

Migration from STM32L5 series to STM32U5 series microcontrollers

Introduction

The designers of STM32 microcontroller applications must have the possibility to easily replace one microcontroller type with another one from the same product family or products from a different family. The reasons for migrating an application to a different microcontroller can be for example:

- to fulfill higher product requirements, extra demands on memory size, or an increased number of I/Os
- to meet cost reduction constraints that require to switch to smaller components and shrink the PCB area

This application note details the steps required to migrate from a design based on a STM32L5 series device to an application based on one of the STM32U5 series MCUs.

This document provides guidelines for the hardware and the peripheral migration. To better understand the information inside this application note, the user must be familiar with the STM32 microcontroller family.

For additional information, refer to the product datasheets and reference manuals available on www.st.com

1 STM32U5 series

The STM32U5 series devices are ultra-low-power and security MCUs, with enhanced efficiency, performance, and memory size such as:

- Up to 512 Kbytes of dual-bank flash memory with ECC accelerated by instruction/data caches and up to 274 Kbytes of embedded SRAM with optional ECC and 2 Kbytes of backup SRAM for STM32U535/ STM32U545
- Up to 2 Mbytes of dual-bank flash memory with ECC accelerated by instruction/data caches and up to 786 Kbytes of embedded SRAM with optional ECC and 2 Kbytes of backup SRAM for STM32U575/ STM32U585
- Up to 4 Mbytes of dual-bank flash memory with ECC accelerated by instruction/data caches and up to 2512 Kbytes of embedded SRAM with optional ECC and 2 Kbytes of backup SRAM for STM32U59x/ STM32U5Ax
- Up to 4 Mbytes of dual-bank flash memory with ECC accelerated by instruction/data caches and up to 3026 Kbytes of embedded SRAM with optional ECC and 2 Kbytes of backup SRAM for STM32U5Fx/ STM32U5Gx

These devices reuse the same embedded Arm[®] Cortex[®]-M33 32-bit core than the STM32L5. This core runs at 160 MHz for STM32U5 series MCUs versus 110 MHz for STM32L5. This core provides improved security features due to the presence of the ultra-low-power Arm[®] TrustZone[®] for Armv8-M.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

The STM32U5 series includes a larger set of peripherals with more advanced features compared to the STM32L5, such as the ones listed below:

- Power consumption
 - Optimized power consumption in dynamic, using SMPS (DC/DC) and LDO in parallel (on-the-fly selection)
 - Optimized power consumption in low-power modes:
 - DMA and autonomous peripherals available in Stop mode: LPDMA (low-power DMA featuring one master port) functional in SmartRun domain (SRD). SRD architecture relies on a DMA allowing autonomous operation during low-power modes down to Stop 2.
 - Possibility to power on or off some SRAM banks and to keep them in low-power modes
 - Timers running in Stop mode with input capture mode
 - Optimized RTC consumption
 - Advanced 14-bit ADC and ultra-low-power 12-bit ADC
- Security: upgraded features versus STM32L5
 - AES and PKA (public key accelerator), side attack resistant (by hardware)
 - HUK (hardware unique key) to get a secure storage resistant to logical, side and physical attack
 - Life-cycle/RDP (readout protection): possibility to enable RDP regression with password
 - TrustZone
 - Active tampering
 - Temperature, voltage and frequency protection monitoring for tamper detection
 - PKA intended for the computation of cryptographic public key primitives, specifically those related to RSA, Diffie-Hellmann or ECC (elliptic curve cryptography) over GF(p) (Galois fields). To achieve high performance at a reasonable cost, these operations are executed in the Montgomery domain.
 - OTFDEC (on-the-fly decryption engine) to decrypt on-the-fly the AHB traffic based on the read request address information
- System
- Performance
 - Cortex[®]-M33 at 160 MHz
 - 100 k cycles for 256 Kbytes of flash memory (the rest at 10 k cycles).
 - Programmable ECC for the SRAM

