC 3V3 mode

This mode offers the best consumption on KNX bus (see Table 1. EVALKITSTKNX power consumption figures).

- The DC-DC converter is tuned to 3.3 V and supplies both CPU section and Arduino board
- The STKNX linear regulator is disabled
- Jumper M37 must be removed in order to release the target CPU reset pin
- Both jumpers M32 and M43 are open and M39 is connected.

3.5.4.3 FW mode

Figure 34. FW mode VIN 5V 3V3 ARD KIT VDCDC VLIN VDCDC VDCDC VDDHV VLIN ΔRD KIT R42 2.7K ARD 5V_KIT USB

AN5274 - Rev 3 page 28/121

This mode lets you use the kit on a desk with a PC. As communication on the KNX bus is not necessary, STKNX section is not powered and a laboratory supply is not needed.

This mode is suitable for firmware editing and debugging:

- The +5 V generated from USB connector is available as VUSB and sent to Arduino board
- U15 allows generating 3.3 V voltage (from VUSB) for the kit and the Arduino board
- In case the KNX bus voltage is applied, the USB power must be already present
- The total power consumption sunk from the PC on USB_VCC should not exceed 300 mA. Please note that the consumption of the STLINK/V2-1 section is 50 mA.
- Jumper M37 must be set in order to control the target CPU reset pin
- Both jumpers M32 and M43 are open and M39 is connected.

3.5.4.4 Dimming mode (application example)

Figure 35. Dimming demonstration mode

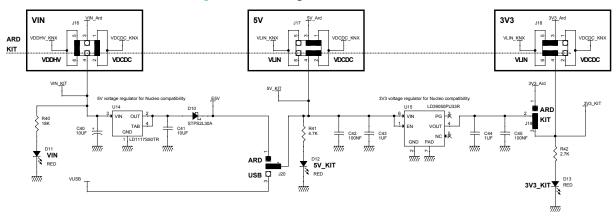
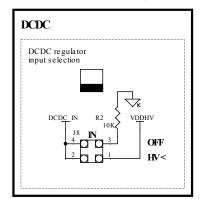
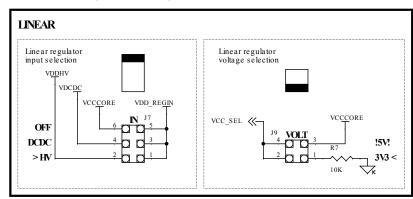




Figure 36. J7, J8 and J9 config for dimming demonstration mode

In this mode, an ST X-NUCLEO-LEDA1 daughterboard is plugged on the EVALKITSTKNX (see Figure 16. X-NUCLEO-LEDA1 board plugged on EVALKITSTKNX) and the STKNX supplies the entire kit (apart from ST-LINK) from the KNX bus:

- The STKNX DC-DC output is set to 5 V and supplies the dimming board and kit regulator U15.
- This 3.3 V regulator supplies the kit, the Arduino board, and the STKNX VCCCORE. This offers better current consumption than using the STKNX linear regulator fed by VDDHV.
- On the STKNX side, the DC-DC converter must be active and linear regulator disabled.
- Jumper M37 must be removed in order to release the target CPU reset pin.

AN5274 - Rev 3 page 29/121

3.6 Debug and control section

The EVALKITSTKNX embeds the STLINK/V2-1 programming and debugging tool, and is very similar to the STM32 Nucleo-64 board. It also integrates the following features:

- USB software re-enumeration
- · Virtual COM port interface on USB
- Mass storage interface on USB
- USB power management request for more than 100 mA power on USB.

All these features are accessible from the USB connector J31 to which the user PC has to be connected. For a proper use, please check that both jumpers M32 and M43 are open (highlighted in The figure below).

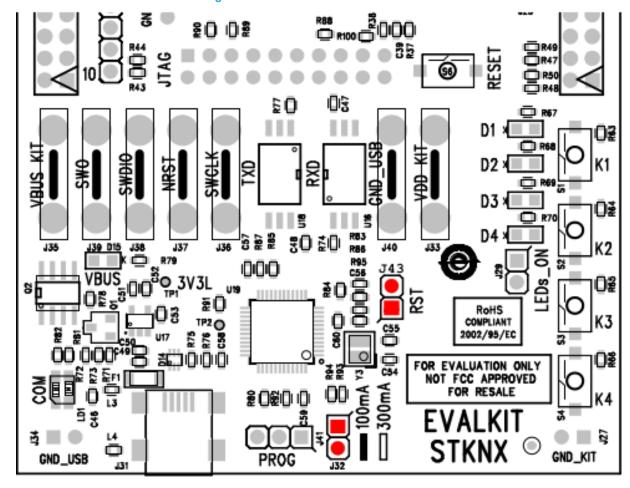


Figure 37. EVALKITSTKNX M32 and M43

- RELATED LINKS

The relevant information can be found in User manual UM1724 on the ST website

3.6.1 Kit power supply from USB connector

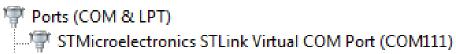
After a successful enumeration between the STLINK CPU U19 and the PC connected to the USB connector J31, the transistor Q2 is closed and VBUS (USB_VCC) voltage is available on VBUS_SWITCHED (D15 lights on). Assuming that the golden jumper M35 is closed, the voltage named VUSB is then available at J20.3 and offers the possibility to supply the whole kit from the PC, as described in Section 3.5.4.3 FW mode.

AN5274 - Rev 3 page 30/121

3.6.2 Debug/programming interface

Two hardware debug interfaces are available on EVALKISTKNX:

- The STLINK/V2-1 programming and debugging environment is available from the USB J31 connector and requires only a type A to mini-B USB cable to connect to the external PC. The golden jumpers M33 and M35 to M40 have to be inserted.
- The HE10 20-pin connector J42 is also provided (on the bottom side of the kit) to use any alternative debug environment through serial wire debug (SWD) and JTAG interfaces. An external probe has to be used in this case, and the golden jumpers M33 and M35 to M40 have to be removed.

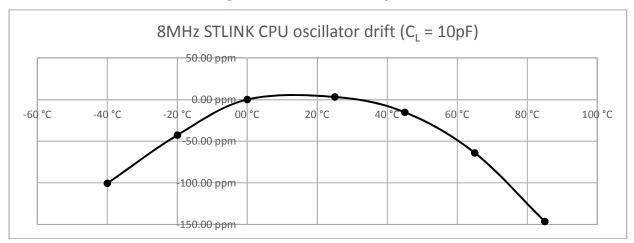

Note: Caution: During the debug, it is not possible to isolate the PC from the kit.

3.6.3 Virtual COM port

The USART3 interface (PC10, PC11) of the target microcontroller U11 is available from the PC as an isolated virtual COM Port thanks to STLINK/V2-1, as illustrated in the figure below. To ensure the isolation between the PC and the kit, the jumpers M33 and M35 to M40 have to be removed. Debug is not possible in isolated mode.

Ensure that the four resistors R47 to R50 are mounted as they were originally on the kit, to make the link between the target STM32 and the STLINK MCU.

Figure 38. Virtual COM port


3.6.4 STLINK CPU crystal oscillator

The load capacitors values of the 8MHz oscillators have been adjusted through measurement of the oscillators' frequency drift across the -40° C/+85°C temperature range, and centering the frequency to the nominal value for T = 25°C.

The following figure shows the frequency drift of the 8 MHz with the following load capacitors values:

• C54 = C55 = 10 pF

Figure 39. 8MHz oscillator response

AN5274 - Rev 3 page 31/121

4 KNX physical layer performance vs. 8/2/2 tests

This section reports the performances results of the EVALKITSTKNX submitted to the tests described in the KNX System Conformance Testing document, Section 8/2/2 (Physical Layer) Version 01.04.02 AS.

As the EVALKITSTKNX is configurable, the tests are applied to several configurations of the kit, in order to cover a large portion of the use cases of STKNX. Several configurations of fan-in, voltage regulators outputs and loads, isolation, are tested:

- Fan-in: 10 mA and 30 mA
- DC-DC converter output voltage: 1 V, 3.3 V, 5 V, 12 V
- Linear regulator output voltage: 3.3 V, 5 V
- DC-DC converter and linear regulator loads: typical kit configuration, and maximum output current (determined either by the fan-in or the regulator capability)
- · Optocouplers for isolation.

The tests have been executed on the hardware release V141 of the EVALKITSTKNX.

For each test specified in the section 8/2/2, a table reports the results of every configurations of the kit. The waveforms of the signals are also reported for the most significant tests of the table.

For detailed description of the tests, of their preparation and of their requirements, please refer to the KNX System Conformance Testing document, Section 8/2/2 of KNX standard.

4.1 General test setup

The following instruments are used for the performance tests:

- PSU: Agilent DC power supply E3631A
- DSO: Agilent oscilloscope DSO 6054A
- CP: Agilent current probe 1147B
 - a x10 turns loop is used to improve the current probe sensitivity, so a ÷ 10 divider factor must be applied to the measurements results
- AWG: Agilent Arbitrary Waveform generator 33250A.

The following EVALKITSTKNX has been used as BDUT for the tests related to fan-in = 10 mA:

- EVALKITSTKNX "KA030-141" with recommended BOM modifications for 10 mA fan-in:
 - Cgate = 47 μF Murata GRT31CR61A476KE13L
 - Cvddhv = 100 μF Panasonic EEEFK1V101XP

and the following EVALKITSTKNX for the tests related to fan-in = 30 mA:

- EVALKITSTKNX "KA084-141" with BOM modification:
 - Cgate = 10 μF Murata GRM31CR71A106KA01

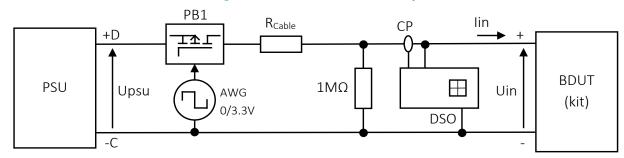
When testing linear regulator and DC-DC converter output voltages at values different from those of the default configuration of the kit, the BOM options reported in EVALKITSTKNX schematic, at STKNX page have been applied.

Unless otherwise specified, the firmware used (for most tests) is EvalKitSTKNX_LedLevel_V1.0.bin, a demonstration firmware embedding a KNX protocol stack.

RELATED LINKS -

Visit the EVALKISTKNX product page for the documents and the firmware used to execute the tests See UM2409 Quick start guide STKNX evaluation board (EVALKITSTKNX)

4.2 Power Conversion (Switch On Fast) (8/2/2 - test 4.2)


This test simulates the connection of a single bus device to an operating bus segment.

AN5274 - Rev 3 page 32/121

4.2.1 Test setup

Figure 40. Switch On Fast test setup

- Oscilloscope channels:
 - CH1: BP1 command
 - CH2: Uin
 - CH3: BDUT regulator voltage output
 - CH4: lin
- Function generator period: 30 s
- Excepted when the default configuration of the kit is tested, every "isolation" jumper (between STKNX and CPU sections) is removed and the evaluated regulator/converter is loaded at its maximum load
- Embedded FW: EvalKitSTKNX_LedLevel_V1.0.bin (see Section 4.1 General test setup).

4.2.1.1 PB1 description

As suggested in KNX standard Section 8/2/2, the push button is replaced by the MOSFET based circuit, described in Figure 41, which allows making repetitive tests and prevents the bounces typical of mechanical switches.

IN (from PSU) OUT (to BDUT) $R4=2\Omega/6W$ $R3=10k\Omega$ $R2=20k\Omega$ $R1=10k\Omega$ BC848B O/3.3V

Figure 41. MOSFET circuit for power supply connection

- Si2319CDS: MOSFET 40 V $R_{DS(on)}$ < 100 m Ω
- When the AWG applies a 3.3 V voltage, the MOSFET transistor is conducting thanks to the voltage Upsu/3 applied to $V_{\rm GS}$
- R3 ensures V_{GS}=0 when the function generator output voltage = 0 V
- The low value resistor R4 allows limiting the inrush current at initial MSOFET closure, especially during the test "Switch On/Off Slow" where huge capacitors are present.

AN5274 - Rev 3 page 33/121

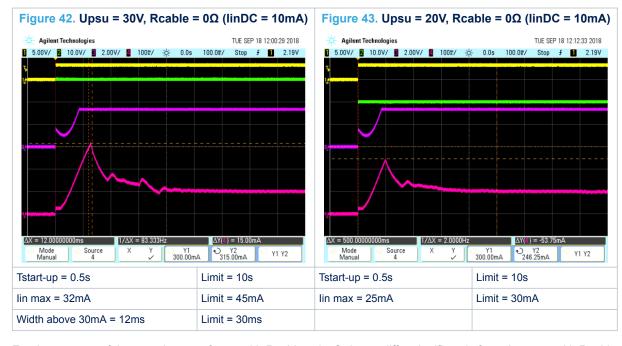
4.2.2 Tests results - fan-in = 10 mA

Table 2. Switch On Fast tests results - fan-in = 10 mA

EVALKITSTKNX configuration				Test conditions		Test results		
Linear Reg		DC-DC converter				Tstartup lin max (Limit		
Voltage	Load	Voltage	Load	Upsu- Rcable	lin DC	(Limit = 10s)	= 30mA) ⁽¹⁾	
Any	Any	Any	Any	30V - 0Ω	Any	-	159mA / 3µs	
Any	Any	Any	Any	30V - 35Ω	Any	-	123mA / 3.2µs	
Any	Any	Any	Any	20V - 0Ω	Any	-	64mA / 2.9µs	
Any	Any	Any	Any	20V - 35Ω	Any	-	50mA / 2.9µs	
3.3V	347Ω / 9.6mA	Disabled	Disabled	30V - 0Ω	10mA (Fan-in)	0.5s	32mA / 12ms	
3.3V	347Ω / 9.6mA	Disabled	Disabled	30V - 35Ω	10mA (Fan-in)	0.5s	32mA / 12ms	
3.3V	347Ω / 9.6mA	Disabled	Disabled	20V - 0Ω	10mA (Fan-in)	0.5s	25mA	
3.3V	347Ω / 9.6mA	Disabled	Disabled	20V - 35Ω	10mA (Fan-in)	0.5s	24mA	
5V	512Ω / 9.8mA	Disabled	Disabled	30V - 0Ω	10mA (Fan-in)	0.5s	26mA	
5V	512Ω / 9.8mA	Disabled	Disabled	30V - 35Ω	10mA (Fan-in)	0.5s	25mA	
5V	512Ω / 9.8mA	Disabled	Disabled	20V - 0Ω	10mA (Fan-in)	0.5s	18mA	
5V	512Ω / 9.8mA	Disabled	Disabled	20V - 35Ω	10mA (Fan-in)	0.5s	18mA	
Disabled	VDD_REGIN= VDDHV	1V	10Ω / 96mA	30V - 0Ω	6.2mA	0.5s	26mA	
Disabled	VDD_REGIN= VDDHV	1V	10Ω / 96mA	30V - 35Ω	6.2mA	0.5s	25mA	
Disabled	VDD_REGIN= VDDHV	1V	10Ω / 96mA	20V - 0Ω	10mA (Fan-in)	0.4s	18mA	
Disabled	VDD_REGIN= VDDHV	1V	10Ω / 96mA	20V - 35Ω	10mA (Fan-in)	0.4s	18mA	
Disabled	VCCORE= VDCDC	3.3V	Kit / 12mA	30V - 0Ω	2.7mA	1s	26mA	
Disabled	VCCORE= VDCDC	3.3V	Kit / 12mA	30V - 35Ω	2.7mA	1s	25mA	
Disabled	VCCORE= VDCDC	3.3V	Kit / 12mA	20V - 0Ω	4mA	0.6s	18mA	
Disabled	VCCORE= VDCDC	3.3V	Kit / 12mA	20V - 35Ω	4mA	0.6s	18mA	
Disabled	VCCORE= VDCDC	3.3V	102Ω / 33mA	30V - 0Ω	6.3mA	0.5s	26mA	
Disabled	VCCORE= VDCDC	3.3V	102Ω / 33mA	30V - 35Ω	6.3mA	0.5s	25mA	
Disabled	VCCORE= VDCDC	3.3V	102Ω / 33mA	20V - 0Ω	10mA (Fan-in)	0.4s	18mA	
Disabled	VCCORE= VDCDC	3.3V	102Ω / 33mA	20V - 35Ω	10mA (Fan-in)	0.4s	17mA	
Disabled	VCCORE= VDCDC	5V	102Ω / 33mA	30V - 0Ω	6.4mA	0.5s	26mA	
Disabled	VCCORE= VDCDC	5V	102Ω / 33mA	30V - 35Ω	6.4mA	0.5s	25mA	
Disabled	VCCORE= VDCDC	5V	102Ω / 33mA	20V - 0Ω	10mA (Fan-in)	0.4s	17mA	
Disabled	VCCORE= VDCDC	5V	102Ω / 33mA	20V - 35Ω	10mA (Fan-in)	0.4s	17mA	

AN5274 - Rev 3 page 34/121

EVALKITSTKNX configuration				Test conditions		Test results		
Linear Reg		DC-DC converter		Upsu- Rcable	lin DC	Tstartup	lin max (Limit	
Voltage	Load	Voltage	Load	Opsu-Readle	IIII DC	(Limit = 10s)	= 30mA) ⁽¹⁾	
Enabled	VDD_REGIN= VDCDC	12V	1.35kΩ / 9mA	30V - 0Ω	5.8mA	0.5s	25mA	
Enabled	VDD_REGIN= VDCDC	12V	1.35kΩ / 9mA	30V - 35Ω	5.8mA	0.5s	25mA	
Enabled	VDD_REGIN= VDCDC	12V	1.35kΩ / 9mA	20V - 0Ω	10mA (Fan-in)	0.4s	18mA	
Enabled	VDD_REGIN= VDCDC	12V	1.35kΩ / 9mA	20V - 35Ω	10mA (Fan-in)	0.4s	17mA	
				Cumulative result	PASS			

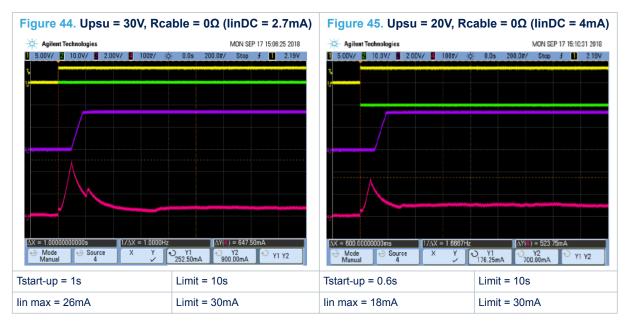

^{1.} Limits tolerate spikes of 45mA if width < 30ms and 500mA if width < 30µs.

4.2.2.1 Linear regulator 3.3 V waveforms (loaded to reach fan-in limit)

Note:

Note: The default configuration of the kit cannot be tested with fan-in 10 mA because the total consumption of the kit is 12 mA when the CPU section is supplied by the STKNX linear regulator.

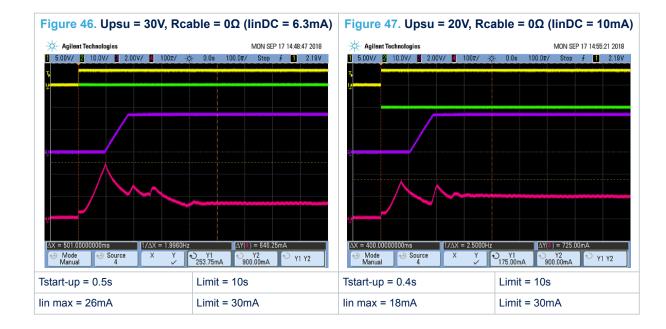
The linear regulator set to 3.3 V is supplied from VDDHV and loaded with 347 Ω /9.6 mA for a KNX bus consumption of 10 mA at 30 V. The DC-DC converter is disabled.


For the purpose of the test, the waveforms with Rcable = 35Ω do not differ significantly from the ones with Rcable 0 Ω , shown above. They are reported only once for the test case DC- DC 3.3 V 10 mA in Section 4.2.2.3 DC-DC converter 3.3V waveforms (loaded to reach fan-in limit).

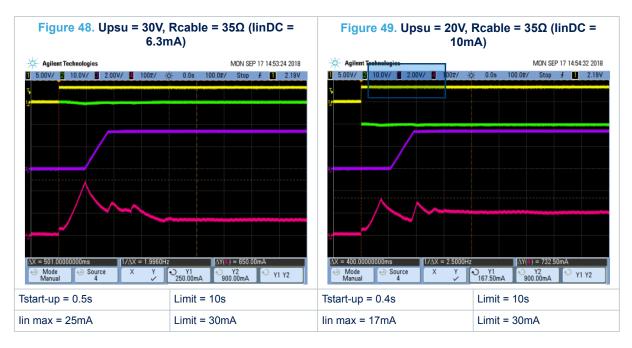
4.2.2.2 DC-DC converter 3.3V waveforms (loaded with kit)

The DC-DC converter set to VDCDC = 3.3 V supplies the kit (3V3_KIT) with a 12 mA current. The linear regulator is disabled and VCCCORE is supplied with VDCDC.

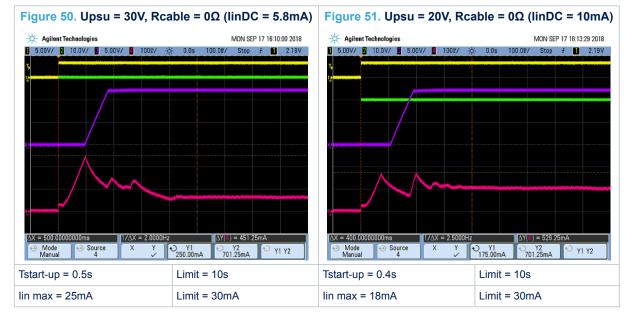
AN5274 - Rev 3 page 35/121



For the purpose of the test, the waveforms with Rcable = 35Ω do not differ significantly from the ones with Rcable 0 Ω , shown above. They are reported only once for the test case DC-DC 3.3 V 10 mA in Section 4.2.2.3 DC-DC converter 3.3V waveforms (loaded to reach fan-in limit).


4.2.2.3 DC-DC converter 3.3V waveforms (loaded to reach fan-in limit)

The DC-DC converter set to VDCDC = 3.3 V is loaded with 102 $\Omega/33$ mA for a KNX bus consumption of 10 mA at 20 V. The linear regulator is disabled and VCCCORE is supplied with VDCDC.


AN5274 - Rev 3 page 36/121

4.2.2.4 DC-DC converter 12 V waveforms (loaded to reach fan-in limit)

The DC-DC converter set to VDCDC = 12 V is loaded with 1.35 k Ω /9 mA for a KNX bus consumption of 10 mA at 20 V. The linear regulator is enabled, not loaded and supplied from VDCDC.