AN5371 - Rev 2 page 2/102

- New coprocessors
 - FMAC and CORDIC (mathematics accelerators coprocessors)
 - Instruction and data caches for internal and external memory (ART Accelerator)
 - Multifunction digital filters with advanced features
- USB OTG high-speed peripheral with embedded PHY and USB OTG 2.0 full speed controller⁽¹⁾
- Graphic system⁽¹⁾
 - GPU2D dedicated for graphics processing such as graphical user interface (GUI), menu display or animations (such as rotation, 3D perspective, mirroring, stretching, or texture mapping)
 - Hexa-SPI interface (HSPI) to support most external memories such as PSRAMs, serial NAND and serial NOR flash memories, HyperRAM TM and HyperFlash TM memories
 - Up to 16-bit parrallel interface supporting SDR or DDR modes for the data transfer rate
 - Chrom-GRC (GFXMMU)
 - Chrom-ART (DMA2D)
 - Dedicated data CACHE (DCACHE2)
 - JPEG compressor/decompressor
 - MIPI DSI host controller
- 1. These features are only available on some devices in the STM32U5 series devices. Refer to the device datasheet for availability of its associated peripheral.

Note:

This document only manages the differences between STM32L5 and STM32U5 series for the common features. The new features in the STM32U5 series are not covered. The detailed list of available features and packages for each product is available in the respective product datasheet.

AN5371 - Rev 2 page 3/102

1.1 Memory availability

The STM32U5 series embeds more memory than the STM32L5 as shown in the table below.

RAM size (Kbytes) Flash memory **Product** Comment SRAM4 SRAM1 SRAM2 SRAM3 SRAM5 SRAM6 BKPSRAM Size Bank (SRD)(1) Without 128 to 512 STM32U535 hardware **Kbvtes** crypto With STM32U545 512 Kbytes hardware crypto 192 Without 1 to 2 STM32U575 hardware Mbytes crypto 512 With STM32U585 2 Mbytes hardware crypto Dual 16 2 Without 2 to 4 STM32U59x hardware Mbvtes crypto 64 With STM32U5Ax hardware crypto 768 832 832 Without STM32U5Fx 4 Mbytes hardware crypto 512 With STM32U5Gx hardware crypto Without Up to 512 STM32L552xx hardware . Kbytes crypto Single/ 192 dual With 256 to 512 STM32L562xx hardware **Kbytes** crypto

Table 1. Memory size on STM32L5 and STM32U5 series

1.2 System architecture differences between STM32L5 and STM32U5 series

Both STM32L5 and STM32U5 series embed high-speed memories, a flexible external memory controller (FSMC) for static memories, an Octo-SPI Flash memory interface, and an extensive range of enhanced I/Os and peripherals connected to APB buses, AHB buses and a 32-bit multi-AHB bus matrix.

Note: The feature flexible external memory controller (FSMC) is available only on STM32U575/585/59x/5Ax/5Fx/5Gx devices.

The bus matrix provides access from a master to slave, enabling concurrent access and efficient operation when several high-speed peripherals work simultaneously.

In addition, the STM32U5 series connects more masters and slaves to the bus matrix than the STM32L5. The STM32U5 series also embeds more peripherals in the new low-power SRD (SmartRun domain) connected to AHB3 and APB3 internal buses.

The figures below detail the STM32L5 and STM32U5 series system architectures.

AN5371 - Rev 2 page 4/102

^{1.} SmartRun domain

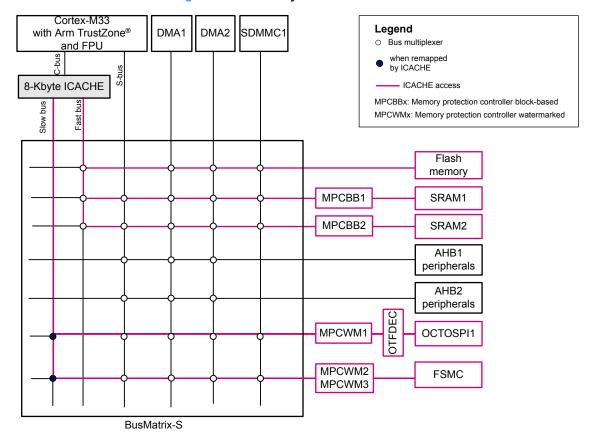


Figure 1. STM32L5 system architecture

AN5371 - Rev 2 page 5/102

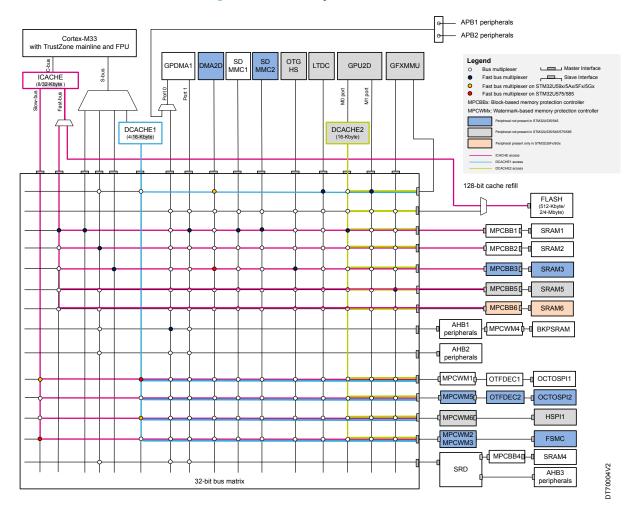


Figure 2. STM32U5 system architecture

AN5371 - Rev 2 page 6/102

The STM32U5 series architecture features a 32-bit multilayer AHB bus matrix that interconnects masters and slaves (see the tables below).

Table 2. Masters connected to AHB bus matrix of STM32L5 and STM32U5 series

AHB bu	s matrix masters	Fast C-bus ICACHE	Slow C-bus ICACHE	S-pns	DCACHE1 S-Bus	DCACHE2 GPU2D M0 Port	DMA	DMA2D	SDMMC	OTG_HS	СТВС	GPU2D	GFXMMU
	STM32U535/545			2	_	-	1			_			
STM32U5	STM32U575/585	_ 1	1		1		2 ⁽¹⁾			-			
31W3203	STM32U59x/5Ax	'	'	3	'	1		1	2	1			
STM32U5Fx/5Gx						'				1			
STM32L5			1			-	2 (DMA1, DMA2) ⁽²⁾				-		

^{1.} GPDMA1 is an advanced DMA module (16 channels), with two master ports connected to the bus matrix.

Table 3. Slaves connected to AHB bus matrix of STM32L5 and STM32U5 series

AHB bus matrix slaves		Internal flash memory	SRAMs	AHB1 periph.	AHB2 periph.	AHB3 SRD	OCTOSPI	FSMC	HSPI
STM32U5	STM32U535/545		SRAM1/ 2		1		1	-	
	STM32U575/585	1 (1)	SRAM1/ 2/3	1 ⁽²⁾		1 ⁽³⁾		1	-
	STM32U59x/5Ax		SRAM1/ 2/3/5		'	(G)	2		1
	STM325Fx/5Gx		SRAM1/ 2/3/5/6						'
STM32L5		1	SRAM1/ 2	1	1	-	1	1	-

^{1.} In addition to this master port, the STM32U5 embed a 128-bit cache refill bus that connects the flash memory to the ICACHE. This allows optimized core execution thanks to the direct access to embedded flash memory.

AN5371 - Rev 2 page 7/102

^{2.} Each DMA (8-channels) module is connected separately to the bus matrix.

^{2.} Including BKPSRAM, APB1 and APB2 peripherals.

^{3.} AHB3 peripherals, SRAM4 and APB3 peripherals.