For the purpose of the test, the waveforms with Rcable = 35Ω do not differ significantly from the ones with Rcable 0 Ω , shown above. They are reported only once for the test case DC-DC 3.3 V 10 mA in Section 4.2.2.3 DC-DC converter 3.3V waveforms (loaded to reach fan-in limit).

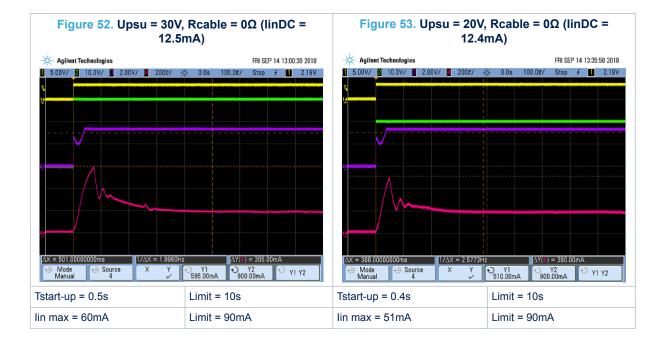
AN5274 - Rev 3 page 37/121

4.2.3 Tests results - fan-in = 30 mA

Table 3. Switch On Fast tests results - fan-in = 30 mA

	EVALKITSTKNX con	figuration		Test cond	ditions	Test	results
	Linear Reg	DC-DC	converter	Upsu- Rcable	lin DC	Tstartup	lin max / duration
Voltage	Load	Voltage	Load	opou mousio	55	(Limit = 10s)	(Limit = 90mA)
Any	Any	Any	Any	30V - 0Ω	Any	-	159mA / 3µs
Any	Any	Any	Any	30V - 35Ω	Any	-	122mA / 3.2µs
Any	Any	Any	Any	20V - 0Ω	Any	-	64mA / 2.9µs
Any	Any	Any	Any	20V - 35Ω	Any	-	50mA / 2.9µs
3.3V	Kit / 12mA	5V	NO	30V - 0Ω	13mA	0.5s	60mA
3.3V	Kit / 12mA	5V	NO	30V - 35Ω	13mA	0.5s	50mA
3.3V	Kit / 12mA	5V	NO	20V - 0Ω	13mA	0.4s	51mA
3.3V	Kit / 12mA	5V	NO	20V - 35Ω	13mA	0.4s	49mA
3.3V	20mA (max.)	Disabled	Disabled	30V - 0Ω	21mA	0.6s	61mA
3.3V	20mA (max.)	Disabled	Disabled	30V - 35Ω	21mA	0.6s	61mA
3.3V	20mA (max.)	Disabled	Disabled	20V - 0Ω	21mA	0.5s	52mA
3.3V	20mA (max.)	Disabled	Disabled	20V - 35Ω	21mA	0.5s	52mA
5V	20mA (max.)	Disabled	Disabled	30V - 0Ω	21mA	0.6s	61mA
5V	20mA (max.)	Disabled	Disabled	30V - 35Ω	21mA	0.6s	59mA
5V	20mA (max.)	Disabled	Disabled	20V - 0Ω	21mA	0.5s	48mA
5V	20mA (max.)	Disabled	Disabled	20V - 35Ω	21mA	0.5s	50mA
Disabled	VDD_REGIN= VDDHV	1V	7Ω / 150mA (max.)	30V - 0Ω	16mA	0.6s	49mA
Disabled	VDD_REGIN= VDDHV	1V	7Ω / 150mA (max.)	30V - 35Ω	16mA	0.6s	50mA
Disabled	VDD_REGIN= VDDHV	1V	7Ω / 150mA (max.)	20V - 0Ω	21mA	0.6s	37mA
Disabled	VDD_REGIN= VDDHV	1V	7Ω / 150mA (max.)	20V - 35Ω	21mA	0.6s	39mA
Disabled	VCCORE= VDCDC	3.3V	Kit / 12mA	30V - 0Ω	3mA	0.5s	51mA
Disabled	VCCORE= VDCDC	3.3V	Kit / 12mA	30V - 35Ω	3mA	0.5s	50mA
Disabled	VCCORE= VDCDC	3.3V	Kit / 12mA	20V - 0Ω	4.6mA	0.5s	37mA
Disabled	VCCORE= VDCDC	3.3V	Kit / 12mA	20V - 35Ω	4.6mA	0.5s	39mA
Disabled	VCCORE= VDCDC	3.3V	33Ω / 100mA	30V - 0Ω	19mA	0.6s	53mA
Disabled	VCCORE= VDCDC	3.3V	33Ω / 100mA	30V - 35Ω	19mA	0.6s	51mA
Disabled	VCCORE= VDCDC	3.3V	33Ω / 100mA	20V - 0Ω	30mA (Fan- in)	0.6s	39mA
Disabled	VCCORE= VDCDC	3.3V	33Ω /	20V - 35Ω	30mA (Fan- in)	0.6s	38mA

AN5274 - Rev 3 page 38/121



	EVALKITSTKNX con	figuration		Test cond	litions	Test	results
	Linear Reg	DC-DC	converter			Tstartup	lin max / duration
Voltage	Load	Voltage	Load	Upsu- Rcable	lin DC	(Limit = 10s)	(Limit = 90mA)
			100mA				
Disabled	VCCORE= VDCDC	5V	74kΩ / 69mA	30V - 0Ω	19mA	0.6s	52mA
Disabled	VCCORE= VDCDC	5V	74kΩ / 69mA	30V - 35Ω	19mA	0.6s	50mA
Disabled	VCCORE= VDCDC	5V	74kΩ / 69mA	20V - 0Ω	30mA (Fan- in)	0.6s	40mA
Disabled	VCCORE= VDCDC	5V	74kΩ / 69mA	20V - 35Ω	30mA (Fan- in)	0.6s	42mA
Enabled	VDD_REGIN= VDCDC	12V	404kΩ / 31mA	30V - 0Ω	19mA	0.6s	52mA
Enabled	VDD_REGIN= VDCDC	12V	404kΩ / 31mA	30V - 35Ω	19mA	0.6s	50mA
Enabled	VDD_REGIN= VDCDC	12V	404kΩ / 31mA	20V - 0Ω	30mA (Fan- in)	0.6s	37mA
Enabled	VDD_REGIN= VDCDC	12V	404kΩ / 31mA	20V - 35Ω	30mA (Fan- in)	0.6s	39mA
				Cumulative result	PASS		

^{1.} Limits tolerate spikes of 135mA if width < 30ms and 1.5A if width < 30μs.

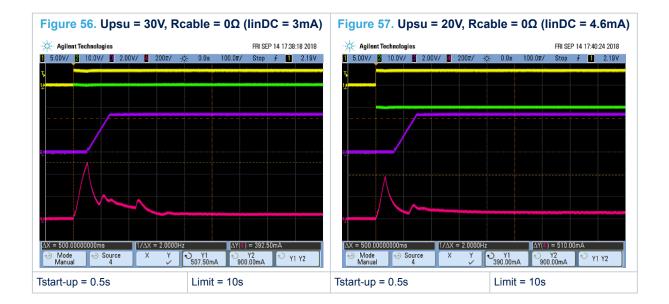
4.2.3.1 Default kit configuration waveforms

This configuration is described in Section 3.5.4.1 STKNX mode DC-DC 5 V (default). The linear regulator 3.3 V is supplying the kit (3V3_KIT) and the 5 V DC-DC converter is not loaded.

AN5274 - Rev 3 page 39/121

For the purpose of the test, the waveforms with Rcable = 35Ω do not differ significantly from the ones with Rcable = 0Ω shown above. They are reported only once for the test case DC-DC 3.3V 30mA in Section 4.2.3.4 DC-DC converter 3.3 V waveforms (loaded to reach fan-in limit).

4.2.3.2 Linear regulator 3.3 V waveforms (load = 20 mA)


The linear regulator set to 3.3 V is loaded with 169 Ω and is supplying its maximum current 20 mA. The DC-DC converter is disabled.

For the purpose of the test, the waveforms with Rcable = 35Ω do not differ significantly from the ones with Rcable = 0Ω shown above. They are reported only once for the test case DC-DC 3.3 V 30 mA in Section 4.2.3.4 DC-DC converter 3.3 V waveforms (loaded to reach fan-in limit).

4.2.3.3 DC-DC converter 3.3 V waveforms (loaded with kit)

The DC-DC converter set to 3.3 V is supplying the kit (3V3_KIT) with a 12 mA current. The linear regulator is disabled and VCCCORE is supplied with VDCDC.

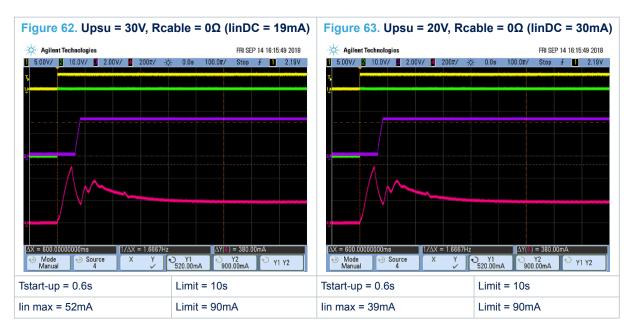
AN5274 - Rev 3 page 40/121

n max = 51mA	Limit = 90mA	lin max = 39mA	Limit = 90mA
--------------	--------------	----------------	--------------

For the purpose of the test, the waveforms with Rcable = 35Ω do not differ significantly from the ones with Rcable = 0Ω shown above. They are reported only once for the test case DC-DC 3.3 V 30 mA in Section 4.2.3.4 DC-DC converter 3.3 V waveforms (loaded to reach fan-in limit).

4.2.3.4 DC-DC converter 3.3 V waveforms (loaded to reach fan-in limit)

The DC-DC converter set to 3.3 V is loaded with 33 Ω / 100 mA for a KNX bus consumption of 30 mA at 20 V. The linear regulator is disabled and VCCCORE is supplied with VDCDC.



AN5274 - Rev 3 page 41/121

4.2.3.5 DC-DC converter 12 V waveforms (loaded to reach fan-in limit)

The DC-DC converter set to 12 V is loaded with 404 Ω / 31 mA for a KNX bus consumption of 30 mA at 20 V. The linear regulator is enabled, not loaded and supplied from VDCDC.


For the purpose of the test, the waveforms with Rcable = 35Ω do not differ significantly from the ones with Rcable = 0Ω shown above. They are reported only once for the test case DC-DC 3.3 V 30 mA in Section 4.2.3.4 DC-DC converter 3.3 V waveforms (loaded to reach fan-in limit).

4.3 Power Conversion (Switch On/Off Slow) (8/2/2 - test 4.3)

This test simulates the powering up of a fully equipped physical segment.

4.3.1 Test setup

Figure 64. Switch On/Off Slow test setup

- Oscilloscope channels:
 - CH1: BP1 command
 - CH2: Uin
 - CH4: lin
- PB1: see Section 4.2.1.1 PB1 description
- Function generator period: 40 s
- Excepted when the default configuration of the kit is tested, every "isolation" jumper (between KNX section and CPU section) is removed and the evaluated regulator/converter is loaded at its maximum load.

AN5274 - Rev 3 page 42/121

4.3.2 Tests results - fan-in = 10 mA

Test settings:

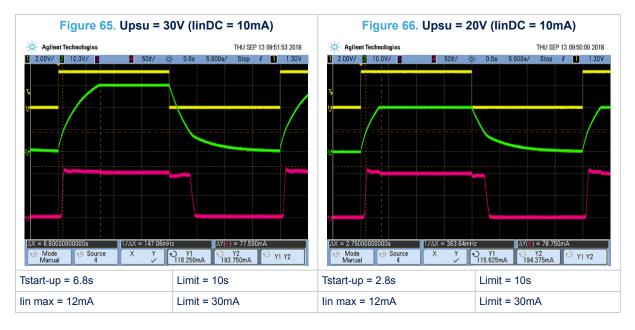
- R_K = 1 kΩ
- C_K = 4.7 mF
- I_{limit} = 50 mA
- Embedded FW: EvalKitSTKNX_LedLevel_V1.0.bin (see Section 4.1 General test setup).

Table 4. Switch On/Off Slow tests results - fan-in = 10 mA

	EVALKITSTKNX coi	nfiguratior	1	Test co	nditions	Tes	t results
	Linear Reg	DC-DC	converter	Down	lin DO	Tstartup	lin max.
Voltage	Load	Voltage	Load	Upsu	lin DC	(Limit = 10s)	(Limit = 30mA) ⁽¹⁾
3.3V	347Ω / 9.6mA	Disabled	Disabled	30V	10mA (Fan-in)	7s	12mA
3.3V	347Ω / 9.6mA	Disabled	Disabled	20V	10mA (Fan-in)	2.8s	22mA
5V	512Ω / 9.8mA	Disabled	Disabled	30V	10mA (Fan-in)	6.7s	12mA
5V	512Ω / 9.8mA	Disabled	Disabled	20V	10mA (Fan-in)	2.7s	12mA
Disabled	VDD_REGIN= VDDHV	1V	10Ω / 96mA	30V	OV 6.2mA 5.9s		16mA (hold-up = 22mA)
Disabled	VDD_REGIN= VDDHV	1V	10Ω / 96mA	20V	10mA (Fan-in)	10mA (Fan-in) 2.5s	
Disabled	VCCORE= VDCDC	3.3V	Kit / 12mA	30V	2.7mA	4.7s	9.4mA
Disabled	VCCORE= VDCDC	3.3V	Kit / 12mA	20V	4mA	5s	9.1mA
Disabled	VCCORE= VDCDC	3.3V	102Ω / 33mA	30V	6.3mA	6s	15mA (hold-up = 20mA)
Disabled	VCCORE= VDCDC	3.3V	102Ω / 33mA	20V	10mA (Fan-in)	2.4s	15mA (hold-up = 20mA)
Disabled	VCCORE= VDCDC	5V	220Ω / 23mA	30V	6.4mA	6s	16mA (hold-up = 21mA)
Disabled	VCCORE= VDCDC	5V	220Ω / 23mA	20V	10mA (Fan-in)	2.6s	16mA (hold-up = 21mA)
Enabled	VDD_REGIN= VDDHV	12V	1.35Ω / 9mA	30V	5.8mA	5.8s	12mA
Enabled	VDD_REGIN= VDDHV	12V	1.35Ω / 9mA	20V	10mA (Fan-in)	2.8s	12mA
				Cumulative result	PASS		

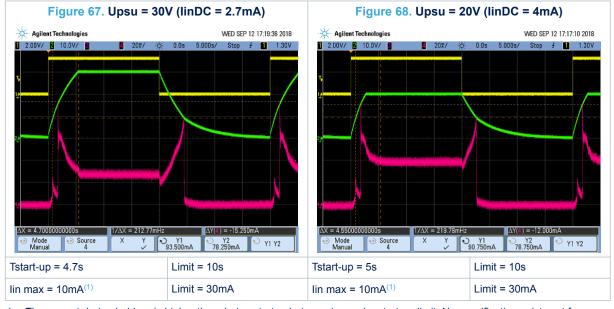
^{1.} When exceeding the max. current during start-up time, the max. current during hold-up time is reported but is not subject to any limit.

4.3.2.1 Linear regulator 3.3 V waveforms (loaded to reach fan-in limit)


Note:

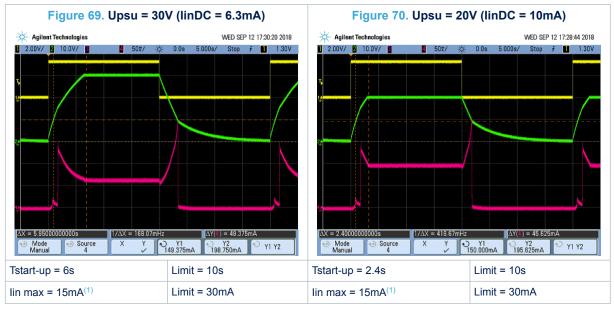
Note: The default configuration of the kit cannot be tested with fan-in 10 mA because the total consumption of the kit is 12 mA when the CPU section is supplied by the STKNX linear regulator.

The linear regulator set to 3.3 V is supplied from VDDHV and loaded with 347 Ω /9.6 mA for a KNX bus consumption of 10 mA at 30 V. The DC-DC converter is disabled.


AN5274 - Rev 3 page 43/121

4.3.2.2 DC-DC converter 3.3 V waveforms (loaded with kit)

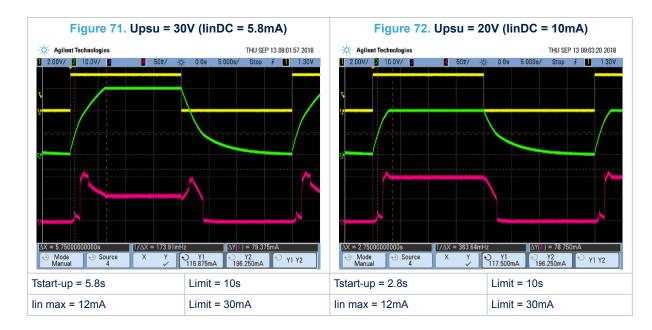
The DC-DC converter set to 3.3 V is supplying the kit (3V3_KIT) with a 12 mA current. The linear regulator is disabled and VCCORE is supplied with VDCDC.


The current during hold-up is higher than during startup but remains under start-up limit. No specification exists yet for hold-up current.

4.3.2.3 DC-DC converter 3.3 V waveforms (loaded to reach fan-in limit)

The DC-DC converter set to 3.3 V is loaded with 102 Ω /33 mA for a KNX bus consumption of 10 mA at 20 V. The linear regulator is disabled and VCCCORE is supplied with VDCDC.

AN5274 - Rev 3 page 44/121



^{1.} The current during hold-up is higher than during startup but remains under start-up limit. No specification exits yet for hold-up current.

4.3.2.4 DC-DC converter 12 V waveforms (loaded to reach fan-in limit)

The DC-DC converter set to 12 V is loaded with 1.35 k Ω /9 mA for a KNX bus consumption of 10 mA at 20 V. The linear regulator is enabled, not loaded and supplied from VDCDC.

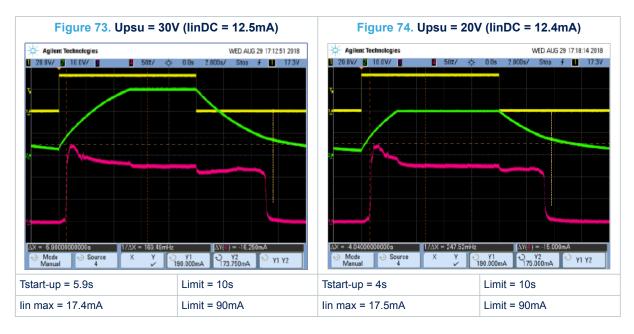
4.3.3 Tests results - fan-in = 30 mA

Test settings:

- $R_{K} = 1 k\Omega / 3$
- $C_K = 3 \times 4.7 \text{ mF}$
- I_{limit} = 150 mA.

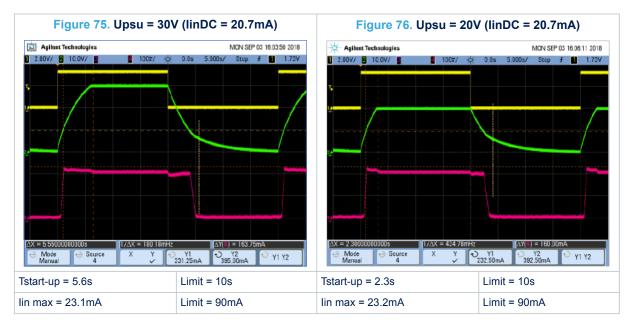
AN5274 - Rev 3 page 45/121

Table 5. Switch On/Off Slow tests results - fan-in = 30mA


	EVALKITSTKNX con	figuration		Tes	st conditions		Test results
	Linear Reg	DC-DC	converter		l' D0	Tstartup	lin
Voltage	Load	Voltage	Load	Upsu	lin DC	(Limit = 10s)	lin max. (Limit = 90mA)
3.3V	Kit / 12mA	5V	NO	30V	13mA	5.9s	18mA
3.3V	Kit / 12mA	5V	NO	20V	13mA	4s	18mA
3.3V	20mA (max.)	Disabled	Disabled	30V	21mA	5.6s	24mA
3.3V	20mA (max.)	Disabled	Disabled	20V	21mA	2.3s	24mA
5V	20mA (max.)	Disabled	Disabled	30V	21mA	5.1s	23mA
5V	20mA (max.)	Disabled	Disabled	20V	21mA	1.9s	24mA
Disabled	VDD_REGIN= VDDHV	1V	7Ω / 150mA (max.)	30V	13mA	4.7s	31mA (hold-up = 38mA)
Disabled	VDD_REGIN= VDDHV	1V	7Ω / 150mA (max.)	20V	21mA	2s	8.5mA
Disabled	VCCORE= VDCDC	3.3V	Kit / 12mA	30V	2.8mA	4.2s	8.5mA
Disabled	VCCORE= VDCDC	3.3V	Kit / 12mA	20V	3.9mA	4.8s	15mA (hold-up = 20mA)
Disabled	VCCORE= VDCDC	3.3V	33Ω / 100mA	30V	19mA	5.3s	43mA (hold-up = 60mA)
Disabled	VCCORE= VDCDC	5V	33Ω / 100mA	20V	30mA (Fan-in)	2.1s	43mA (hold-up = 60mA)
Disabled	VCCORE= VDCDC	5V	74Ω / 69mA	30V	19mA	5.2s	44mA (hold-up = 59mA)
Disabled	VCCORE= VDCDC	5V	74Ω / 69mA	20V	30mA (Fan-in)	1.9s	44mA (hold-up = 59mA)
Enabled	VDD_REGIN= VDDHV	12V	404Ω / 31mA	30V	19mA	5.3s	33mA
Enabled	VDD_REGIN= VDDHV	12V	404Ω / 31mA	20V	30mA (Fan-in)	2s	33mA
				Cur	nulative result		PASS

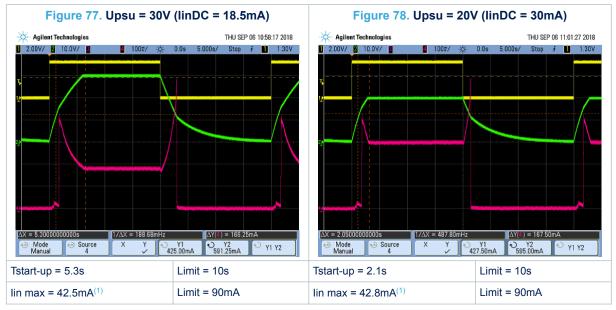
4.3.3.1 Default kit configuration waveforms

This configuration is described in Section 3.5.4.1 STKNX mode DC-DC 5 V (default). The linear regulator 3.3 V is supplying the kit (3V3_KIT) and the 5 V DC-DC converter is not loaded.