Hardware migration

Hardware migration

The STM32U5 series offers several packages from 48 to 216 pins and two versions of pinout:

- without internal SMPS: fully compatible with STM32L5 except on VCAP pin for decoupling capacitors, used by the LDO to regulate the power supply
- with internal SMPS: UFBGA132 packages are fully compatible with STM32L5, but QFP packages have six pins of differences needed by the internal SMPS.

The SMPS step-down converter is available only on the STM32U5xxxxxxQ and STM32L5xxxxxxQ specific products.

Note:

The STM32L5xxxxxxP products have an external SMPS power supply. They are not compatible with STM32U5 series microcontrollers and not checked in this application note. For more details on the pinout refer to the product datasheets.

Table 4. Packages without SMPS on STM32L5 and STM32U5 series

The table below lists the available packages without SMPS on the STM32U5 series compared with similar packages of STM32L5. It lists also the pinout compatibility and differences between these packages.

kane	Pinout di

Package		Pinout differences			
(size in mm x mm)	STM32U5 versus STM32L5	Pin number	Pin name (U5)	Pin name (L5)	
UFQFPN48 (7 x 7) ⁽¹⁾ LQFP48 (7 x 7) ⁽¹⁾	Compatible with one difference on pin 22 (the other pins are the same) No PB11 in STM32U535/545/575/585xx packages	22	VCAP	PB11	
LQFP64 (10 x 10)	 Compatible with one difference on pin 30 (the other pins are the same) No PB11 in STM32U5 series packages 	30	VCAP	PB11	
LQFP100 (14 x 14)	 Compatible with one difference on pin 48 (the other pins are the same) No PB11 in STM32U5 series packages 	48	VCAP	PB11	
LQFP144 (20 x 20) ⁽²⁾	Compatible with one difference on pin 70 (the other pins are the same) No PB11 in STM32U535/545/575/585xx packages	70	VCAP	PB11	
UFBGA132 (7 x 7) ⁽²⁾	Compatible with one difference on ball L10 (the other balls are the same)	L10	VCAP	VSS	
UFBGA169 (7 x 7) ⁽³⁾	Not available for STM32L5New STM32U575/585xx specific ballout	-	-	-	
TFBGA169 (13 x 13)	Not available for STM32L5New STM32U59x/5Axxx specific ballout	-	-	-	

^{1.} Available only for STM32U535/545/575/585xx devices.

AN5371 - Rev 2 page 8/102

^{2.} Available only for STM32U575/585/59x/5Axxx devices.

^{3.} Available only for STM32U575/585xx devices.

The table below lists the available packages with SMPS on the STM32U5 series compared to similar packages of STM32L5. It lists also the pinout compatibility and differences between these packages.

Table 5. Packages with SMPS on STM32L5 and STM32U5 series

Package		Piı	nout differenc	es
(size in mm x mm)	STM32U5 versus STM32L5	Pin number	Pin name (U5)	Pin name (L5)
		20	VLXSMPS	VDDSMPS
	Constitute with difference and a significant state of the	21	VDDSMPS	VLXSMPS
UFQFPN48 (7 x 7)	Compatible with differences on six pins related to internal SMPS power supply	23	VDD11	VSS
LQFP48 (7 x 7)	These packages are available only for	24	VSS	V15SMPS
	535/545/575/585xx devices.	46	VDD11	VSS
		47	VSS	V15SMPS
		28	VLXSMPS	VDDSMPS
	Constitute with difference and a significant state of the	29	VDDSMPS	VLXSMPS
	Compatible with differences on six pins related to internal SMPS power supply	31	VDD11	VSS
LQFP64 (10 x 10)	This package is available only for	32	VSS	V15SMPS
	STM32U535/545/575/585/59x/5Axxx devices.	62	VDD11	VSS
		63	VSS	V15SMPS
		46	VLXSMPS	VDDSMPS
	Compatible with differences on air mice valeted to	47	VDDSMPS	VLXSMPS
	Compatible with differences on six pins related to internal SMPS power supply	49	VDD11	VSS
LQFP100 (14 x 14)	This package is available for all STM32U5 series	50	VSS	V15SMPS
	devices.	98	VDD11	VSS
		99	VSS	V15SMPS
		68	VLXSMPS	VDDSMPS
	Compatible with differences on six pins related to	69	VDDSMPS	VLXSMPS
1.055444 (20	internal SMPS power supply	71	VDD11	VSS
LQFP144 (20 x 20)	This package is available only for STM32U575/585/59x/	72	VSS	V15SMPS
	5Axxx devices.	142	VDD11	VSS
		143	VSS	V15SMPS
	Compatible, but typical values of capacitors and coil are not the same	B4	VDD11 (2.2µF)	V15SMPS (4.7µF)
UFBGA132(7 x 7)	Example with coils: 2.2 μH (STM32U5) versus 4.7 μH (STM32L5)	M11	VDD11 (2.2µF)	V15SMPS (4.7μF)
	This package is available only for STM32U575/585/59x/5Axxx devices.		(2.2μι)	(4.7 μι)
UFBGA169 (7 x 7)	Not available for STM32L5, new STM32U575/585xx	-	-	-
WLCSP90 (4.1382 x 3.8952)	specific ballout	-	-	-
UFBGA64 (5x5)		_	_	_
UFBGA100 (7x7)	Not available for STM32L5, new STM32U535/545xx			_
WLCSP56 (3.38x3.38)	THE STANDED TO STANDED, HOW STANDED SOUTH	_	_	_
WLCSP72 (3.38x3.38)				
TFBGA169 (13x13)	Not available for STM32L5, new STM32U59x/5Axxx	-	-	-

AN5371 - Rev 2 page 9/102

Package		Pinout differences			
(size in mm x mm)	STM32U5 versus STM32L5	Pin number	Pin name (U5)	Pin name (L5)	
WLCP150 (5.38x5.47)					
WLCP150 DSI (5.38x5.47)	Not available for STM32L5, new STM32U59x/5Axxx	-	-	-	
LQFP100 DSI (14x14)					
LQFP144 DSI (20x20)	Not available for STM32L5, new STM32U5F/5Gxxx	-	-	-	
UFBGA144 DSI		-	-	-	
TFBGA216 (13x13)	Not evallable for CTM20LE new CTM20LEOV/EA/EF/	-	-	-	
WLCSP208 DSI (5.38x5.47 or 5.8x5.6)	Not available for STM32L5, new STM32U59x/5A/5F/ 5Gxxx	-	-	-	

Note:

The pattern of differences in the above tables is the same on all QFP packages. It is related to power supply pins. For more details, refer to device datasheet.

Any adaptations between STM32L5 and STM32U5 series packages support must be aware of the differences in capacitors and coil typical values connected to power supply pins.

For more details about the new packages available on STM32U5 series, refer to the datasheet of the corresponding product.

AN5371 - Rev 2 page 10/102

3 Boot mode compatibility

3.1 Boot modes selection

For the STM32L5 and STM32U5 series, the BOOT0 input pin may come from the PH3-BOOT0 pin or from an option bit, depending on the value of a user option bit to free the GPIO pad if needed.

The bootloader is located in the system memory. It is used to reprogram the flash memory by using USART, I2C, SPI, FDCAN or USBOTG FS/OTG HS in device mode through the DFU (device firmware upgrade).

The STM32L5 and STM32U5 series have compatible boot modes when TrustZone is disabled or enabled (see the tables below). Refer to the STM32U5 series reference manual (RM0456) for more details.