AN5274 - Rev 3 page 46/121

4.3.3.2 Linear regulator 3.3 V waveforms (load = 20 mA)

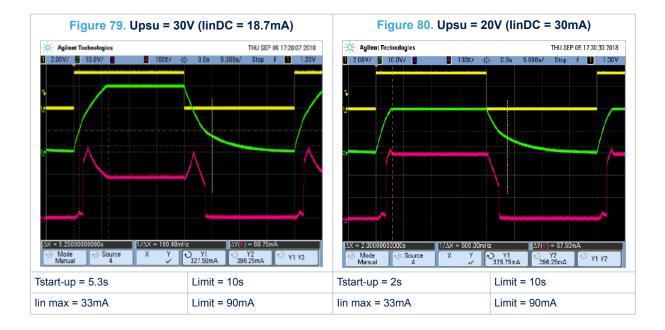
The linear regulator set to 3.3 V is loaded with 169 Ω and is supplying its maximum current of 20 mA. The DC-DC converter is disabled.



4.3.3.3 DC-DC converter 3.3 V waveforms (loaded to reach fan-in limit)

The DC-DC converter set to 3.3 V is loaded with 33 Ω /100 mA for a KNX bus consumption of 30 mA at 20 V. The linear regulator is disabled and VCCCORE is supplied with VDCDC.

AN5274 - Rev 3 page 47/121



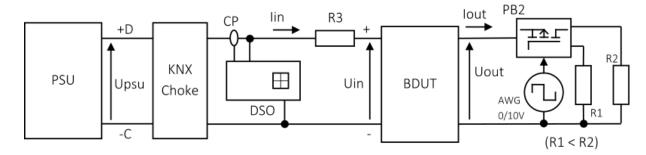
The current during hold-up is higher than during startup but remains under start-up limit. No specification exits yet for hold-up current.

4.3.3.4 DC-DC converter 12 V waveforms

The DC-DC converter set to 12 V is loaded with 404 Ω /30.4 mA for a KNX bus consumption of 30 mA at 20 V. The linear regulator is enabled, not loaded and supplied from VDCDC.

4.4 Power Conversion (Load Changes) (8/2/2 - test 4.4)

Switching from minimal to maximal load and vice versa simulates the changing of load.

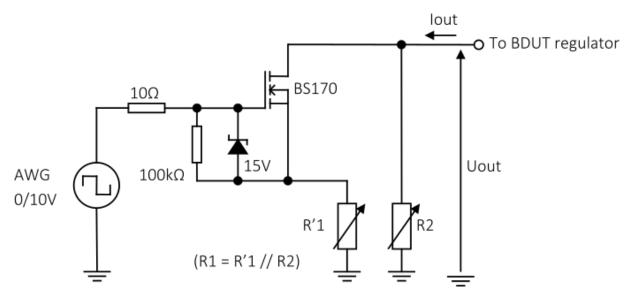

A steep slope of the output current (lout) has to be transferred to a controlled flat slope of the input current (lin). The input current slope measured in this section is controlled by the capacitor Cgate, which should be chosen according to the guidelines described in Section 3.2.1 Electrical description.

AN5274 - Rev 3 page 48/121

4.4.1 Test setup

Figure 81. Load Changes test setup

- Oscilloscope channels:
 - CH1: BP2 command
 - CH2: Uin
 - CH3: BDUT regulator voltage output Uout
 - CH4: lin
- Function generator period: 30 s; active pulse width = 1 s.


During the tests in this section, unless otherwise specified:

- R1 is tuned to sink the maximum load, adjusted to achieve lin fan-in when Upsu = 20 V
- R2 is tuned to sink the minimum load adjusted to keep lin peak under maximum limit (12 mA x fan-in) at load transition from R2 to R1
- Every "isolation" jumper (between KNX section and CPU section) is removed
- Embedded FW: EvalKitSTKNX_LedLevel_V1.0.bin (see Section 4.1 General test setup).

4.4.1.1 PB2 description

The debounced push button is replaced by a MOSFET based circuit described in which allows making repetitive tests.

Figure 82. MOSFET circuit for load switching

When the AWG applies a 10 V voltage, the MOSFET transistor is conducting and the load applied to the BDUT regulator is R1 = R'1 // R2

When the AWG signal is 0 V, the impedance applied to BDUT is R2.

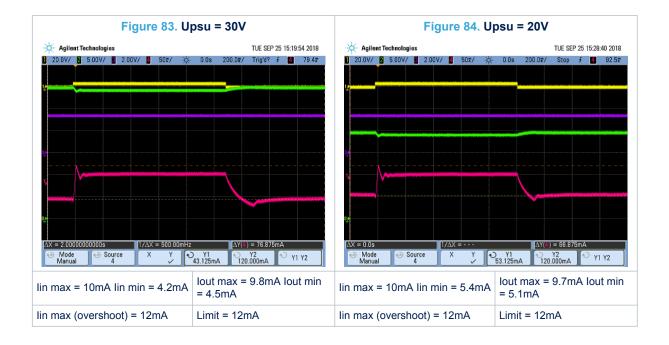
AN5274 - Rev 3 page 49/121

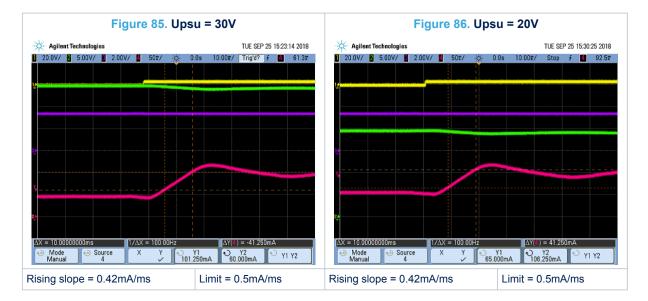
4.4.2 Tests results - fan-in = 10 mA

Test settings:

• R3 = 100 Ω

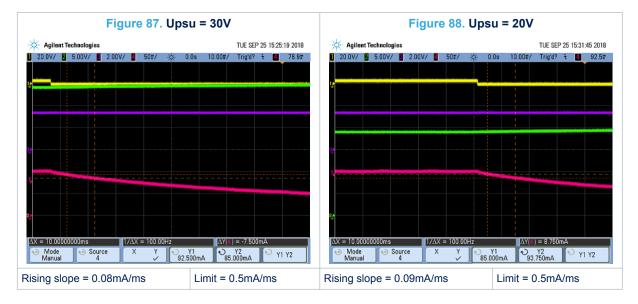
Table 6. Load Changes tests results - fan-in = 10 mA

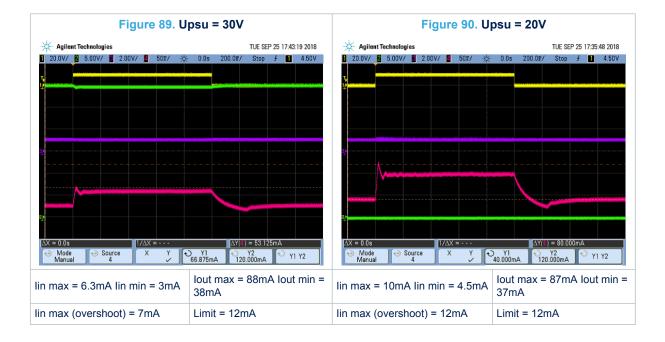

EVALKITST configurat			Test	condition	Test results				
Linear regulator	DC-DC converter	Upsu	lin DC max.	lin DC min.	lout DC max.	lout DC min.	lin overshoot max. (Limit = 12mA)	lin rising slope max. (Limit = 0.5mA/ms)	lin falling slope max. (Limit = 0.5mA/ms)
3.3V	Disabled	30V	10mA	4.2mA	9.8mA	4.5mA	12mA	0.42mA/ms	0.08mA/ms
3.3V	Disabled	20V	10mA	5.4mA	9.7mA	5.1mA	12mA	0.42mA/ms	0.09mA/ms
5V	Disabled	30V	10mA	4mA	9.4mA	3.6mA	12mA	0.39mA/ms	0.08mA/ms
5V	Disabled	20V	10mA	4.6mA	9.4mA	4.3mA	12mA	0.4mA/ms	0.01mA/ms
Disabled VDD_REGIN= VDDHV	1V	30V	6.3mA	3mA	88mA	38mA	7mA	0.23mA/ms	0.05mA/ms
Disabled VDD_REGIN= VDDHV	1V	20V	10mA	4.5mA	87mA	37mA	12mA	0.42mA/ms	0.09mA/ms
Disabled VCCORE= VDCDC	3.3V	30V	6.3mA	3.4mA	33mA	17mA	7mA	0.21mA/ms	0.05mA/ms
Disabled VCCORE= VDCDC	3.3V	20V	10mA	5mA	33mA	17mA	12mA	0.43mA/ms	0.11mA/ms
Disabled VCCORE= VDCDC	5V	30V	6.3mA	2.3mA	22mA	7mA	7mA	0.26mA/ms	0.05mA/ms
Disabled VCCORE= VDCDC	5V	20V	10mA	3mA	22mA	7mA	12mA	0.39mA/ms	0.09mA/ms
Enabled VDD_REGIN= VDCDC	12V	30V	6.3mA	3mA	9.2mA	3mA	7mA	0.14mA/ms	0.05mA/ms
Enabled VDD_REGIN= VDCDC	12V	20V	10mA	4mA	9.2mA	3mA	12mA	0.26mA/ms	0.09mA/ms
		Cumulative results	PASS						

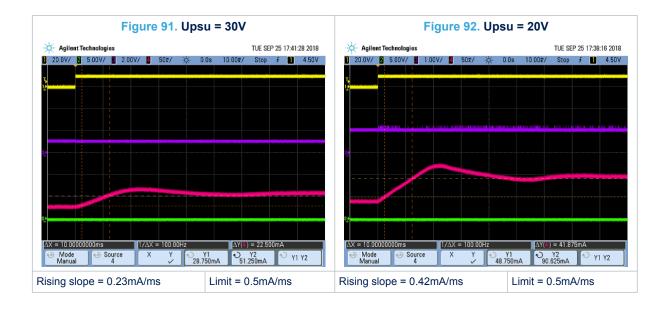

4.4.2.1 Linear regulator 3.3 V waveforms

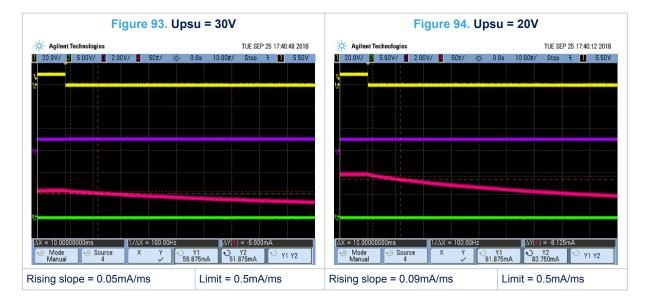
The linear regulator set to 3.3 V is supplied from VDDHV. The DC-DC converter is disabled.

AN5274 - Rev 3 page 50/121

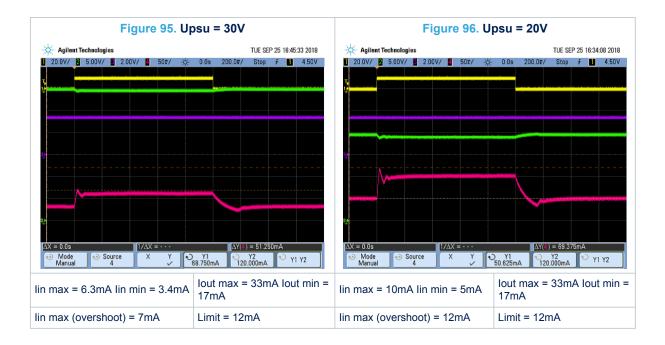


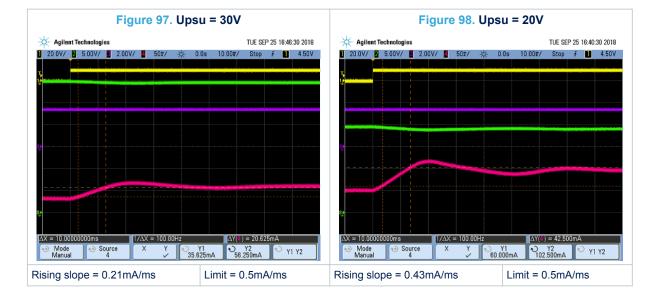

AN5274 - Rev 3 page 51/121


4.4.2.2 DC-DC converter 1 V waveforms


The DC-DC converter is enabled and tuned to 1 V output voltage. The linear regulator is enabled (3.3 V) for STKNX I/Os and supplied from VDDHV.

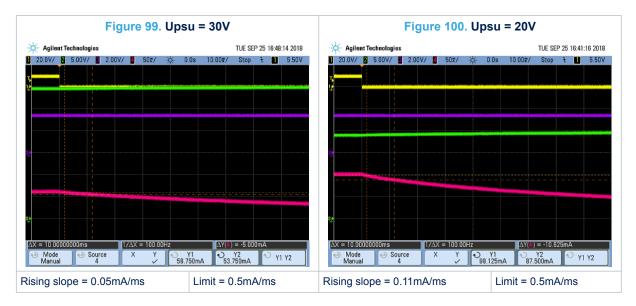
AN5274 - Rev 3 page 52/121

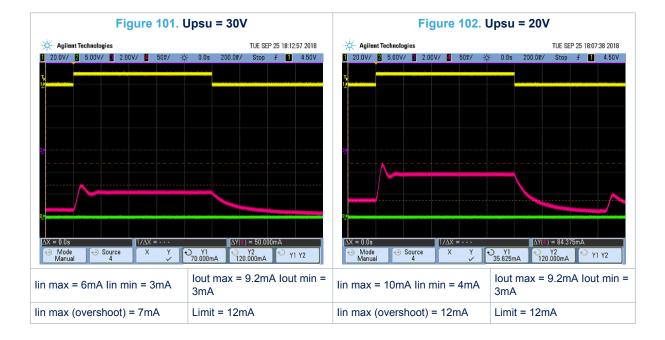


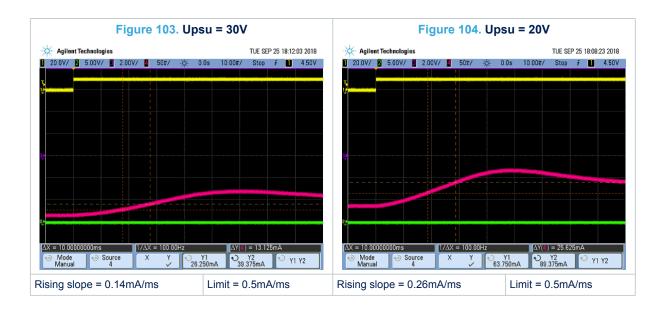

4.4.2.3 DC-DC converter 3.3 V waveforms

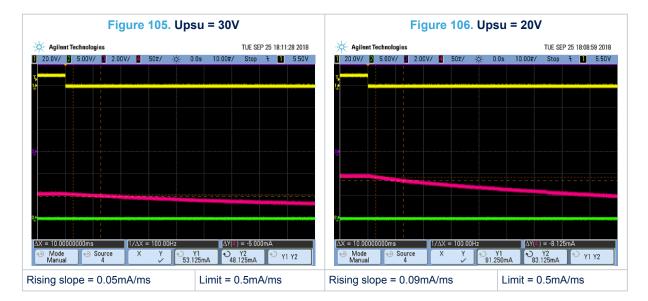
The DC-DC converter is enabled and tuned to 3.3 V output voltage. The linear regulator is disabled and VCCCORE is connected to VDCDC for STKNX I/Os supply.

AN5274 - Rev 3 page 53/121




AN5274 - Rev 3 page 54/121


4.4.2.4 DC-DC converter 12 V waveforms


The DC-DC converter is enabled and tuned to 12 V output voltage. The linear regulator is enabled (3.3 V) for STKNX I/Os and supplied from VDCDC.

AN5274 - Rev 3 page 55/121

4.4.3 Tests results - fan-in = 30 mA

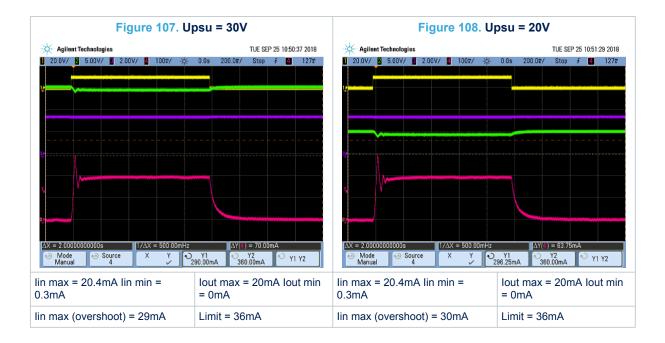
Test settings:

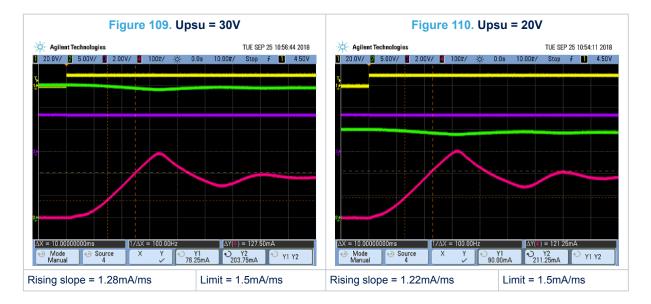
• R3 = 33 Ω

Table 7. Load Changes tests results - fan-in = 30 mA

EVALKITST configurat		To	est conditi	ions	Test results				
Linear regulator	DC-DC converter	Upsu	lin DC max	lin DC min	lout DC max	lout DC min	lin overshoot max. (Limit = 36mA)	lin rising slope max. (Limit = 1.5mA/ms)	lin falling slope max. (Limit = 1.5mA/ms)
3.3V	Disabled	30V	20.4mA	0.3mA	20mA	0mA	29mA	1.28mA/ms	0.48mA/ms
3.3V	Disabled	20V	20.4mA	0.3mA	20mA	0mA	30mA	1.22mA/ms	0.48mA/ms

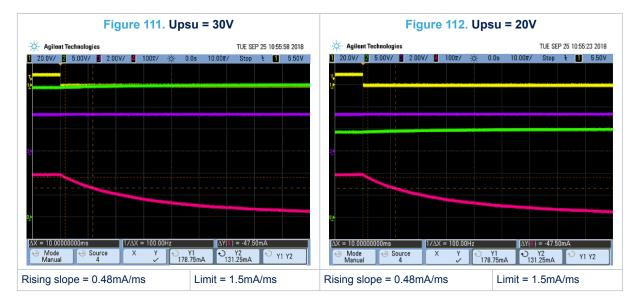
AN5274 - Rev 3 page 56/121

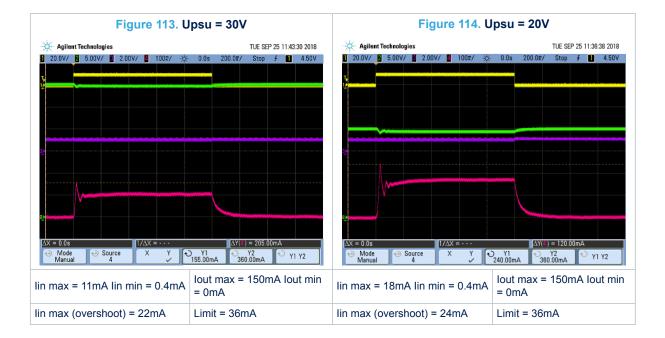

EVALKITST configurat			To	est condit	ions			Test results	
Linear regulator	DC-DC converter	Upsu	lin DC max	lin DC min	lout DC max	lout DC min	lin overshoot max. (Limit = 36mA)	lin rising slope max. (Limit = 1.5mA/ms)	lin falling slope max. (Limit = 1.5mA/ms)
5V	Disabled	30V	20.4mA	0.4mA	20mA	0mA	30mA	1.27mA/ms	0.5mA/ms
5V	Disabled	20V	20.4mA	0.4mA	20mA	0mA	32mA	1.2mA/ms	0.5mA/ms
Disabled VDD_REGIN= VDDHV	1V	30V	11mA	0.4mA	150mA	0mA	22mA	1.14mA/ms	0.25mA/ms
Disabled VDD_REGIN= VDDHV	1V	20V	18mA	0.4mA	150mA	0mA	24mA	1.2mA/ms	0.39mA/ms
Disabled VCCORE= VDCDC	3.3V	30V	18mA	5mA	98mA	27mA	22mA	1.19mA/ms	0.4mA/ms
Disabled VCCORE= VDCDC	3.3V	20V	30mA	8mA	98mA	27mA	36mA	1.27mA/ms	0.78mA/ms
Disabled VCCORE= VDCDC	5V	30V	17mA	5mA	66mA	19mA	22mA	1.17mA/ms	0.42mA/ms
Disabled VCCORE= VDCDC	5V	20V	30mA	8mA	65mA	19mA	36mA	1.3mA/ms	0.86mA/ms
Enabled VDD_REGIN= VDCDC	12V	30V	18mA	4mA	30mA	6mA	22mA	1.22mA/ms	0.43mA/ms
Enabled VDD_REGIN= VDCDC	12V	20V	30mA	7mA	30mA	6mA	36mA	1.27mA/ms	0.83mA/ms
			Cu	mulative re	esults			PASS	

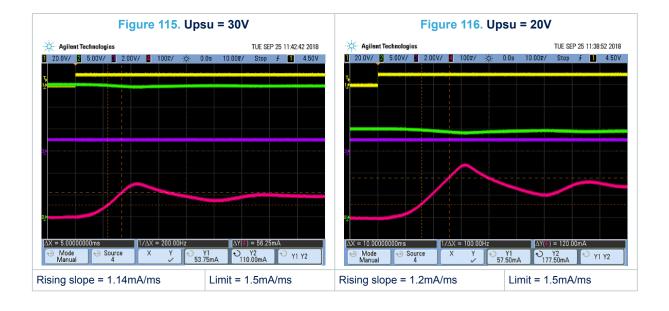

4.4.3.1 Linear regulator 3.3 V waveforms

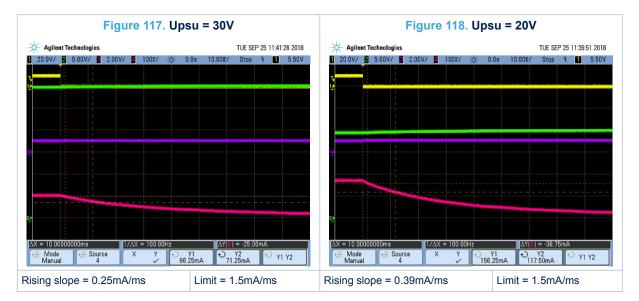
The linear regulator set to 3.3 V is supplied from VDDHV. The load R1 is configured to sink lout = 20 mA which is the limit of the linear regulator. The DC-DC converter is disabled.