Table 6. Boot modes when TrustZone is disabled (TZEN = 0)

nBOOT0 FLASH_ OPTR[27]	BOOT0 pin PH3	nSWBOOT0 FLASH_ OPTR[26]	Boot address option bytes selection	Boot area	ST programmed default value
-	0	1	NSBOOTADD0[24:0]	Boot address defined by user option bytes NSBOOTADD0[24:0]	Flash: 0x0800 0000
-	1	1	NSBOOTADD1[24:0]	Boot address defined by user option bytes NSBOOTADD1[24:0]	System bootloader: 0x0BF9 0000
1	-	0	NSBOOTADD0[24:0]	Boot address defined by user option bytes NSBOOTADD0[24:0]	Flash: 0x0800 0000
0	-	0	NSBOOTADD1[24:0]	Boot address defined by user option bytes NSBOOTADD1[24:0]	System bootloader: 0x0BF9 0000

Table 7. Boot modes when TrustZone is enabled (TZEN = 1)

BOOT _LOCK	nBOOT0 FLASH_ OPTR[27]	BOOT0 pin PH3	nSWBOOT0 FLASH_ OPTR[26]	RSS command	Boot address option- bytes selection	Boot area	ST programmed default value	
	-	0	1	0	SECBOOTADD0[24:0]	Secure boot address defined by user option bytes SECBOOTADD0[24:0]	Flash: 0x0C00 0000	
	-	1	1	0	N/A	RSS: 0x0FF8 0000		
0	1	-	0	0	SECBOOTADD0[24:0]	Secure boot address defined by user option bytes SECBOOTADD0[24:0]	Flash: 0x0C00 0000	
	0	-	0	0	N/A	RSS: 0x0FF8 0000		
	-	-	-	≠0	IN/A	NSS. 0x01 1 8 0000		
1	-	-	-	-	SECBOOTADD0[24:0]	Secure boot address defined by user option bytes SECBOOTADD0[24:0]	Flash: 0x0C00 0000	

AN5371 - Rev 2 page 11/102

3.2 Embedded bootloader

The embedded bootloader is located in the system memory and programmed by ST during production. This bootloader allows the user to reprogram the flash memory, using one of the serial interfaces listed in the table below.

Table 8. Bootloader interface on STM32L5 and STM32U5 series

			STM32U5				
Peripheral	Pin name (number)	STM32L5	STM32U535/	STM32U575/	STM32U59/	STM32U5F/	
			545xx	585xx	5Axxx	5Gxxx	
DFU	USB_DM (PA11)	Х			X		
DFO	USB_DP (PA12)	Х			X		
USART1	USART1_TX (PA9)	Х			X		
USARTI	USART1_RX (PA10)	Х			X		
USART2	USART2_TX (PA2)	Х	N/A		Х		
USARTZ	USART2_RX (PA3)	Х	IN/A		Х		
USART3	USART3_TX (PC10)	Х			X		
USARTS	USART3_RX (PC11)	Х			X		
I2C1	I2C1_SCL (PB6)	Х			X		
1201	I2C1_SDA (PB7)	Х			X		
I2C2	I2C2_SCL (PB10)	Х	X		X		
1202	I2C2_SDA (PB11)	Х			X		
I2C3	I2C3_SCL (PC0)	Х	X				
1203	I2C3_SDA (PC1)	Х			X		
	SPI1_NSS (PA4)	Х			X		
SPI1	SPI1_SCK (PA5)	Х			X		
SPII	SPI1_MISO (PA6)	Х			X		
	SPI1_MOSI (PA7)	Х			X		
	SPI2_NSS (PB12)	Х			X		
ODIO	SPI2_SCK (PB13)	Х			X		
SPI2	SPI2_MISO (PB14)	Х			X		
	SPI2_MOSI (PB15)	Х			X		
	SPI3_NSS (PG12)	Х			X		
SPI3	SPI3_SCK (PG9)	Х			X		
3713	SPI3_MISO (PG10)	Х			X		
	SPI3_MOSI (PB5)	Х			X		
FDCAN1	CAN1_RX (PB8)	Х	X				
FDCANT	CAN1_TX (PB9)	X	X				

For more details on the bootloader, refer to the application note *STM32 microcontroller system memory boot mode* (AN2606).