AN5274 - Rev 3 page 57/121

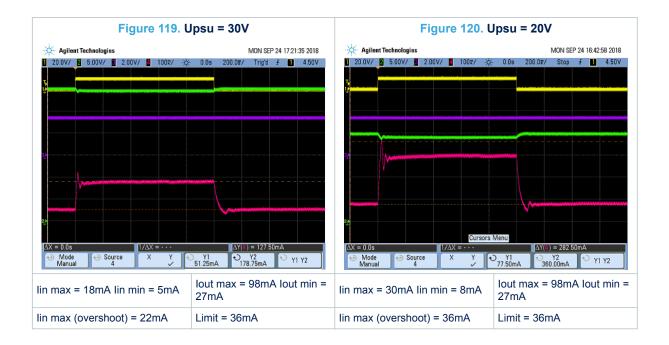


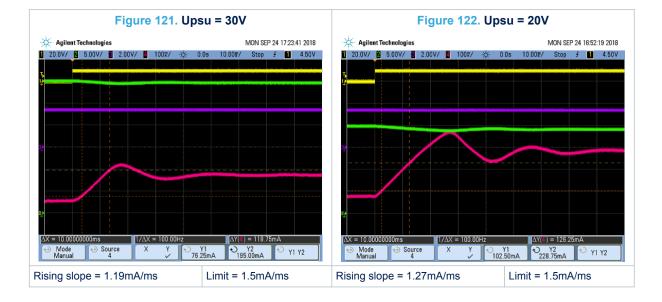

AN5274 - Rev 3 page 58/121


4.4.3.2 DC-DC converter 1 V waveforms


The DC-DC converter is enabled and tuned to 1 V output voltage. The load R1 is configured to sink lout = 150 mA which is the limit of the linear regulator. It is therefore not possible to reach lin = 30 mA (fan-in) @ Uin = 20 V on the bus but only 18 mA. The linear regulator is enabled (3.3 V) for STKNX I/Os and supplied from VDDHV.

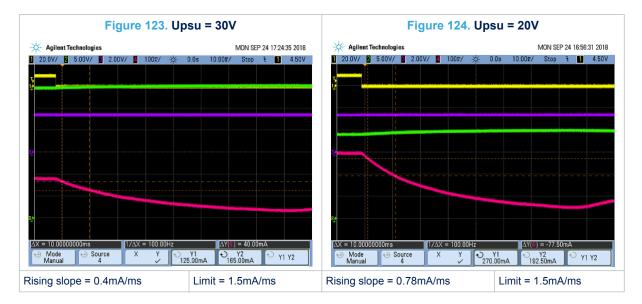
AN5274 - Rev 3 page 59/121

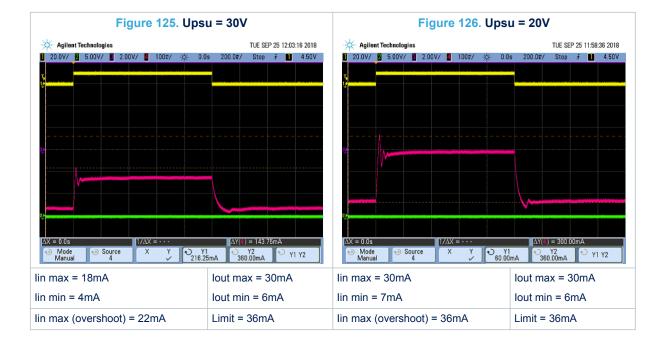


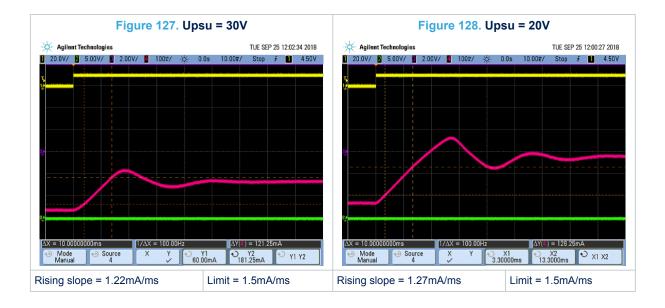

4.4.3.3 DC-DC converter 3.3 V waveforms

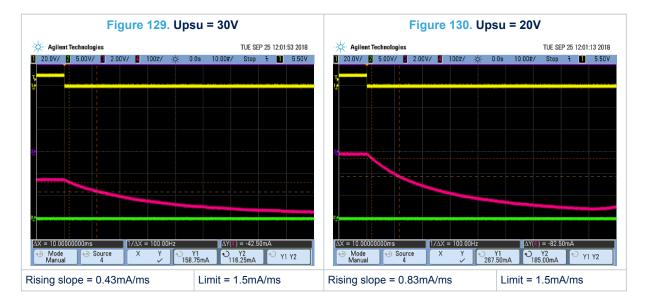
The DC-DC converter is enabled and tuned to 3.3 V output voltage. The linear regulator is disabled and VCCCORE is connected to VDCDC for STKNX I/Os supply.

AN5274 - Rev 3 page 60/121




AN5274 - Rev 3 page 61/121


4.4.3.4 DC-DC converter 12 V waveforms


The DC-DC converter is enabled and tuned to 12 V output voltage. The linear regulator is enabled (3.3 V) for STKNX I/Os and supplied from VDCDC.

AN5274 - Rev 3 page 62/121

4.5 Power Conversion (Reverse Voltage Protection RVP) (8/2/2 - test 4.5)

4.5.1 Test setup

This test simulates the connection of a bus device to an operating bus segment, but with reverse polarity.

In case of reverse polarity connection of a bus device, that device should neither have a negative influence to the bus, nor be damaged, no matter how long the reverse connection lasts.

Almost the same setup as the test "Switch On Fast" is used, see Figure 40. Switch On Fast test setup. The only difference is the BDUT connected in reverse polarity to the KNX bus.

The reverse bus voltage is then applied by closing PB1. The current lin is monitored during the test and compared to the maximum limit.

After the test, the correct polarity is restored and the operation of the BDUT is checked by pressing the KNX PROG button and verifying that the KNX PROG LED turns on.

AN5274 - Rev 3 page 63/121

Oscilloscope channels:

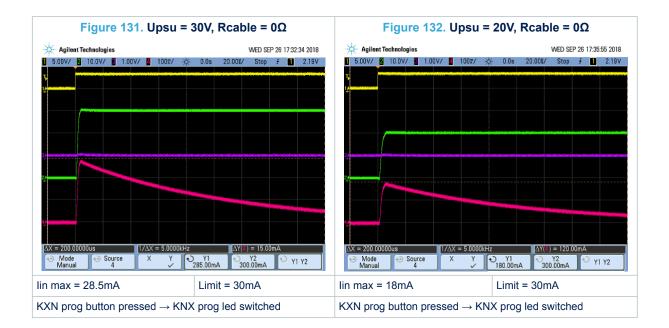
CH1: BP1 command

- CH2: Uin

CH3: DC-DC converter output

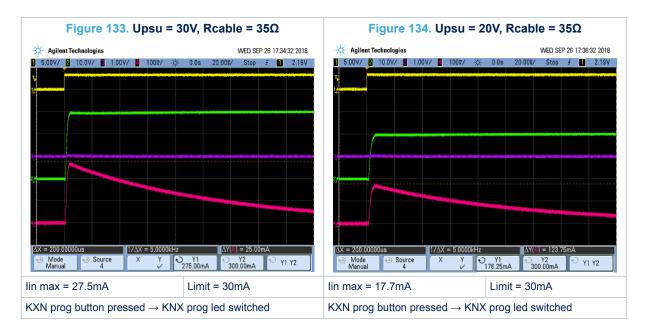
- CH4: lin

Function generator period: 30 s


• Embedded FW: EvalKitSTKNX_LedLevel_V1.0.bin (see Section 4.1 General test setup).

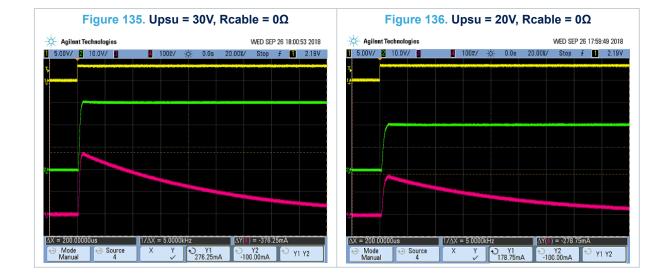
4.5.2 Tests results - fan-in = 10 mA

The EVALKITSTKNX is tested with its default setting: DC-DC converter output voltage set to 5 V (not loaded) and linear regulator output voltage set to 3.3 V (loaded by CPU section).


Table 8. Reverse Voltage Protection tests results - fan-in = 10 mA.

EVALKITSTKNX c	onfiguration	Test conditions		Test results			
Linear regulator	DC-DC converter	Upsu	Rcable lin max. (Limit = 30mA)		Kit test after reverse polarity connection		
3.3V supplying kit	5V enabled	30V	0Ω	28.5mA	Working		
3.3V supplying kit	5V enabled	30V	35Ω	27.5mA	Working		
3.3V supplying kit	5V enabled	20V	0Ω	18mA	Working		
3.3V supplying kit	5V enabled	20V 35Ω		17.7mA	Working		
		Cumula	tive result	PASS			

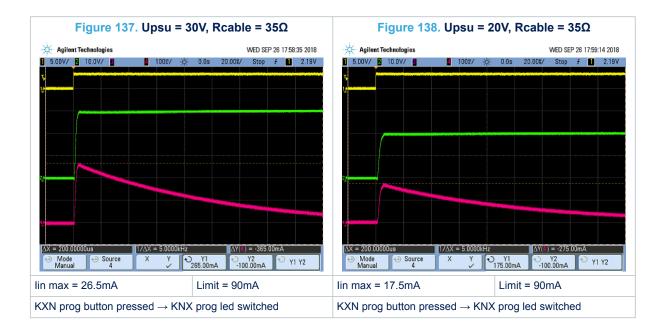
AN5274 - Rev 3 page 64/121



4.5.3 Tests results - fan-in = 30 mA

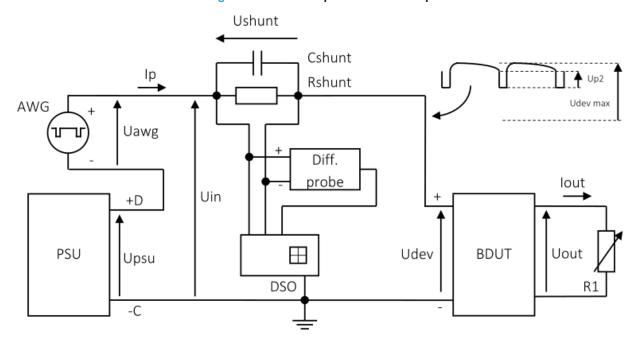
The EVALKITSTKNX is tested with its default setting: DC-DC converter output voltage set to 5 V (not loaded) and linear regulator output voltage set to 3.3 V (loaded by CPU section).

EVALKITSTKNX configuration **Test conditions** Test results DC-DC Kit test after Linear regulator Rcable lin max. (Limit = 90mA) Upsu converter reverse polarity connection 3.3V supplying kit 5V enabled 30V 0Ω 27.7mA Working 5V enabled 30V 35Ω 26.5mA Working 3.3V supplying kit 3.3V supplying kit 5V enabled 20V 0Ω 17.9mA Working 3.3V supplying kit 5V enabled 20V 350 17.5mA Working Cumulative result **PASS**


Table 9. Reverse Voltage Protection tests results - fan-in = 30 mA

AN5274 - Rev 3 page 65/121

lin max = 27.7mA	Limit = 90mA	lin max = 17.9mA	Limit = 90mA		
KXN prog button pressed → KNX	c prog led switched	KXN prog button pressed → KNX prog led switched			



4.6 Receiver - Pulse-Impedance (8/2/2 - test 5.1)

The input impedance of a KNX device has to be compliant to KNX standard requirements. This special test method checks the input impedance of the KNX device.

4.6.1 Test setup

Figure 139. Pulse-Impedance test setup

Differential probe: Testec TT-SI 9001 position ÷10

AN5274 - Rev 3 page 66/121

Oscilloscope channels (#8 Averaging Acquire mode for a better readability):

CH1: UinCH2: UdevCH3: Ushunt

During the tests in this section, unless otherwise specified:

R1 is tuned to sink lp = fan-in

The connections from AWG+PSU to BDUT must be short, otherwise glitches are observed in Ushunt waveform. For each test below, the power supply and Arbitrary Waveform Generator are initially configured as below:

- Upsu = 25 V
- Uawg = 6 Vpp; T = 300 μs; t1 = 35 μs

Then R1 is tuned to reach Ip = fan-in

From this state, Upsu, Uawg and R1 are tuned by iteration, until reaching the final state:

- Udev max. = 25 V
- Up2 = 6 V
- Ip = fan-in

See KNX standard Section 8/2/2 KNX System Conformance Testing for more information.

The areas ratio A1/A2 defined in 8/2/2, is then computed through a spreadsheet based on Ushunt samples acquired from the DSO.

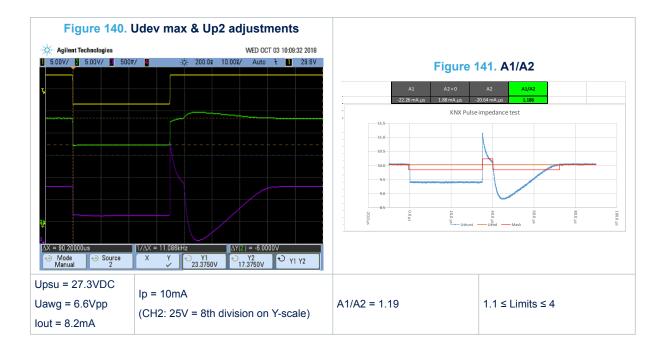
Embedded FW: EvalKitSTKNX LedLevel V1.0.bin (see Section 4.1 General test setup).

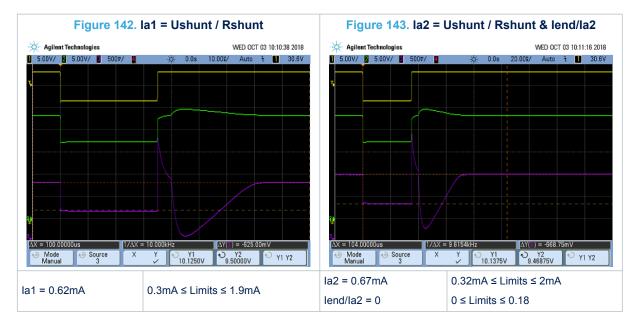
4.6.2 Tests results - fan-in = 10 mA

Test settings:

- Rshunt = $1 k\Omega$
- Cshunt = 2.2 nF

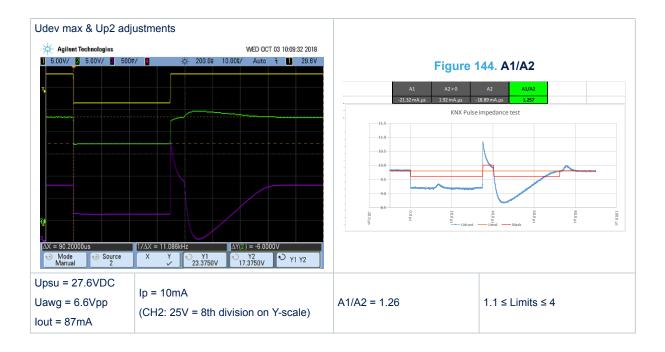
Table 10. Pulse Impedance tests results - fan-in = 10mA

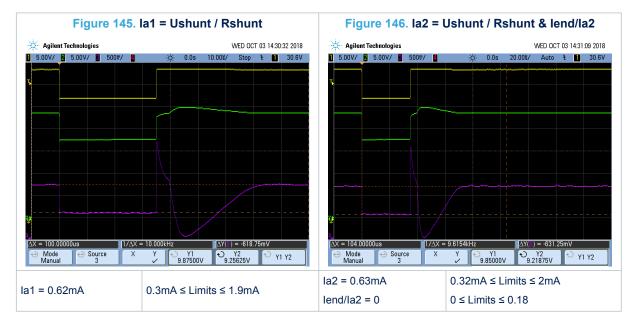

EVALKITSTK configuratio		Test conditions				Test results			
Linear regulator	DC-DC converter	Upsu	Uawq	lp	lout	A1/A2 L. limit = 1.1 U. limit = 4	la1 L. limit = 0.3 U. limit = 1.9	la2 L. limit = 0.32 U. limit = 2	lend/la2 L. limit = 0 U. limit = 0.18
3.3V	Disabled	27.3V	6.6Vpp	10mA	8.2mA	1.19	0.62mA	0.67mA	0
5V	Disabled	27.3V	6.6Vpp	10mA	8.5mA	1.23	0.63mA	0.65mA	0
Disabled VDD_REGIN= VDDHV	1V	27.6V	6.6Vpp	10mA	87mA	1.26	0.62mA	0.63mA	0
Disabled VCCORE= VDCDC	3.3V	27.5V	6.6Vpp	10mA	36mA	1.26	0.63mA	0.68mA	0
Disabled VCCORE= VDCDC	5V	27.5V	6.6Vpp	10mA	mA	1.18	0.63mA	0.61mA	0
Enabled VDD_REGIN= VDCDC	12V	27.6V	6.7Vpp	10mA	mA	1.33	0.6mA	0.65mA	0
			Cumulati	ve resul	t		P/	ASS	


4.6.2.1 Linear regulator 3.3 V waveforms

The linear regulator set to 3.3 V is supplied from VDDHV. The DC-DC converter is disabled.

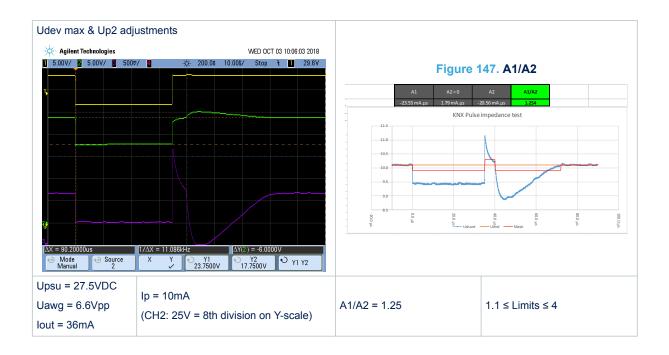
AN5274 - Rev 3 page 67/121

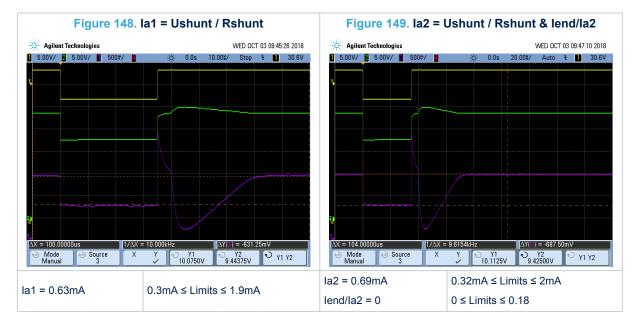



4.6.2.2 DC-DC converter 1 V waveforms

The DC-DC converter is enabled and tuned to 1 V output voltage. The linear regulator is enabled (3.3 V) for STKNX I/Os and supplied from VDDHV.

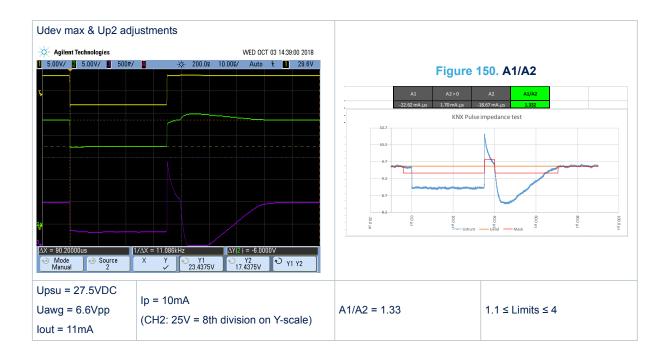
AN5274 - Rev 3 page 68/121

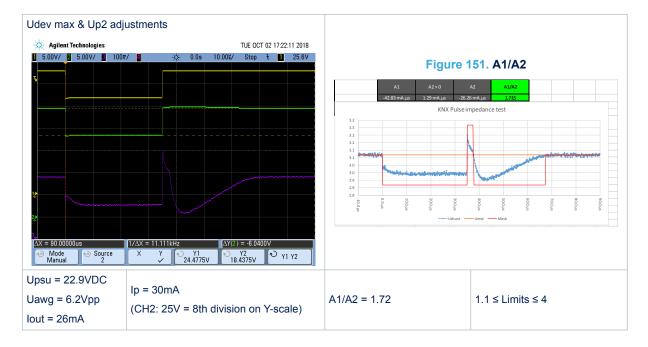



4.6.2.3 DC-DC converter 3.3 V waveforms

The DC-DC converter is enabled and tuned to 3.3 V output voltage. The linear regulator is disabled and VCCCORE is connected to VDCDC for STKNX I/Os supply.

AN5274 - Rev 3 page 69/121




4.6.2.4 DC-DC converter 12 V waveforms

The DC-DC converter is enabled and tuned to 12 V output voltage. The linear regulator is enabled (3.3 V) for STKNX I/Os and supplied from VDCDC.

AN5274 - Rev 3 page 70/121

4.6.3 Tests results - fan-in = 30mA

Test settings:

- Rshunt = $100 \Omega^{(1)}$
- Cshunt = 22 nF⁽²⁾
- Switching converters show negative input impedance, which can result in instability if supplied by high impedance source.
 To prevent test setup artificially induced instability, RSHUNT test resistor is reduced to 100Ω to perform pulse impedance test. The value of RSHUNT is chosen to be higher than 75Ω, which is the maximum loop resistance allowed TP1 cable (section 9/1 of KNX standard). This was suggested by KNX association.
- 2. To keep coherent the filtering of the signal Ushunt, Cshunt is set to 22 nF when associated to Rshunt = 100 Ω .