AN5371 - Rev 2 page 12/102

4 Peripheral migration

4.1 STM32 products cross-compatibility

STM32 microcontrollers embed a set of peripherals that can be classified in the following groups:

- Group1: peripherals by definition common to all products
 Those peripherals are identical, so they have the same structure, registers and control bits. There is no need to perform any firmware change to keep the same functionality at the application level after migration.
 All the features and behavior remain the same.
- Group2: peripherals shared by all products but with only minor differences (in general to support new features)
 - The migration from one product to another is very easy and does not need any significant new development effort.
- Group3: peripherals that have considerable changes from one product to another (new architecture or new features for example)
 - For this group of peripherals, the migration requires a new development at application level.

The security architecture of STM32U5 series devices and STM32L5 is based on Arm TrustZone with the Armv8-M mainline extension. Each GPIO or peripheral, DMA channel, clock configuration register, DCACHE1, DCACHE2, ICACHE, or small part of flash memory or SRAM, can be configured as trusted or untrusted.

Enhanced features of security are also implemented on STM32U5 series devices. Moreover, the STM32U5 series and STM32L5 allow high performances and ultra-low power consumption features.

The STM32U5 series microcontrollers innovative features include a best-in-class voltage regulator switching on-the-fly between DC/DC and LDO, according to the application requirements. These devices also include the new SRD (SmartRun domain) architecture that relies on a new low-power DMA (LPDMA1), allowing autonomous operation during low-power modes down to Stop 2. This architecture features internal SRAM (16-Kbyte SRAM4) and dedicated low-power peripherals.

The table below summarizes the available peripherals in STM32L5 and STM32U5 series as well as their compatibility.

Table 9. STM32 peripheral compatibility between STM32L5 and STM32U5 series

				STM32U5	series		
Perip	heral	STM32L5	STM32U535/	STM32U575/	STM32U59/	STM32U5F/	
			545xx	585xx	5Axxx	5Gxxx	
Core			Cortex-M33				
Maximum CPU Fr	requency	110 MHz		160 M	Hz		
	ICACHE	CACHE 1x ICACHE					
Caches	DCACHE1	N/A		1			
	DCACHE2	IN/A	-		1		
	Power supply	1.71V to 3.6V					
	LDO	Available on all products					
PWR/regulators	LDO + internal DC-DC	STM32U5xxxxQ products STM32U5xxxxxQ products + DC-DC/LDO on-the-fly selection Advanced features				ı	
	LDO + external DC-DC	STM32L5xxxxxxP products	N/	'A (no regulator	bypass option)		
Flash memory	Size	512 Kbytes	512 Kbytes +Advanced features	2 Mbytes +Advanced features	4 Mbytes +Advanced features		
,	Bank	Dual or single bank with TrustZone	Dual bank with TrustZone Specific direct bus to Fast C-Bus				