AN5274 - Rev 3 page 71/121

PASS

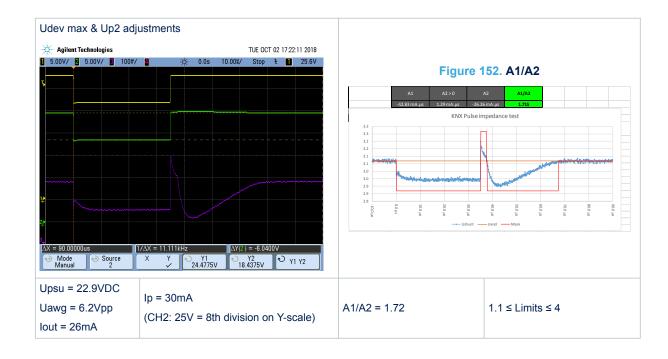
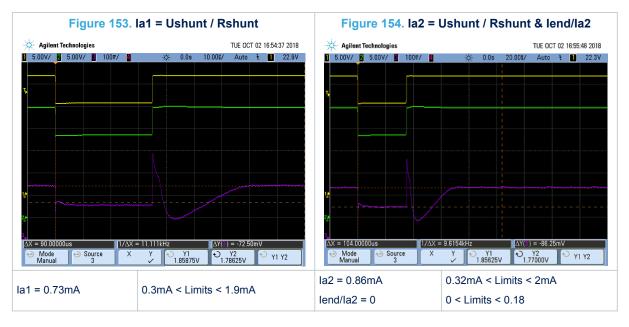
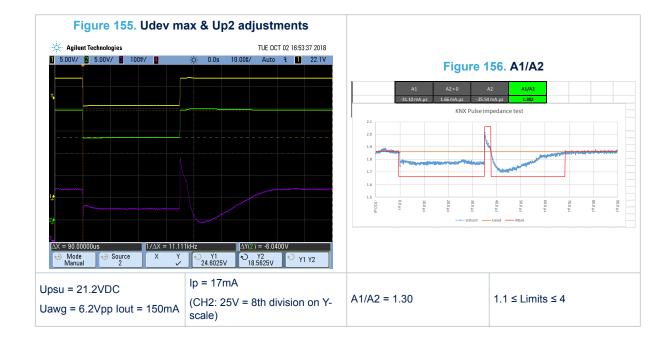

Table 11: I also impedance tests results - Ian-in - com/											
EVALKITSTK configuration		Test conditions				Test results					
Linear regulator	DC-DC converter	Upsu	Uawq	lp	lout	A1/A2 L. limit = 1.1 U. limit = 4	la1 L. limit = 0.3 U. limit = 1.9	la2 L. limit = 0.32 U. limit = 2	lend/la2 L. limit = 0 U. limit = 0.18		
3.3V	Disabled	22.9V	6.2Vpp	30mA	26mA	1.72	0.83mA	1.25mA	0		
5V	Disabled	22.9V	6.2Vpp	30mA	26mA	1.69	0.86mA	1.22mA	0		
Disabled VDD_REGIN= VDDHV	1V	22.9V	6.2Vpp	17mA	150mA	1.30	0.72mA	0.86mA	0		
Disabled VCCORE= VDCDC	3.3V	23V	6.1Vpp	30mA	114mA	1.73	0.85mA	1.22mA	0		
Disabled VCCORE= VDCDC	5V	23V	6.1Vpp	30mA	80mA	1.66	0.82mA	1.20mA	0		
Enabled VDD_REGIN= VDCDC	12V	22.9V	6.2Vpp	30mA	35mA	1.72	0.86mA	1.21mA	0		

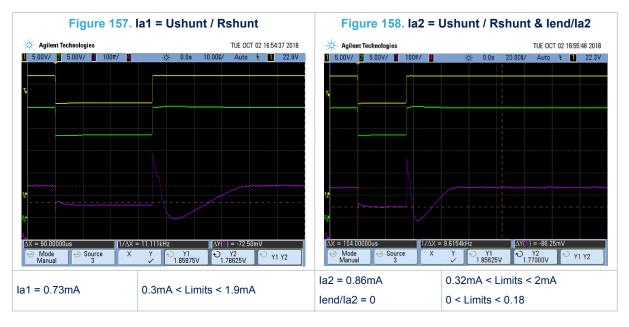
Table 11. Pulse Impedance tests results - fan-in = 30mA

4.6.3.1 Linear regulator 3.3 V waveforms

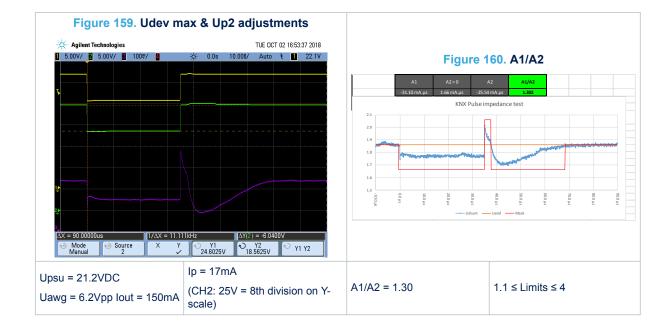

The linear regulator set to 3.3 V is supplied from VDDHV. The DC-DC converter is disabled.

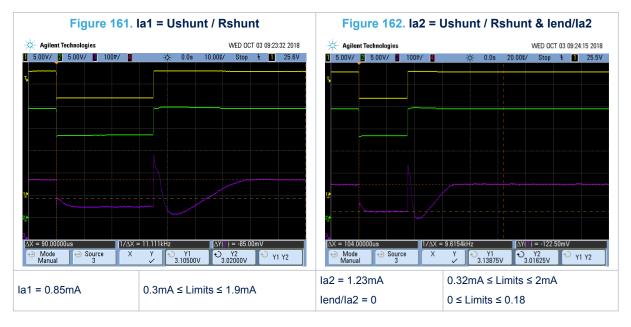
Cumulative results


AN5274 - Rev 3 page 72/121

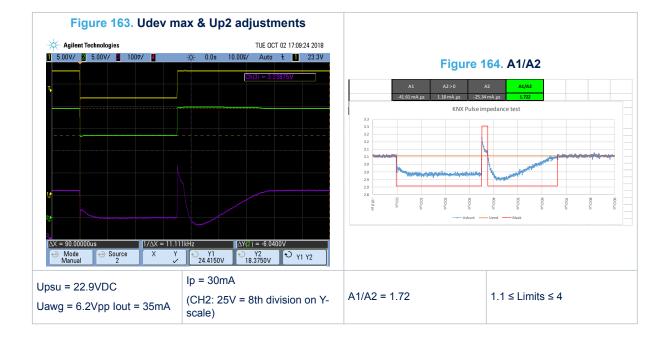

4.6.3.2 DC-DC converter 1 V waveforms

The DC-DC converter is enabled and tuned to 1 V output voltage. The load R1 is configured to sink lout = 150 mA which is the limit of the DC-DC converter. It is therefore not possible to reach Ip = 30 mA (fan-in) on the bus but only 17 mA. The linear regulator is enabled (3.3 V) for STKNX I/Os and supplied from VDDHV.


AN5274 - Rev 3 page 73/121


4.6.3.3 DC-DC converter 3.3 V waveforms

The DC-DC converter is enabled and tuned to 3.3 V output voltage. The linear regulator is disabled and VCCCORE is connected to VDCDC for STKNX I/Os supply.


AN5274 - Rev 3 page 74/121

4.6.3.4 DC-DC converter 12 V waveforms

The DC-DC converter is enabled and tuned to 12 V output voltage. The linear regulator is enabled (3.3 V) for STKNX I/Os and supplied from VDCDC.

AN5274 - Rev 3 page 75/121

4.7 Receiver - Sensitivity (8/2/2 - test 5.2)

This test checks the thresholds and the sensitivity of the receiver. The receiver has to be able to detect both strong and weak analogue data signals.

In particular, the standard requires that signals with amplitude higher than Ua1 = 0.7 V, Ua2 = 0.5 V are detected, while signals with amplitude lower than Ua1 = Ua2 = 0.2 V are neglected.

4.7.1 Test setup

Figure 167. Sensitivity test setup

- Oscilloscope channels:
 - CH1: Uin
 - CH2: Urx
 - Averaging display #8 sometimes activated
- R1 is connected to DC-DC converter output and tuned to sink lin = fan-in

The connections from AWG+PSU to BDUT must be short, otherwise glitches are observed in the Uin waveform.

AN5274 - Rev 3 page 76/121

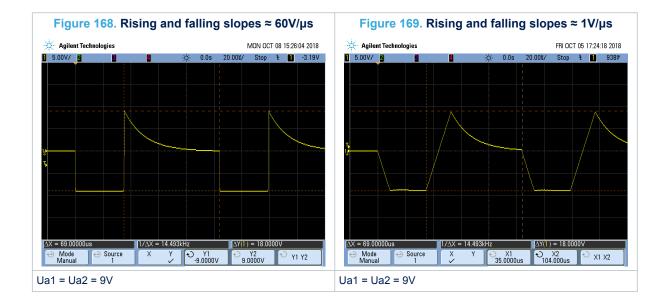
The BDUT reception is checked by observing the STKNX_RX output (Urx) on scope. Both an EVALKITSTKNX fan-in 10 mA and 30 mA have been tested, in their default configuration: Linear regulator 3.3 V (not loaded) and DC-DC converter 5 V loaded with both maximum load (lin = fan-in) and open load.

4.7.2 EVALKITSTKNX settings

Every "isolation" jumper (between KNX section and CPU section) is removed.

4.7.3 Waveform generation at BDUT input

The signal at Uawg is generated by computing samples with a spreadsheet and then transferring them into the AWG in Arbitrary Waveform mode. This signal is then superimposed to the PSU voltage to create the expected waveform at BDUT input, described in the following sections.


Both signals are tested at maximum (60 V/µs) and minimum (1 V/µs) slopes.

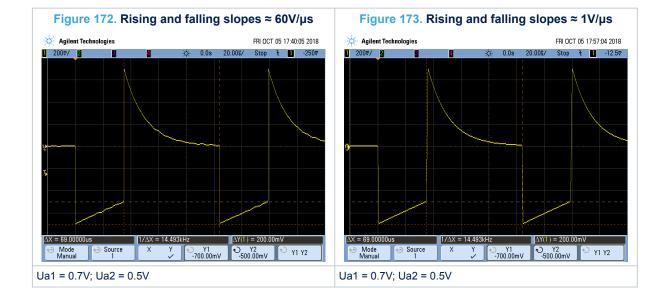
4.7.3.1 Ua1 = Ua2 = Ue = 9 V

Due to limitation of the frequency generator, the telegram required in the 08.02.02 cannot be entirely generated, but only a portion: 0x01E10081.

This word which is made of 32 bits duration 104 µs each has a length of 3328 µs.

The sampling frequency of the AWG is set to 100 ns, low enough to generate a sufficient long word and high enough to generate the expected slope.

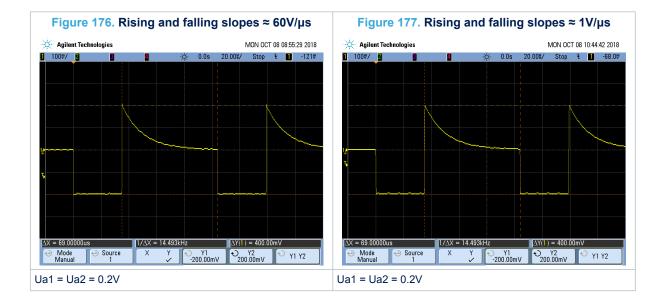
AN5274 - Rev 3 page 77/121




Due to the low voltage amplitude (0.5 V), the lowest sampling period of the AWG (5 ns) is used to be able to generate a slope of 60 V/ μ s \leftrightarrow 0.5 V/8.3 ns.

As a consequence, only a short word (3 bits) can be generated: 0b010, which is made of 62400 samples.

AN5274 - Rev 3 page 78/121



4.7.3.3 Ua1 = Ua2 = Ue = 0.2V

Due to the low voltage amplitude (0.2 V), the lowest sampling period of the AWG (5 ns) is used to be able to generate a slope of 60 V/ μ s \leftrightarrow 0.2 V/3.3 ns.

As a consequence, only a short word (3 bits) can be generated: 0b010, which is made of 62400 samples.

AN5274 - Rev 3 page 79/121

4.7.4 Test results

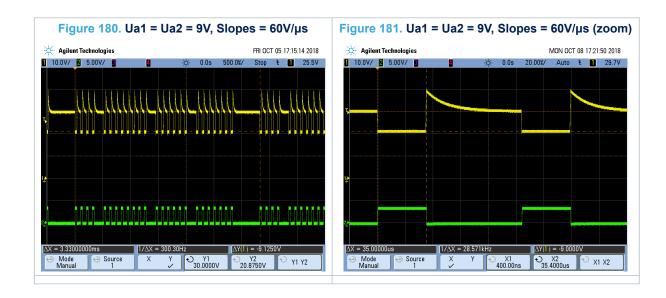
Every test result is reported in the table below. Some tests are illustrated in the following table with scope traces.

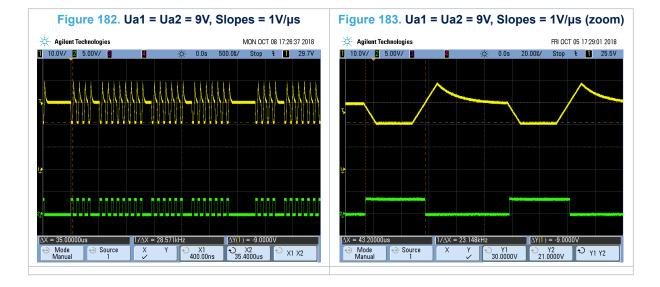
Table 12. Sensitivity tests results - fan-in = 10mA

EVALKITSTKNX configuration		Test conditions					Test results		
Linear regulator	DC-DC converter	Ua1	Ua2	Slopes	Upsu	lin	Bits decoding	Verdict	
3.3V	5V-loaded	9V	9V	60V/µs	30V	10mA	100%	PASS	
3.3V	5V-loaded	9V	9V	60V/µs	20V	10mA	100%	PASS	
3.3V	5V-loaded	9V	9V	1V/μs	30V	10mA	100%	PASS	
3.3V	5V-loaded	9V	9V	1V/µs	20V	10mA	100%	PASS	
3.3V	5V-loaded	0.7V	0.5V	60V/µs	30V	10mA	100%	PASS	
3.3V	5V-loaded	0.7V	0.5V	60V/µs	20V	10mA	100%	PASS	
3.3V	5V-loaded	0.7V	0.5V	1V/μs	30V	10mA	100%	PASS	
3.3V	5V-loaded	0.7V	0.5V	1V/μs	20V	10mA	100%	PASS	
3.3V	5V-loaded	0.2V	0.2V	60V/µs	30V	10mA	100%	PASS	
3.3V	5V-loaded	0.2V	0.2V	60V/µs	20V	10mA	100%	PASS	
3.3V	5V-loaded	0.2V	0.2V	1V/μs	30V	10mA	0%	PASS	
3.3V	5V-loaded	0.2V	0.2V	1V/μs	20V	10mA	0%	PASS	
3.3V	5V	9V	9V	60V/µs	30V	<1mA	0%	PASS	
3.3V	5V	9V	9V	60V/µs	20V	<1mA	0%	PASS	
3.3V	5V	9V	9V	1V/μs	30V	<1mA	100%	PASS	
3.3V	5V	9V	9V	1V/μs	20V	<1mA	100%	PASS	
3.3V	5V	0.7V	0.5V	60V/µs	30V	<1mA	100%	PASS	
3.3V	5V	0.7V	0.5V	60V/µs	20V	<1mA	100%	PASS	
3.3V	5V	0.7V	0.5V	1V/μs	30V	<1mA	100%	PASS	
3.3V	5V	0.7V	0.5V	1V/μs	20V	<1mA	100%	PASS	

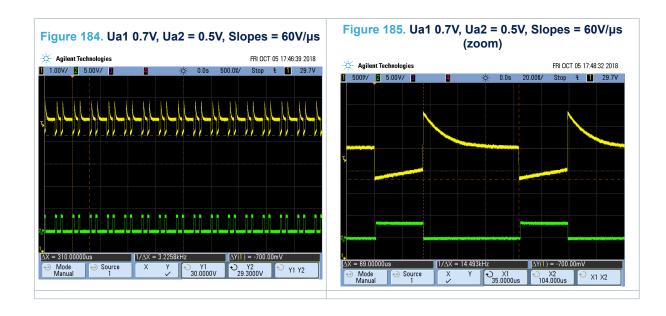
AN5274 - Rev 3 page 80/121

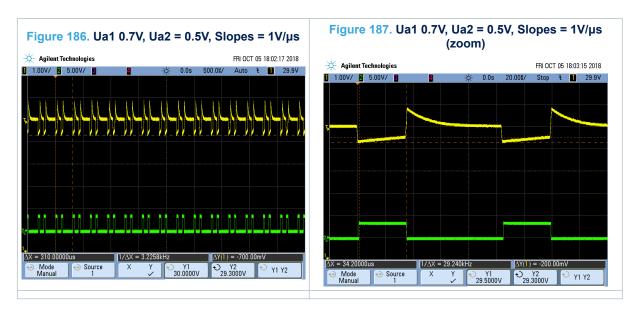
EVALKITSTKNX configuration		Test conditions					Test results	
Linear regulator	DC-DC converter	Ua1	Ua2	Slopes	Upsu	lin	Bits decoding	Verdict
3.3V	5V	0.2V	0.2V	60V/µs	30V	<1mA	0%	PASS
3.3V	5V	0.2V	0.2V	60V/µs	20V	<1mA	0%	PASS
3.3V	5V	0.2V	0.2V	1V/μs	30V	<1mA	0%	PASS
3.3V	5V	0.2V	0.2V	1V/μs	20V	<1mA	0%	PASS

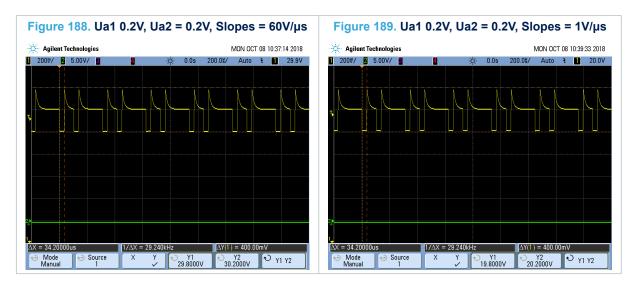

Table 13. Sensitivity tests results - fan-in = 30mA


EVALKITSTKNX configuration				Test conditi		Test results		
Linear regulator	DC-DC converter	Ua1	Ua2	Slopes	Upsu	lin	Bits decoding	Verdict
3.3V	5V-loaded	9V	9V	60V/µs	30V	10mA	100%	PASS
3.3V	5V-loaded	9V	9V	60V/µs	20V	10mA	100%	PASS
3.3V	5V-loaded	9V	9V	1V/μs	30V	10mA	100%	PASS
3.3V	5V-loaded	9V	9V	1V/μs	20V	10mA	100%	PASS
3.3V	5V-loaded	0.7V	0.5V	60V/µs	30V	10mA	100%	PASS
3.3V	5V-loaded	0.7V	0.5V	60V/µs	20V	10mA	100%	PASS
3.3V	5V-loaded	0.7V	0.5V	1V/μs	30V	10mA	100%	PASS
3.3V	5V-loaded	0.7V	0.5V	1V/μs	20V	10mA	100%	PASS
3.3V	5V-loaded	0.2V	0.2V	60V/µs	30V	10mA	0%	PASS
3.3V	5V-loaded	0.2V	0.2V	60V/µs	20V	10mA	0%	PASS
3.3V	5V-loaded	0.2V	0.2V	1V/μs	30V	10mA	0%	PASS
3.3V	5V-loaded	0.2V	0.2V	1V/μs	20V	10mA	0%	PASS
3.3V	5V	9V	9V	60V/µs	30V	<1mA	100%	PASS
3.3V	5V	9V	9V	60V/µs	20V	<1mA	100%	PASS
3.3V	5V	9V	9V	1V/μs	30V	<1mA	100%	PASS
3.3V	5V	9V	9V	1V/μs	20V	<1mA	100%	PASS
3.3V	5V	0.7V	0.5V	60V/µs	30V	<1mA	100%	PASS
3.3V	5V	0.7V	0.5V	60V/µs	20V	<1mA	100%	PASS
3.3V	5V	0.7V	0.5V	1V/μs	30V	<1mA	100%	PASS
3.3V	5V	0.7V	0.5V	1V/μs	20V	<1mA	100%	PASS
3.3V	5V	0.2V	0.2V	60V/µs	30V	<1mA	0%	PASS
3.3V	5V	0.2V	0.2V	60V/µs	20V	<1mA	0%	PASS
3.3V	5V	0.2V	0.2V	1V/μs	30V	<1mA	0%	PASS
3.3V	5V	0.2V	0.2V	1V/μs	20V	<1mA	0%	PASS

AN5274 - Rev 3 page 81/121

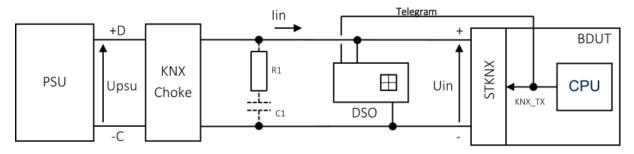

4.7.4.1 Signals waveforms for fan-in 10 mA kit - Upsu = 30 V - lin = 10 mA





AN5274 - Rev 3 page 82/121

AN5274 - Rev 3 page 83/121



4.8 Transmitter tests setups (8/2/2 - tests 6.1, 6.2 and 6.3)

These tests check the ability of the transmitter to generate proper signals at different bus loads.

The transmitter tests 6.1, 6.2 and 6.3 in the following sections have the common setup described below:

Figure 190. Transmitter tests 6.1, 6.2 and 6.3 setup

Oscilloscope channels:

- CH1: KNX TX (transmit data)
- CH2: Uin (DC and AC-Part)

Fan-in 10 mA kit: the CPU section consumption is 20 mA, so we have to use the DC-DC converter to keep the bus consumption lower than 10 mA fan-in. The configuration used is DC-DC converter voltage = 5 V, supplying the 3.3 V linear regulator U15:

- J17.2-4 closed
- J19.2-3 closed
- Other PSU config jumpers removed.

Fan-in 30 mA kit: the STKNX linear regulator is supplying the CPU section (19.2 mA consumption):

- J18.4-6
- Other PSU config jumpers removed.

A dedicated firmware in the CPU allows sending a specific telegram at STKNX data input.

The DC-DC converter output is charged with a resistor when we want to increase lin up to fan-in value (for Upsu = 20 V).

Only the "isolation" jumpers KNX_TX, GND, VLIN, VDCDC (between KNX section and CPU section) are connected.

4.9 Transmitter Test (Normal Current) - Test 1 (8/2/2 - test 6.1)

This test represents the sending of one device to the bus, which is equipped only with a few bus devices.

4.9.1 Test setup

The setup used is described in Section 4.8 Transmitter tests setups (8/2/2 - tests 6.1, 6.2 and 6.3), in which:

- R1 = C1 = NP
- The dedicated firmware "DPT_1-001_Telegram_Generator.bin" available at www.st.com (document "Test firmwares for EVALKITSTKNX") is loaded in the kit CPU to transmit continuously:
- the DPT 1.001 telegram (0x) BC 10 01 10 01 E1 00 81 BF
- a pause of x2 bytes 0xFF between each telegram.

AN5274 - Rev 3 page 84/121

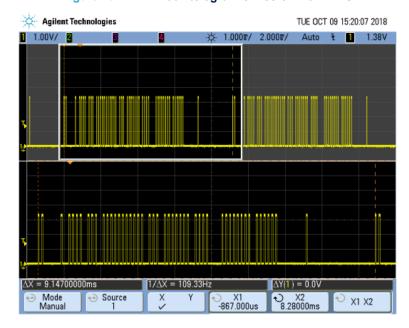


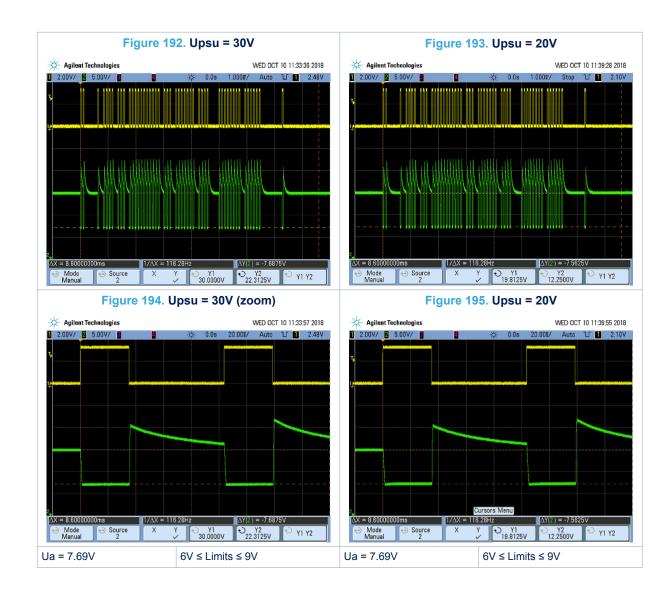
Figure 191. DPT 1.001 telegram emission from CPU

4.9.2 Test results

Table 14. Transmitter Test (Normal Current) - Test 1 test results

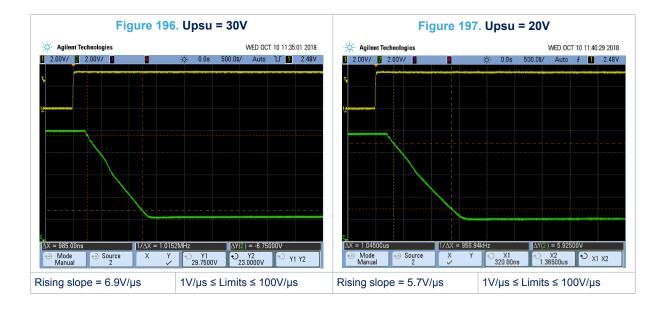
	EVALKITSTKNX (configuration	1	Test condition	ons	Test results			
Fan-in	Linear regulator	DC-DC converter	Upsu	lin (no TX)	lin (TX)	Ua L. Limit = 6V U. Limit = 9V	Ua rising slope L. Limit = 1V/ µs U. Limit = 100V/µs	Ua rising slope L. Limit = 1V/ µs U. Limit = 100V/µs	
10mA	3.3V not loaded	5V loaded with U15 to CPU section	30V	5.5mA	32mA	7.7V	6.9V/µs	40V/µs	
10mA	3.3V not loaded	5V loaded with U15 to CPU section	20V	8.8mA	36mA	7.7V	5.7V/μs	42V/µs	
10mA	3.3V not loaded	5V loadedwith U15 to (CPU section // $1.4k\Omega$)	30V	6.3mA	33mA	7.7V	6.9V/µs	40V/µs	
10mA	3.3V not loaded	5V loaded with U15 to (CPU section // $1.4k\Omega$)	20V	10mA	37mA	7.7V	5.8V/µs	42V/µs	
30mA	3.3V not loaded CPU selection	5V not loaded	30V	19.8mA	51mA	7.7V	6.9V/µs	41V/μs	
30mA	3.3V not loaded CPU selection	5V not loaded	20V	20mA	51mA	7.6V	5.7V/µs	38V/µs	
30mA	3.3V not loaded CPU selection	5V loaded with 213Ω	30V	26mA	62mA	7.7V	6.9V/µs	40V/µs	
30mA	3.3V not loaded CPU selection	5V loaded with 213Ω	20V	30mA	67mA	7.7V	5.8V/µs	42V/µs	

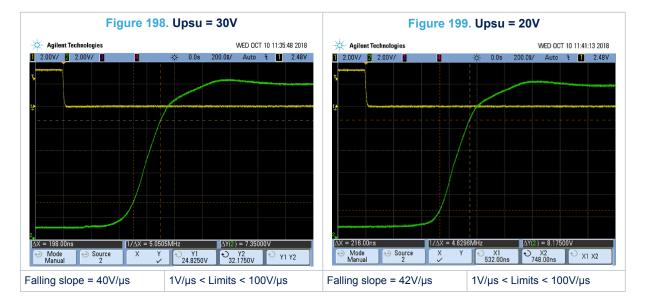
AN5274 - Rev 3 page 85/121


EVALKITSTKNX configuration			Test conditions			Test results		
Fan-in	Linear regulator	DC-DC converter	Upsu	lin (no TX)	lin (TX)	Ua L. Limit = 6V U. Limit = 9V	Ua rising slope L. Limit = 1V/ μs U. Limit = 100V/μs	Ua rising slope L. Limit = 1V/ μs U. Limit = 100V/μs
			Cumulative result				PASS	

4.9.2.1 Signals waveforms for fan-in 10 mA kit

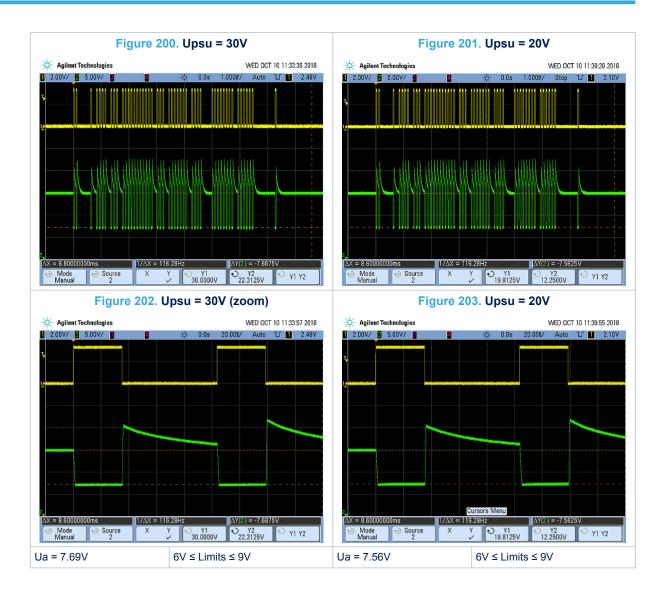
Below are reported the waveforms of the signals on the 10 mA fan-in kit, where the DC-DC converter 5 V is supplying the CPU section through the U15 3.3 V linear regulator.

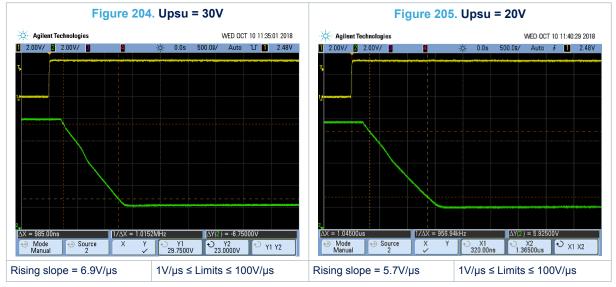

When not transmitting, lin = 5.5 mA. During transmission, lin = 32 mA.


The tests were also performed when charging the DC-DC output with an additional resistor in order to sink lin = 10 mA (fan-in), but no differences were observed on signals waveforms.

AN5274 - Rev 3 page 86/121

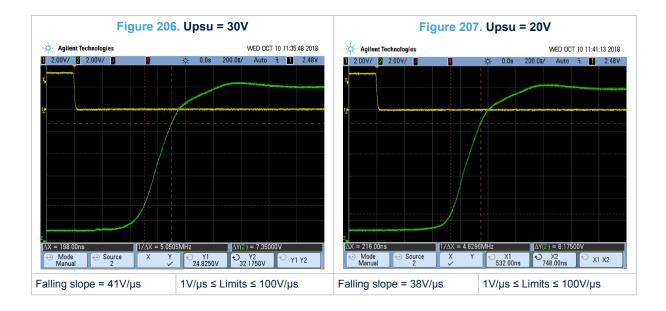
4.9.2.2 Signals waveforms for fan-in 30 mA kit


Below are reported the waveforms of the signals on the 30 mA fan-in kit, where the STKNX linear regulator is supplying the CPU section (19.2 mA consumption).


When not transmitting, lin = 19.8 mA. During transmission, lin = 50.5 mA.

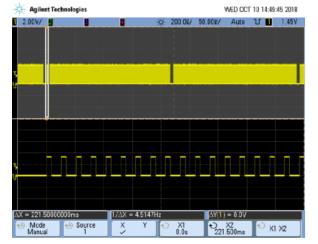
The tests were also performed when charging the DC-DC output with a resistor in order to sink lin = 30 mA (fan-in), but no differences were observed on signals waveforms.

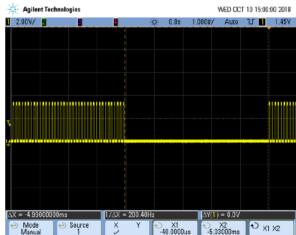
AN5274 - Rev 3 page 87/121



AN5274 - Rev 3 page 88/121

4.10 Transmitter Test (Normal Current) - Test 2 (8/2/2 - test 6.2)


This test represents the sending of one device to the bus, which is equipped only with a few bus devices.


4.10.1 Test setup

The setup used is described in Section 4.10.1 Test setup, in which:

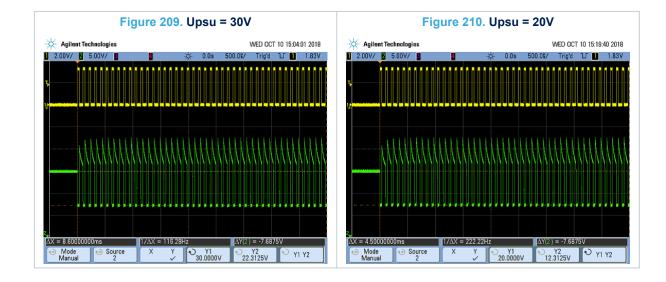
- R1 = C1 = NF
- The dedicated firmware "Zeros_x260_Frame.bin" available at www.st.com (document "Test firmwares for EVALKITSTKNX") is loaded in the kit CPU to transmit continuously:
- the MAXDATA telegram made of 260 bytes 0x00
- a pause of x6 bytes 0xFF between each telegram.

Figure 208. MAXDATA telegram emission from CPU

AN5274 - Rev 3 page 89/121

4.10.2 Test results

Table 15. Transmitter Test (Normal Current) - Test 2 tests results


	EVALKITSTKN)	Configuration	1	Test condition	ons	Test results
Fan-in	Linear regulator	DC-DC converter	Upsu	lin (no TX)	lin (TX)	Ua L. Limit = 6V U. Limit = 10.5V
10mA	3.3V not loaded	5V loaded with U15 to CPU section	30V	5.5mA	54mA	7.69V
10mA	3.3V not loaded	5V loaded with U15 to CPU section	20V	8.8mA	59mA	7.69V
10mA	3.3V not loaded	5V loaded with U15 to (CPU section // 1.4kΩ)	30V	6.3mA	56mA	7.69V
10mA	3.3V not loaded	5V loaded with U15 to (CPU section // 1.4kΩ)	20V	10mA	61mA	7.69V
30mA	3.3V loaded with CPU selection	5V not loaded	30V	19.8mA	78mA	7.69V
30mA	3.3V loaded with CPU selection	5V not loaded	20V	20mA	78mA	7.56V
30mA	3.3V loaded with CPU selection	5V loaded with 229Ω	30V	25mA	86mA	7.69V
30mA	3.3V loaded with CPU selection	5V loaded with 229Ω	20V	30mA	93mA	7.69V
			C	cumulative re	sult	PASS

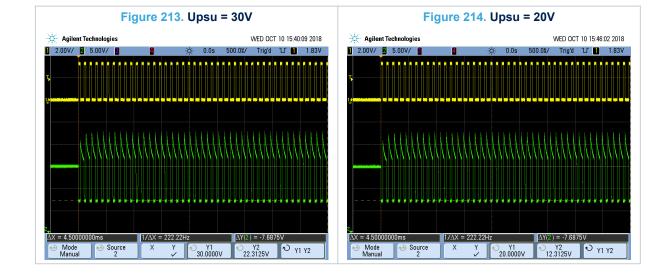
4.10.2.1 Signals waveforms for fan-in 10 mA kit

Below are reported the waveforms of the signals on the 10 mA fan-in kit, where the DC-DC converter 5 V is supplying the CPU section through the U15 3.3 V linear regulator.


When not transmitting, lin = 5.5 mA. During transmission, lin = 54 mA.

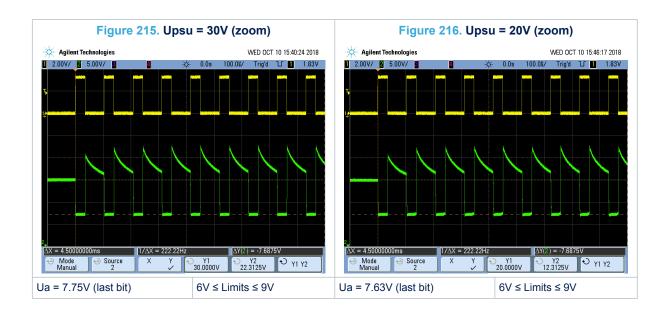
The tests were also performed when charging the DC-DC output with an additional resistor in order to consume lin = 10 mA (fan-in), but no differences were observed on signals waveforms.

AN5274 - Rev 3 page 90/121



4.10.2.2 Signals waveforms for fan-in 30 mA kit

Below are reported the waveforms of the signals on the 30 mA fan-in kit, where the STKNX linear regulator is supplying the CPU section (19.2 mA consumption).


When not transmitting, lin = 19.8 mA. During transmission, lin = 50.5 mA.

The tests were also performed when charging the DC-DC output with a resistor in order to consume lin = 30 mA (fan-in), but no differences were observed on signals waveforms.

AN5274 - Rev 3 page 91/121

4.11 Transmitter Test (Maximal Current) (8/2/2 - test 6.3)

This test represents the sending of one device to the bus, which is equipped with maximal number of bus devices.

4.11.1 Test setup

The setup used is described in Section 4.8 Transmitter tests setups (8/2/2 - tests 6.1, 6.2 and 6.3), in which:

- R1 = 22 Ω
- C1 = 1000 μF

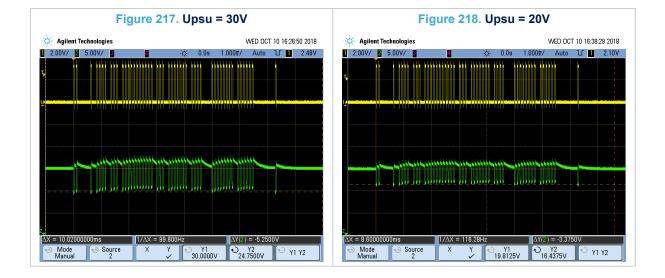
The DPT 1.001 telegram is transmitted by the CPU, see Section 4.9.1 Test setup for its description.

4.11.2 Tests results

Table 16. Transmitter Test (Maximal Current) tests results

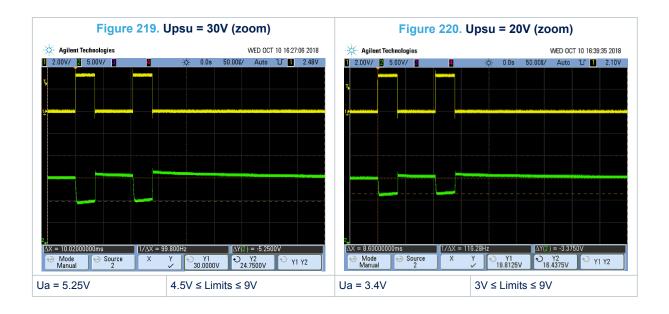
	EVALKITSTKNX (configuration	1	Test condition	ons		Test results	
Fan-in	Linear regulator	DC-DC converter	Upsu	lin (no TX)	lin (TX)	Ua L. Limit (30V) = 4.5V L. Limit (20V) = 3V U. Limit = 9V	Ua rising slope L. Limit = 1V/ µs U. Limit = 100V/µs	Ua rising slope L. Limit = 1V/ μs U. Limit = 100V/μs
10mA	3.3V not loaded	5V loaded with U15 to CPU section	30V	5.5mA	70mA	5.3V	2.5V/µs	22V/µs
10mA	3.3V not loaded	5V loaded with U15 to CPU section	20V	8.8mA	52mA	3.4V	2.3V/µs	22V/µs
10mA	3.3V not loaded	5V loaded with U15 to (CPU section // 1.4kΩ)	30V	6.3mA	71mA	5.3V	2.5V/µs	22V/µs
10mA	3.3V not loaded	5V loaded with U15 to (CPU section // 1.4kΩ)	20V	10mA	54mA	3.4V	2.3V/µs	22V/µs

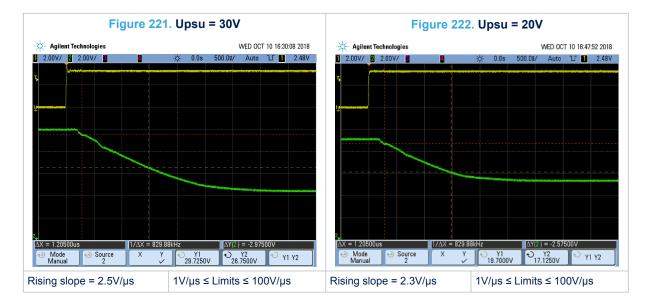
AN5274 - Rev 3 page 92/121

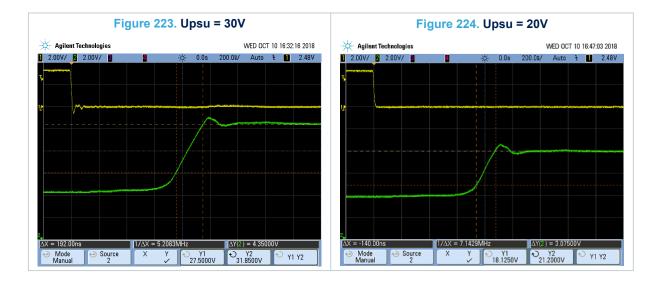

	EVALKITSTKNX (configuration	1	Test condition	ns	Test results			
Fan-in	Linear regulator	DC-DC converter	Upsu	lin (no TX)	lin (TX)	Ua L. Limit (30V) = 4.5V L. Limit (20V) = 3V U. Limit = 9V	Ua rising slope L. Limit = 1V/ µs U. Limit = 100V/µs	Ua rising slope L. Limit = 1V/ μs U. Limit = 100V/μs	
30mA	3.3V loaded with CPU selection	5V not loaded	30V	19.8mA	67mA	5.3V	2.5V/µs	20V/µs	
30mA	3.3V loaded with CPU selection	5V not loaded	20V	20mA	66mA	3.6V	2V/µs	20V/µs	
30mA	3.3V loaded with CPU selection	5V loaded with 213Ω	30V	26mA	94mA	5.3V	2.5V/µs	20V/µs	
30mA	3.3V loaded with CPU selection	5V loaded with 213Ω	20V	30mA	79mA	3.4V	2V/µs	20V/µs	
			Cumulative result			PASS			

4.11.2.1 Signals waveforms for fan-in 10 mA kit

Below are reported the waveforms of the signals on the 10 mA fan-in kit, where the DC-DC converter 5 V is supplying the CPU section through the U15 3.3 V linear regulator.

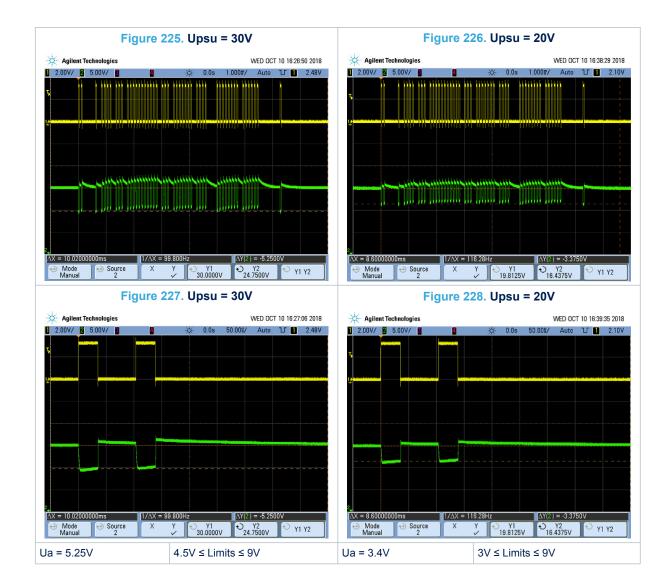

When not transmitting, lin = 5.5 mA. During transmission, lin = 32 mA.


The tests were also performed when charging the DC-DC output with an additional resistor in order to consume lin = 10 mA (fan-in), but no differences were observed on signals waveforms.



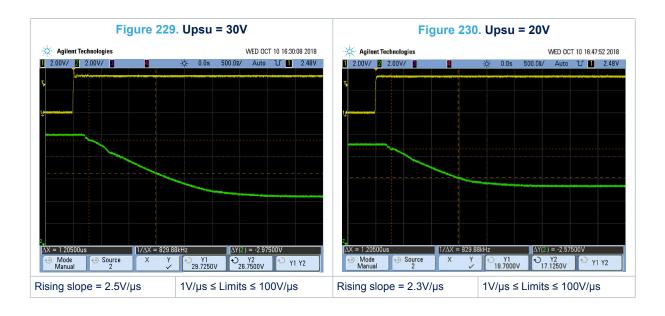
AN5274 - Rev 3 page 93/121

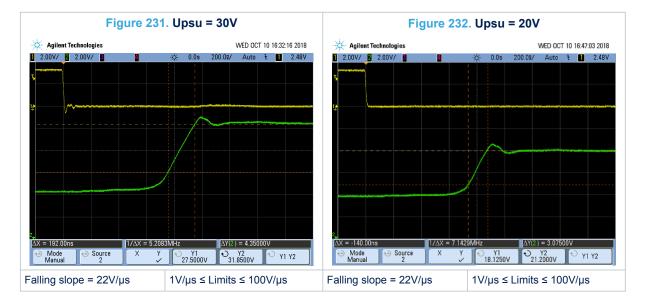
AN5274 - Rev 3 page 94/121


Falling slope = 22V/µs	1V/μs ≤ Limits ≤ 100V/μs	Falling slope = 22V/µs	1V/μs ≤ Limits ≤ 100V/μs
------------------------	--------------------------	------------------------	--------------------------

4.11.2.2 Signals waveforms for fan-in 30 mA kit

Below are reported the waveforms of the signals on the 30 mA fan-in kit, where the STKNX linear regulator is supplying the CPU section (19.2 mA consumption).


When not transmitting, lin = 19.8 mA. During transmission, lin = 50.5 mA.


The tests were also performed when charging the DC-DC output with a resistor in order to consume lin = 30 mA (fan-in), but no differences were observed on signals waveforms.

AN5274 - Rev 3 page 95/121

4.12 Transmitter Test (Minimal Current) (8/2/2 - test 6.4)

This test represents the simultaneous sending of the maximum number of devices at a bus segment.

The test requires a setup with 255 connected devices and was performed with the STKNX board used for KNX certification. It has not been repeated with the EVALKITSTKNX.

The results obtained with the certification board are shown below. No substantial difference is expected with the EVALKITSTKNX.

AN5274 - Rev 3 page 96/121

4.12.1 Test setup


PSU Upsu KNX Choke DSO BDUT

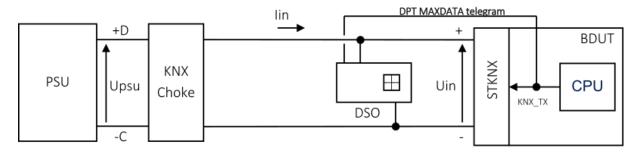
-C AUX

AUX

Figure 233. Transmitter test setup (minimal current)

4.12.2 Tests results

AN5274 - Rev 3 page 97/121


Ue min = 9.5V	Limit = 4V min
Ue max = 12.7V	Limit = 14.5V max
Cumulative results:	PASS

4.13 Propagation Delay (Transmitter) (8/2/2 - test 7.1)

This test checks the internal delay of the transmitter.

4.13.1 Test setup

Figure 235. Transmitter propagation delay test setup

Oscilloscope channels:

- CH1: KNX_TX (U12 AND gate output)⁽¹⁾
- CH2: Uin
- 1. the additional propagation delay in the gate is 8 ns maximum.

The dedicated firmware "Zeros_x260_Frame.bin" available at www.st.com (document "Test firmwares for EVALKITSTKNX") is loaded in the kit. See Section 4.10.1 Test setup for its description.

In non-isolated mode, the kit setting is identical to the setup described in Section 4.8 Transmitter tests setups (8/2/2 - tests 6.1, 6.2 and 6.3).

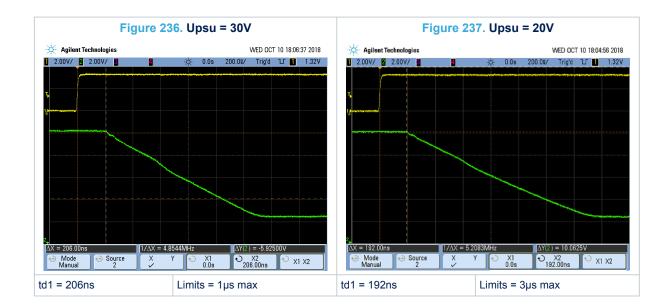
When the optocoupler is used, the following BOM modifications are applied.

- M11 open
- R1, R8, R5 populated
- CPU section is supplied from USB cable: J20.2-3 closed, J19.2-3 closed, every other supply jumpers open.

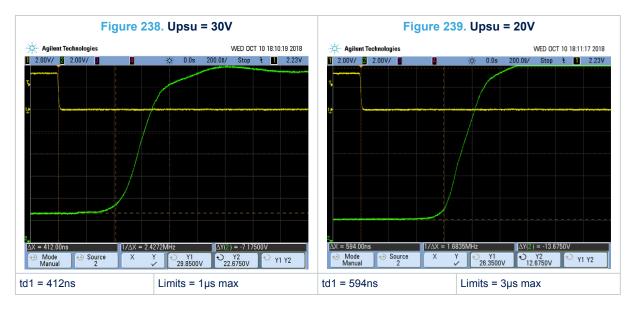
4.13.2 Tests results

Table 17. Transmitter Propagation Delay tests results

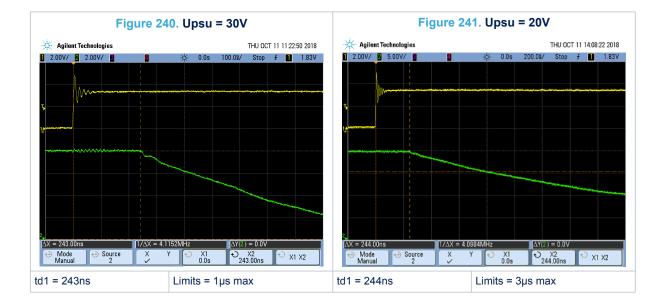
	EVALKITS	TKNX configuration		Test cond	itions	Test results	
Fan-in	Linear regulator	DC-DC converter	Optocoupler	Upsu	linx (no TX)	td1 Limit = 1µs	td2 Limit = 3µs
10mA	3.3V not loaded	5V loaded with U15 to CPU section	Not used	30V	5.5mA	206ns	412ns
10mA	3.3V not loaded	5V loaded with U15 to CPU section	Not used	20V	8.8mA	192ns	594ns
10mA	3.3V not loaded	5V loaded with U15 to (CPU section // $1.4k\Omega$)	Not used	30V	6.3mA	206ns	412ns
10mA	3.3V not loaded	5V loaded with U15 to (CPU section // $1.4k\Omega$)	Not used	20V	10mA	192ns	594ns

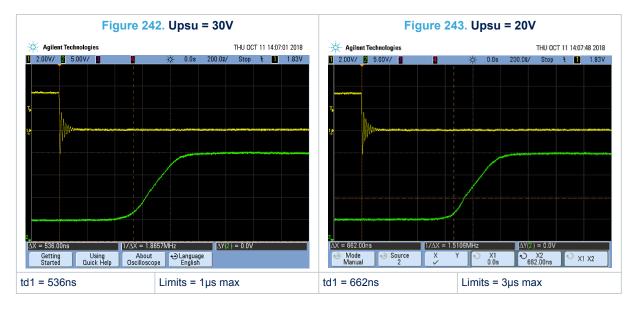

AN5274 - Rev 3 page 98/121

	EVALKITS1	TKNX configuration		Test con	ditions	Test r	esults
Fan-in	Linear regulator	DC-DC converter	Optocoupler	Upsu	linx (no TX)	td1 Limit = 1µs	td2 Limit = 3µs
30mA	3.3V loaded with CPU section	5V not loaded	Not used	30V	20mA	233ns	434ns
30mA	3.3V loaded with CPU section	5V not loaded	Not used	20V	20mA	218ns	616ns
30mA	3.3V loaded with CPU section	5V loaded with 213Ω	Not used	30V	26mA	233ns	434ns
30mA	3.3V loaded with CPU section	5V loaded with 213Ω	Not used	20V	30mA	218ns	616ns
10mA	Loaded with isolators	Not loaded	Included	30V	3mA	243ns	536ns
10mA	Loaded with isolators	Not loaded	Included	20V	3mA	244ns	662ns
10mA	Loaded with isolators	Not loaded	Included	30V	6.3mA	233ns	434ns
10mA	Loaded with isolators	Not loaded	Included	20V	10mA	218ns	616ns
30mA	Loaded with isolators	Not loaded	Included	30V	3mA	258ns	540ns
30mA	Loaded with isolators	Not loaded	Included	20V	3mA	238ns	668ns
30mA	Loaded with isolators	Not loaded	Included	30V	26mA	258ns	540ns
30mA	Loaded with isolators	Not loaded	Included	20V	30mA	238ns	668ns
				Cumulative result	PASS		

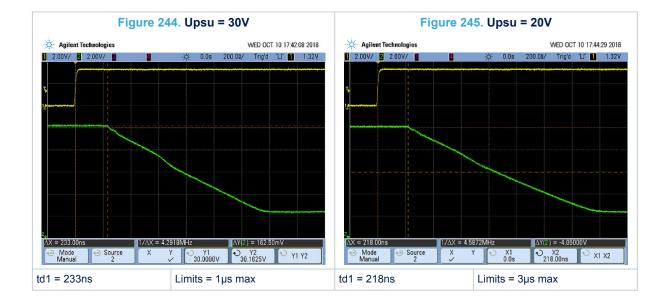

4.13.2.1 Signals waveforms for fan-in 10mA kit - not isolated

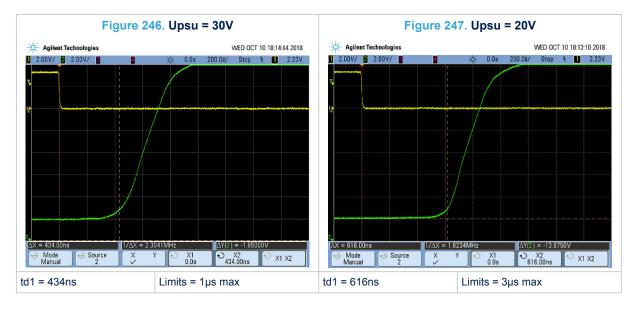
Below are reported the waveforms of the signals KNX_TX (U12 AND gate output) and Uin (AC and DC part) on the 10mA fan-in kit, when the optocoupler is not used.


AN5274 - Rev 3 page 99/121

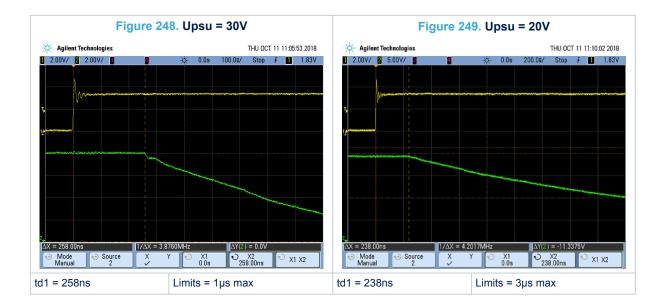

4.13.2.2 Signals waveforms for fan-in 10mA kit - isolated

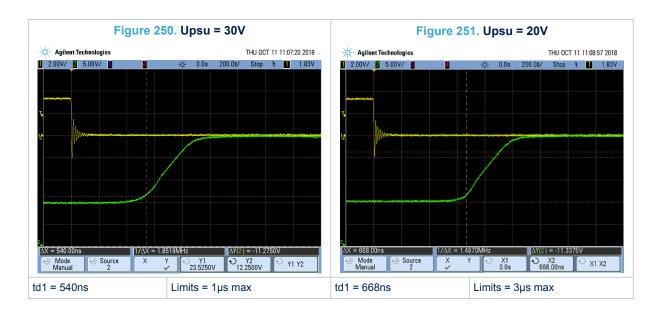
Below are reported the waveforms of the signals KNX_TX (U12 AND gate output) and Uin (AC and DC part) on the 10mA fan-in kit, when the optocoupler is used.


AN5274 - Rev 3 page 100/121


4.13.2.3 Signals waveforms for fan-in 30mA kit - not isolated

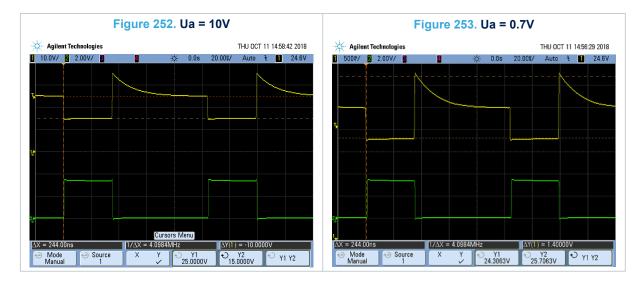
Below are reported the waveforms of the signals KNX_TX (U12 AND gate output) and Uin (AC and DC part) on the 10mA fan-in kit, when the optocoupler is not used.


AN5274 - Rev 3 page 101/121


4.13.2.4 Signals waveforms for fan-in 30mA kit - isolated

Below are reported the waveforms of the signals KNX_TX (U12 AND gate output) and Uin (AC and DC part) on the 10mA fan-in kit, when the optocoupler is used.

AN5274 - Rev 3 page 102/121


4.14 Propagation Delay (Receiver) (8/2/2 - test 7.2)

This test checks the internal delay of the receiver.

4.14.1 Test setup

The setup is identical to the sensitivity test described in Section 4.7.1 Test setup. The only difference is the AWG sending a continuous series of zero bits at the bus, with two distincts amplitudes values for Ua: Ua = 10V and Ua = 0.7V:

- Oscilloscope channels:
 - CH1: Uin
 - CH2: KNX_RX (CPU input PA0)

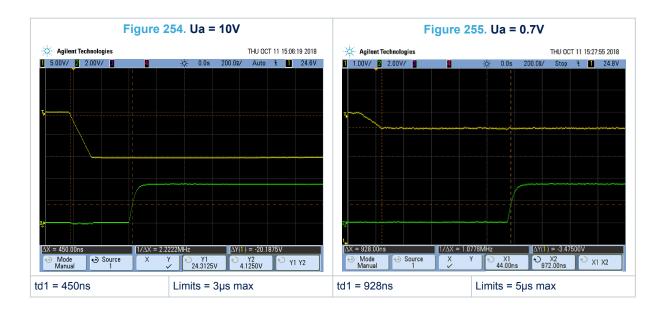
In non-isolated mode, the kit setting is the one described in Section 4.14.1 Test setup. When the optocoupler is used, the following BOM modifications are applied

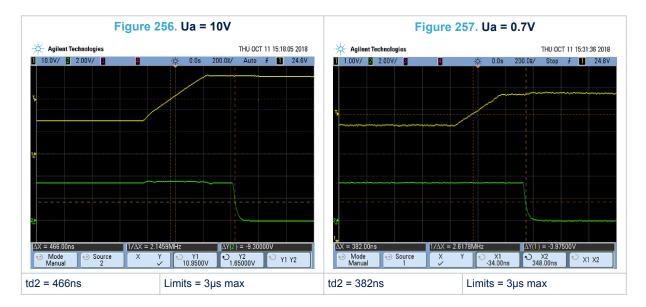
- M10 open
- R3, R6, R8, R5 populated
- CPU section is supplied from USB cable: J20.2-3 closed, J19.2-3 closed, every other supply jumpers open

AN5274 - Rev 3 page 103/121

4.14.2 Tests results

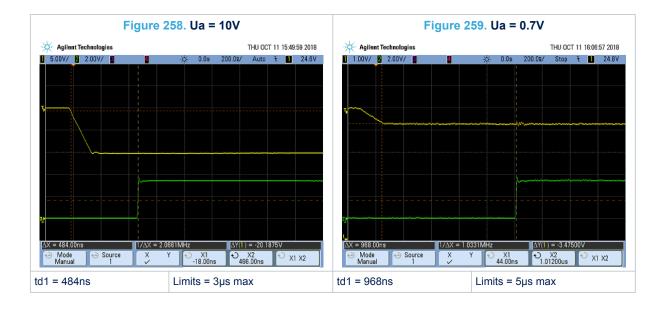
Table 18. Receiver Propagation Delay tests results

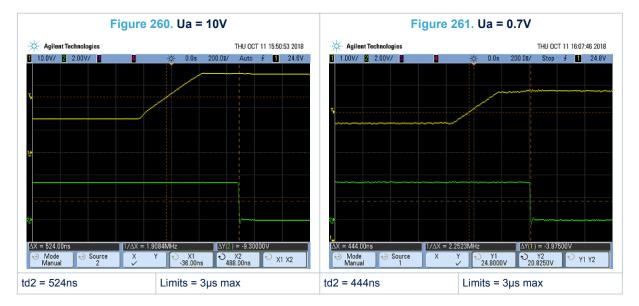

EVALKITSTKNX configuration				Test conditions			Test results			
Fan-in	Linear regulator	DC-DC converter	Optocoupler	Ua (Upsu=25V)	lin (no TX)	Vh	VI	td1 Limit = 3µs/ Ua=10V Limit = 5µs/ Ua=0.7V	td2 Limit = 3µs	
10mA	3.3V not loaded	5V loaded with U15 to CPU section	Not used	10V	5mA	3.4V	50mV	450ns	466ns	
10mA	3.3V not loaded	5V loaded with U15 to CPU section	Not used	0.7V	5mA	3.4V	50mV	928ns	382ns	
10mA	3.3V not loaded	5V loaded with U15 to (CPU section // 1.4kΩ)	Not used	10V	6.3mA	3.4V	50mV	450ns	466ns	
10mA	3.3V not loaded	5V loaded with U15 to (CPU section // 1.4kΩ)	Not used	0.7V	10mA	3.4V	50mV	928ns	382ns	
30mA	3.3V loaded with CPU section	5V not loaded	Not used	10V	3mA	3.32V	50mV	450ns	466ns	
30mA	3.3V loaded with CPU section	5V not loaded	Not used	0.7V	26mA	3.3V	25mV	894ns	396ns	
30mA	3.3V loaded with CPU section	5V loaded with 213Ω	Not used	10V	26mA	3.32V	50mV	450ns	466ns	
30mA	3.3V loaded with CPU section	5V loaded with 213Ω	Not used	0.7V	30mA	3.3V	25mV	894ns	396ns	
10mA	Loaded with isolators	Not loaded	Included	10V	5mA	3.3V	25mV	484ns	524ns	
10mA	Loaded with isolators	Not loaded	Included	0.7V	5mA	3.25V	75mV	968ns	444ns	
10mA	Loaded with isolators	Not loaded	Included	10V	6.3mA	3.3V	25mV	484ns	524ns	
10mA	Loaded with isolators	Not loaded	Included	0.7V	10mA	3.25V	75mV	968ns	444ns	
30mA	Loaded with isolators	Not loaded	Included	10V	3mA	3.3V	25mV	482ns	524ns	
30mA	Loaded with isolators	Not loaded	Included	0.7V	3mA	3.25V	75mV	904ns	448ns	
30mA	Loaded with isolators	Not loaded	Included	10V	26mA	3.3V	25mV	482ns	524ns	
30mA	Loaded with isolators	Not loaded	Included	0.7V	30mA	3.25V	75mV	904ns	448ns	
				Cumulative result	PASS					


AN5274 - Rev 3 page 104/121

4.14.2.1 Signals waveforms for fan-in 10mA kit - not isolated

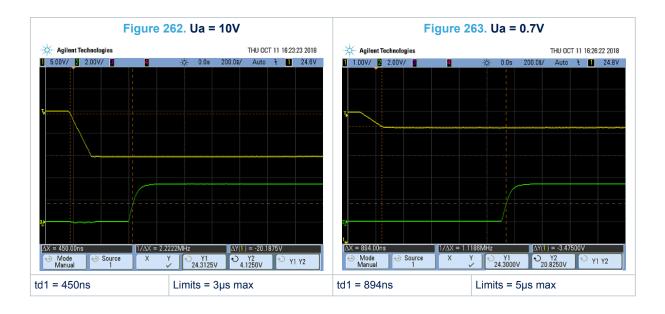
Below are reported the waveforms of the signals Uin (AC and DC part) and KNX_RX (CPU input PA0) on the 10mA fan-in kit, when the optocoupler is not used.

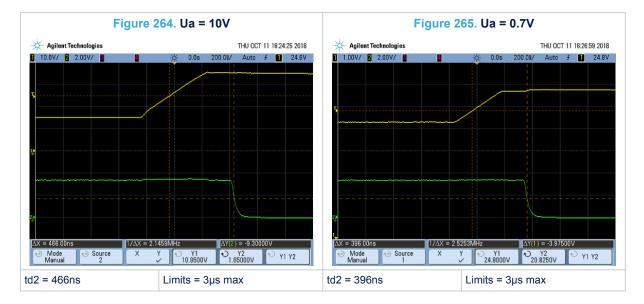



4.14.2.2 Signals waveforms for fan-in 10mA kit - isolated

Below are reported the waveforms of the signals Uin (AC and DC part) and KNX_RX (CPU input PA0) on the 10mA fan-in kit, when the optocoupler is used.

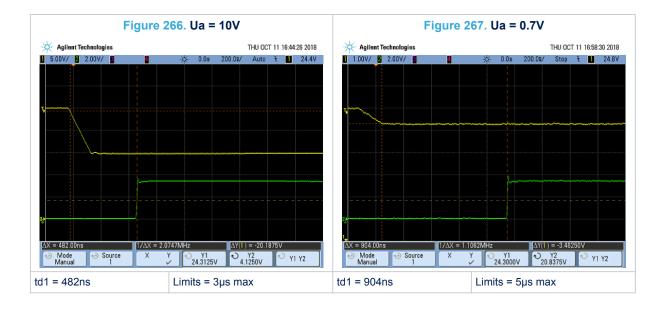
AN5274 - Rev 3 page 105/121

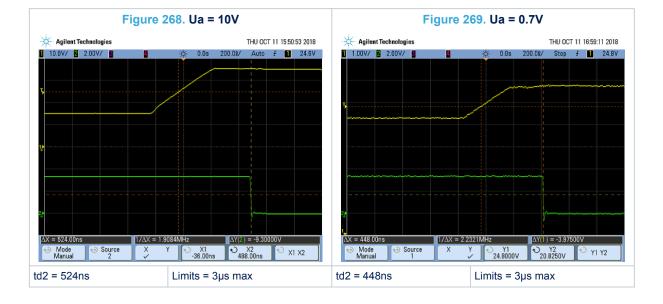



4.14.2.3 Signals waveforms for fan-in 30 mA kit - not isolated

Below are reported the waveforms of the signals Uin (AC and DC part) and KNX_RX (CPU input PA0) on the 30 mA fan-in kit, when the optocoupler is not used.

AN5274 - Rev 3 page 106/121




4.14.2.4 Signals waveforms for fan-in 30 mA kit - isolated

Below are reported the waveforms of the signals Uin (AC and DC part) and KNX_RX (CPU input PA0) on the 10 mA fan-in kit, when the optocoupler is used.

AN5274 - Rev 3 page 107/121

AN5274 - Rev 3 page 108/121

5 References

8/2/2 KNX System Conformance Testing - Medium Dependant Layers Tests - TP1 Physical and Link Layer Tests - Version 01.04.02 AS.

9/1 Basic and System Components/Devices - Minimum Requirements - Standardized solutions - Tests KNX System Conformance Testing - Cables and Connectors - Version 01.02.01 AS.

AN5274 - Rev 3 page 109/121

Revision history

Table 19. Revision history

Date	Revision	Changes
19-Apr-2019	1	Initial release.
06-Nov-2019	2	Change to Section 3.3: CPU section, Section 3.3.1: KNX_TX signal generation, Section : 3.3.1.1 KNX_TX generated from AND gate and Section : 3.3.1.2 KNX_TX generated from one single GPIO (no AND gate).
		Additional bullet point added to Section : 3.6.4.4. Dimming mode (application example)
		In Section 3.2.2 Layout recommendations
		- updated Figure 9. STKNX area routed using top and bottom layers only
09-Jan-2021	3	- updated bullet point :"Keep the following power loops short:"
		- updated Figure 10. Layout recommendations description
		- updated Figure 11. Layout recommendations application

AN5274 - Rev 3 page 110/121

Contents

1	EVA	LKITST	ΓKNX presentation	3
2	Quid	ck start	t	4
	2.1	Syste	m requirements	4
	2.2	Gettin	ng started	4
3	EVA	LKITST	TKNX hardware description	5
	3.1	Power	r consumption characteristics	5
	3.2	STKN	IX section	6
		3.2.1	Electrical description	6
		3.2.2	Layout recommendations	9
	3.3	CPU s	section	11
		3.3.1	KNX_TX signal generation	11
		3.3.2	Crystals oscillators	13
	3.4	Isolati	ion section	15
		3.4.1	STKNX optocouplers enabling	15
		3.4.2	STKNX optocoupler connections	16
		3.4.3	Optocoupler LED current	16
		3.4.4	Optocouplers propagation delay	19
	3.5	EVALI	KITSTKNX power supply configuration	23
		3.5.1	Jumpers in STKNX section	25
		3.5.2	Jumpers for power supply routing	26
		3.5.3	Jumpers for kit regulator routing	27
		3.5.4	Power supply configuration examples	27
	3.6	Debug	g and control section	30
		3.6.1	Kit power supply from USB connector	30
		3.6.2	Debug/programming interface	31
		3.6.3	Virtual COM port	31
		3.6.4	STLINK CPU crystal oscillator	31
4	KNX	physic	cal layer performance vs. 8/2/2 tests	32
	4.1	Gener	ral test setup	32
	4.2	Power	r Conversion (Switch On Fast) (8/2/2 - test 4.2)	32

	4.2.1	Test setup	33
	4.2.2	Tests results - fan-in = 10 mA	34
	4.2.3	Tests results - fan-in = 30 mA	38
4.3	Power	Conversion (Switch On/Off Slow) (8/2/2 - test 4.3)	42
	4.3.1	Test setup	42
	4.3.2	Tests results - fan-in = 10 mA	43
	4.3.3	Tests results - fan-in = 30 mA	45
4.4	Power	Conversion (Load Changes) (8/2/2 - test 4.4)	48
	4.4.1	Test setup	49
	4.4.2	Tests results - fan-in = 10 mA	50
	4.4.3	Tests results - fan-in = 30 mA	56
4.5	Power	Conversion (Reverse Voltage Protection RVP) (8/2/2 - test 4.5)	63
	4.5.1	Test setup	63
	4.5.2	Tests results - fan-in = 10 mA	64
	4.5.3	Tests results - fan-in = 30 mA	65
4.6	Receive	er - Pulse-Impedance (8/2/2 - test 5.1)	66
	4.6.1	Test setup	66
	4.6.2	Tests results - fan-in = 10 mA	67
	4.6.3	Tests results - fan-in = 30mA	71
4.7	Receive	er - Sensitivity (8/2/2 - test 5.2)	76
	4.7.1	Test setup	76
	4.7.2	EVALKITSTKNX settings	77
	4.7.3	Waveform generation at BDUT input	77
	4.7.4	Test results	80
4.8	Transm	nitter tests setups (8/2/2 - tests 6.1, 6.2 and 6.3)	84
4.9	Transm	nitter Test (Normal Current) - Test 1 (8/2/2 - test 6.1)	84
	4.9.1	Test setup	84
	4.9.2	Test results	85
4.10	Transm	nitter Test (Normal Current) - Test 2 (8/2/2 - test 6.2)	89
	4.10.1	Test setup	89
	4.10.2	Test results	90
4.11	Transm	nitter Test (Maximal Current) (8/2/2 - test 6.3)	92

		4.11.1	Test setup	. 92
		4.11.2	Tests results	. 92
	4.12	Transm	nitter Test (Minimal Current) (8/2/2 - test 6.4)	. 96
		4.12.1	Test setup	. 97
		4.12.2	Tests results	. 97
	4.13	Propag	ation Delay (Transmitter) (8/2/2 - test 7.1)	. 98
		4.13.1	Test setup	. 98
		4.13.2	Tests results	. 98
	4.14	Propag	ation Delay (Receiver) (8/2/2 - test 7.2)	103
		4.14.1	Test setup	103
		4.14.2	Tests results	104
5	Refe	rences		09
Rev	ision l	history		110
Con	itents		1	111
List	of tab	les		114
List	of fia	ures		l15

List of tables

Table 1.	EVALKITSTKNX power consumption figures	. 5
Table 2.	Switch On Fast tests results - fan-in = 10 mA	34
Table 3.	Switch On Fast tests results - fan-in = 30 mA	38
Table 4.	Switch On/Off Slow tests results - fan-in = 10 mA	43
Table 5.	Switch On/Off Slow tests results - fan-in = 30mA	46
Table 6.	Load Changes tests results - fan-in = 10 mA	50
Table 7.	Load Changes tests results - fan-in = 30 mA	56
Table 8.	Reverse Voltage Protection tests results - fan-in = 10 mA	64
Table 9.	Reverse Voltage Protection tests results - fan-in = 30 mA	65
Table 10.	Pulse Impedance tests results - fan-in = 10mA	67
Table 11.	Pulse Impedance tests results - fan-in = 30mA	72
Table 12.	Sensitivity tests results - fan-in = 10mA	80
Table 13.	Sensitivity tests results - fan-in = 30mA	81
Table 14.	Transmitter Test (Normal Current) - Test 1 test results	85
Table 15.	Transmitter Test (Normal Current) - Test 2 tests results	90
Table 16.	Transmitter Test (Maximal Current) tests results	92
Table 17.	Transmitter Propagation Delay tests results	98
Table 18.	Receiver Propagation Delay tests results	104
Table 19.	Revision history	110

List of figures

Figure 1.	STKNX evaluation kit (70 x 155 mm)	
Figure 2.	STKNX certificate of conformity	
Figure 3.	EVALKITSTKNX functional block diagram	
Figure 4.	Gold colored jumper	
Figure 5.	KNX signals during transmission	
Figure 6.	KNX signals during reception	
Figure 7.	Recommended DC bias characteristic for Cgate	. 8
Figure 8.	Non-recommended DC bias characteristic for Cgate	. 8
Figure 9.	STKNX area routed using top and bottom layers only	10
Figure 10.	Layout recommendations description	10
Figure 11.	Layout recommendations application	11
Figure 12.	Transmit signal generation	12
Figure 13.	One pulse mode	13
Figure 14.	16MHz oscillator response	14
Figure 15.	32.768kHz oscillator response	14
Figure 16.	X-NUCLEO-LEDA1 board plugged on EVALKITSTKNX	15
Figure 17.	Optocoupler simulation diagram	17
Figure 18.	Simulation results: -40°C to +85°C	17
Figure 19.	Simulation results for T = 35°C	18
Figure 20.	Optocoupler threshold current	19
Figure 21.	Optocoupler delay - rising edge - cathode controlled	20
Figure 22.	Optocoupler delay - falling edge - cathode controlled	21
Figure 23.	Optocoupler delay - rising edge - anode controlled	22
Figure 24.	Optocoupler delay - falling edge - anode controlled	23
Figure 25.	EVALKITSTKNX block diagram with power supply routes	24
Figure 26.	Jumper locations for power supply routing and configuration	25
Figure 27.	Jumpers in STKNX section	25
Figure 28.	Jumpers for supply routing	
Figure 29.	Power supply routing with J16, J17 and J18	26
Figure 30.	STKNX mode DC-DC 5 V	
Figure 31.	J7, J8 and J9 config for DC-DC 5 V mode	
Figure 32.	STKNX mode DC-DC 3V3	
Figure 33.	J7, J8 and J9 config for DC-DC 3V3 mode	
Figure 34.	FW mode	
Figure 35.	Dimming demonstration mode	
Figure 36.	J7, J8 and J9 config for dimming demonstration mode	29
Figure 37.	EVALKITSTKNX M32 and M43	30
Figure 38.	Virtual COM port	
Figure 39.	8MHz oscillator response	
Figure 40.	Switch On Fast test setup	33
Figure 41.	MOSFET circuit for power supply connection	
Figure 42.	Upsu = 30V, Rcable = 0Ω (linDC = 10mA)	
Figure 43.	Upsu = 20V, Rcable = 0Ω (IinDC = 10mA)	35
Figure 44.	Upsu = 30V, Rcable = 0Ω (IinDC = 2.7mA)	
Figure 45.	Upsu = 20V, Rcable = 0Ω (linDC = 4mA)	
Figure 46.	Upsu = 30V, Rcable = 0Ω (IinDC = 6.3mA)	
Figure 47.	Upsu = 20V, Rcable = 0Ω (IinDC = 10mA)	
Figure 48.	Upsu = 30V, Rcable = 35Ω (linDC = 6.3mA)	
Figure 49.	Upsu = 20V, Rcable = 35Ω (linDC = 10mA)	
Figure 50.	Upsu = 30V, Rcable = 0Ω (IinDC = 5.8mA)	
Figure 51.	Upsu = 20V, Rcable = 0Ω (linDC = 10mA)	
Figure 52.	Upsu = 30V Rcable = 00 (linDC = 12.5mA)	39

Figure 53.	Upsu = 20V, Rcable = 0Ω (linDC = 12.4mA)	39
Figure 54.	Upsu = 30V, Rcable = 0Ω (linDC = 21mA)	
Figure 55.	Upsu = 20V, Rcable = 0Ω (linDC = 21mA)	40
Figure 56.	Upsu = 30V, Rcable = 0Ω (linDC = 3mA)	
Figure 57.	Upsu = 20V, Rcable = 0Ω (linDC = 4.6mA)	
Figure 58.	Upsu = 30V, Rcable = 0Ω (linDC = 18.5mA)	
Figure 59.	Upsu = 20V, Rcable = 0Ω (linDC = 30mA)	
Figure 60.	Upsu = 30V, Rcable = 35Ω (linDC = 18.5 mA)	
Figure 61.	Upsu = 20V, Rcable = 35Ω (linDC = 30mA)	
Figure 62.	Upsu = 30V, Rcable = 0Ω (linDC = 19mA)	
Figure 63.	Upsu = 20V, Rcable = 0Ω (linDC = 30mA)	
Figure 64.	Switch On/Off Slow test setup	
Figure 65.	Upsu = 30V (linDC = 10mA)	
Figure 66.	Upsu = 20V (linDC = 10mA)	
Figure 67.	Upsu = 30V (linDC = 2.7mA)	
Figure 68.	Upsu = 20V (linDC = 4mA)	
Figure 69.	Upsu = 30V (linDC = 6.3mA)	
Figure 70.	Upsu = 20V (linDC = 10mA)	
Figure 71.	Upsu = 30V (linDC = 5.8mA)	
Figure 72.	Upsu = 20V (linDC = 10mA)	
Figure 73.	Upsu = 30V (linDC = 12.5mA)	
Figure 74.	Upsu = 20V (linDC = 12.4mA)	
Figure 75.	Upsu = 30V (linDC = 20.7mA)	
Figure 76.	Upsu = 20V (linDC = 20.7mA)	
Figure 77.	Upsu = 30V (linDC = 18.5mA)	
Figure 78.	Upsu = 20V (linDC = 30mA)	
Figure 79.	Upsu = 30V (linDC = 18.7mA)	
Figure 80.	Upsu = 20V (linDC = 30mA)	
Figure 81.	Load Changes test setup	
Figure 82.	MOSFET circuit for load switching	
Figure 83.	Upsu = 30V	
Figure 84.	Upsu = 20V	
Figure 85.	Upsu = 30V	
Figure 86.	Upsu = 20V	
Figure 87.	Upsu = 30V	
Figure 88.	Upsu = 20V	
Figure 89.		
Figure 90.	Upsu = 20V	
Figure 91.	Upsu = 30V	
Figure 92.	Upsu = 20V	
Figure 93.	Upsu = 30V	
Figure 94.	Upsu = 20V	
Figure 95.	Upsu = 30V	
Figure 96.	Upsu = 20V	
Figure 97.	Upsu = 30V	
Figure 98.	Upsu = 20V	
Figure 99.	Upsu = 30V	
Figure 100.	Upsu = 20V	
Figure 101.	Upsu = 30V	
Figure 102.	Upsu = 20V	
Figure 103.	Upsu = 30V	
Figure 104.	Upsu = 20V	
Figure 105.	Upsu = 30V	
rigure 106.	Upsu = 20V	56

Figure 107.	Upsu = 30V	
Figure 108.	Upsu = 20V	58
Figure 109.	Upsu = 30V	58
Figure 110.	Upsu = 20V	
Figure 111.	Upsu = 30V	
Figure 112.	Upsu = 20V	
Figure 113.	Upsu = 30V	
Figure 114.	Upsu = 20V	
Figure 115.	Upsu = 30V	
Figure 116.	Upsu = 20V	
Figure 117.	Upsu = 30V	
Figure 118.	Upsu = 20V	
Figure 119.	Upsu = 30V	
Figure 120.	Upsu = 20V	
Figure 121.	Upsu = 30V	
Figure 122.	Upsu = 20V	
Figure 123.	Upsu = 30V	
Figure 124.	Upsu = 20V	
Figure 125.	Upsu = 30V	
Figure 126.	Upsu = 20V	
Figure 127. Figure 128.	Upsu = 30V	
Figure 129.	Upsu = 30V	
Figure 130.	Upsu = 20V	
Figure 131.	Upsu = 30V, Rcable = 0Ω .	
Figure 131.	Upsu = 20V, Reable = 0Ω .	
Figure 133.	Upsu = 30V, Rcable = 35Ω .	
Figure 134.	Upsu = 20V, Reable = 35Ω .	
Figure 135.	Upsu = 30V, Rcable = 0Ω .	
Figure 136.	Upsu = 20V, Rcable = 0Ω .	
Figure 137.	Upsu = 30V, Rcable = 35Ω .	
Figure 138.	Upsu = 20V, Rcable = 35Ω	
Figure 139.	Pulse-Impedance test setup	
Figure 140.	Udev max & Up2 adjustments	
Figure 141.	A1/A2	
Figure 142.	la1 = Ushunt / Rshunt	68
Figure 143.	la2 = Ushunt / Rshunt & lend/la2	68
Figure 144.	A1/A2	69
Figure 145.	la1 = Ushunt / Rshunt	69
Figure 146.	la2 = Ushunt / Rshunt & lend/la2	69
Figure 147.	A1/A2	70
Figure 148.	Ia1 = Ushunt / Rshunt	70
Figure 149.	la2 = Ushunt / Rshunt & lend/la2	70
Figure 150.	A1/A2	71
Figure 151.	A1/A2	71
Figure 152.	A1/A2	
Figure 153.	la1 = Ushunt / Rshunt	
Figure 154.	la2 = Ushunt / Rshunt & lend/la2	
Figure 155.	Udev max & Up2 adjustments	
Figure 156.	A1/A2	
Figure 157.	la1 = Ushunt / Rshunt	
Figure 158.	la2 = Ushunt / Rshunt & lend/la2	
Figure 159.	Udev max & Up2 adjustments	
Figure 160.	A1/A2	74

Figure 161.	la1 = Ushunt / Rshunt	
Figure 162.	la2 = Ushunt / Rshunt & lend/la2	
Figure 163.	Udev max & Up2 adjustments	75
Figure 164.	A1/A2	75
Figure 165.	Ia1 = Ushunt / Rshunt	
Figure 166.	la2 = Ushunt / Rshunt & lend/la2	
Figure 167.	Sensitivity test setup	76
Figure 168.	Rising and falling slopes ≈ 60V/µs	77
Figure 169.	Rising and falling slopes ≈ 1V/µs	77
Figure 170.	Rising and falling slopes ≈ 60V/µs	78
Figure 171.	Rising and falling slopes ≈ 1V/µs	78
Figure 172.	Rising and falling slopes ≈ 60V/µs	78
Figure 173.	Rising and falling slopes ≈ 1V/µs	78
Figure 174.	Rising and falling slopes ≈ 60V/µs	79
Figure 175.	Rising and falling slopes ≈ 1V/µs	79
Figure 176.	Rising and falling slopes ≈ 60V/µs	
Figure 177.	Rising and falling slopes ≈ 1V/µs	
Figure 178.	Rising and falling slopes ≈ 60V/µs	
Figure 179.	Rising and falling slopes ≈ 1V/µs	
Figure 180.	Ua1 = Ua2 = 9V, Slopes = 60V/µs	
Figure 181.	Ua1 = Ua2 = 9V, Slopes = 60V/µs (zoom)	
Figure 182.	Ua1 = Ua2 = 9V, Slopes = 1V/µs	
Figure 183.	Ua1 = Ua2 = 9V, Slopes = 1V/µs (zoom)	
Figure 184.	Ua1 0.7V, Ua2 = 0.5V, Slopes = 60V/µs	
Figure 185.	Ua1 0.7V, Ua2 = 0.5V, Slopes = 60V/µs (zoom)	
Figure 186.	Ua1 0.7V, Ua2 = 0.5V, Slopes = 1V/µs	
Figure 187.	Ua1 0.7V, Ua2 = 0.5V, Slopes = 1V/µs (zoom)	
Figure 188.	Ua1 0.2V, Ua2 = 0.2V, Slopes = 60V/µs	
Figure 189.	Ua1 0.2V, Ua2 = 0.2V, Slopes = 1V/µs	
Figure 190.	Transmitter tests 6.1, 6.2 and 6.3 setup	
Figure 191.	DPT 1.001 telegram emission from CPU	
Figure 192.	Upsu = 30V	
Figure 193.	Upsu = 20V	
Figure 194.	Upsu = 30V (zoom)	
Figure 195.	Upsu = 20V	
Figure 196.	Upsu = 30V	
Figure 197.	·	
Figure 198.	Upsu = 30V	
Figure 199.	Upsu = 20V	
Figure 200.	Upsu = 30V	
Figure 201.	Upsu = 20V	
Figure 202.	Upsu = 30V (zoom)	
Figure 203.	Upsu = 20V	
Figure 204.	Upsu = 30V	
Figure 205.	Upsu = 20V	
Figure 206.	Upsu = 30V	
Figure 207.	Upsu = 20V	
Figure 208.	MAXDATA telegram emission from CPU	
Figure 200.	Upsu = 30V	
Figure 210.	Upsu = 20V	
Figure 211.	Upsu = 30V (zoom)	
Figure 211.	Upsu = 20V (zoom)	
Figure 213.	Upsu = 30V	
Figure 214.	Upsu = 20V	
i igule 2 14.	Орои — 204	91

Figure 215.	Upsu = 30V (zoom)
Figure 216.	Upsu = 20V (zoom)92
Figure 217.	Upsu = 30V
Figure 218.	Upsu = 20V
Figure 219.	Upsu = 30V (zoom)94
Figure 220.	Upsu = 20V (zoom)94
Figure 221.	Upsu = 30V
Figure 222.	Upsu = 20V
Figure 223.	Upsu = 30V
Figure 224.	Upsu = 20V
Figure 225.	Upsu = 30V
Figure 226.	Upsu = 20V
Figure 227.	Upsu = 30V
Figure 228.	Upsu = 20V
Figure 229.	Upsu = 30V
Figure 230.	Upsu = 20V
Figure 231.	Upsu = 30V
Figure 232.	Upsu = 20V
Figure 233.	Transmitter test setup (minimal current)
Figure 234.	Upsu = 25V
Figure 235.	Transmitter propagation delay test setup
Figure 236.	Upsu = 30V
Figure 237.	Upsu = 20V
Figure 238.	Upsu = 30V
Figure 239.	Upsu = 20V
Figure 240.	Upsu = 30V
Figure 241.	Upsu = 20V
Figure 242.	Upsu = 30V
Figure 243.	Upsu = 20V
Figure 244.	Upsu = 30V
Figure 245.	Upsu = 20V
Figure 246.	Upsu = 30V
Figure 247.	Upsu = 20V
Figure 248.	Upsu = 30V
Figure 249.	Upsu = 20V
Figure 250.	Upsu = 30V
Figure 251.	
Figure 252.	Ua = 10V
Figure 253.	Ua = 0.7V
Figure 254.	Ua = 10V
Figure 255.	Ua = 0.7V
Figure 256.	Ua = 10V
Figure 257.	Ua = 0.7V
Figure 258.	Ua = 10V
Figure 259.	Ua = 0.7V
Figure 260.	Ua = 10V
Figure 261.	Ua = 0.7V
Figure 262.	Ua = 10V
Figure 263.	Ua = 0.7V
Figure 264.	Ua = 10V
Figure 265.	Ua = 0.7V
Figure 266.	Ua = 10V
Figure 267.	Ua = 0.7V
Figure 268.	Ua = 10V

List of figures

AN5274 - Rev 3 page 120/121

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

AN5274 - Rev 3 page 121/121