AN5371 - Rev 2 page 13/102

			STM32U5 series						
Periph	eral	STM32L5	STM32U535/	STM32U575/	STM32U59/	STM32U5F/			
			545xx	585xx	5Axxx	5Gxxx			
	SRAM1	192 Kbytes	192 K	bytes	768 Kbytes				
	SRAM2	64 Kbytes		64 Kbytes with o	ptional ECC				
SRAMs	SRAM3		N/A	512 Kbytes with optional ECC	832 Kbytes w ECC	ith optional			
SKAIVIS	SRAM4	N/A		16 Kbytes	in SRD				
	SRAM5	IN/A	N	/A	832 Kbytes				
	SRAM6			N/A	I	512 Kbytes			
	Backup SRAM	-		BKPSRAM (2 Kbytes)				
DMA (not compatib	ula)	DMA1 and DMA2 (8 channels each)		GPDMA (16 +Advanced	,				
DMA (not compatib	ne)	N/A	LPDMA (4 channels) in SRD						
		IN/A	N/A	DMA2D: Chror	n-ART Accele	rator			
PLL		PLL (main) PLLSAI1 PLLSAI2	3 PLLs PLL (main) PLL2 PLL3		3 PLLs P PLL (main) P PLL2 P PLL3 PLL4 for		5 PLLs PLL1 PLL2 PLL3 PLL4 for DSI PHY PLL5 for USB_HS PH		
GTZC (global Trust	Zone controller)	3 independent 32-bit AHB interface for TZSC, TZIC and MPCBB TZIC accessible only with secure transactions Secure and nonsecure access supported for privileged and unprivileged part of TZSC Set of registers to define product security settings	STM32L5 features + Privilege mode extended to internal/external memories and internal backup SRAM						
Anti-tamper detecti	on	3 active tamper inputs 1 active output tamper	Eight tamper inp 128-byte backup + New advance	p registers					
CRC			1x (CRC					
FSMC (external me for static memory/L		1x FSMC	N/A		1x FSMC				
High-Speed Low-V (HSLV)	oltage mode	N/A		the capability to guring them in F		r speed at low			
LPGPIOs		N/A		ontrolled by LPD designed to be u					
	Advanced control		2 (16	S-bit)					
Timers	General purpose	2 (32-bit) + 5 (16-bit)	4 (32-bit) + 3 (16-bit)						
	Basic	2 (16-bit)		2 (16 I	oit)				

AN5371 - Rev 2 page 14/102

			STM32U5 series						
Perip	heral	STM32L5	STM32U535/	STM32U575/	STM32U59/	STM32U5F/			
			545xx	585xx	5Axxx	5Gxxx			
	Low-power	3 (16-bit)		4 (16-bit) Autono	mous mode				
	Matabaga	1x WWDG and 1x IWDG	1x WWDG and 1x IWDG						
Timers	Watchdogs	IX WWDG and IX IWDG		+ early interru	pt feature				
Timore	RTC	1x RTC		1x RT	C				
		IXICIO		+ Binary mode	e selection				
	SysTick		2	!					
				3x SF					
	SPI	3x SPI	Advanced features						
				Registers not					
	I2C	4x I2C	4x I2C + Autono	mous mode	6x I2C +Auto mode	nomous			
	LICART	LIO A D.T.4 /0 /0	USART1/3	USART1/2/3	USART 1/2/3	/6			
	USART	USART1/2/3	+ Autonomous mode	+Autonomous mode	+Autonomous	s mode			
	UART	UART4/5		UART	4/5				
				+Autonomo	us mode				
	LPUART	1x LPUART	1x	LPUART + Auto	nomous mode	;			
Communication interfaces	SAI (audio interface)	2x SAI	1x SAI		2x SAI1/2				
	FDCAN		1x FD	CAN					
	USB	1x USB full-speed device			1x USB OTG with embedde				
	UCPD	1x UCPD (USB Type C [™] and Power Delivery interface)	N/A		JSB Type C™ and Power elivery interface)				
	SDMMC	1x SDMMC	2x SDMMC						
	Camera interfaces	N/A	1x DCMI and 1x PSSI						
	OCTOSPI	1x OCTOSPI	1x OCTOSPI		2x OCTOSPI manager multip	blexer			
	OCTOSPIM	N/A	N/A	1	x OCTOSPIM				
	HSPI	N/A	N/	A		1			
			1x 14-bit ADC	1 (2.5 Msps)		ADC1/2 (2,5 sps)			
	ADC	2x 12-bit ADC1/2 (5 Msps)	1x 12-bit ADC + New fo		Ms	ADC4 (2,5 sps)			
Analog			+ Autonomous mode		+ New features + Autonomous mode				
peripherals	DAC	1x 12-bit DAC	2x 12-bit DAC +Autonomous m	node					
			1x comparator	2x comparators					
	COMP	2x comparators	Registers not compatible	Registers not o					

AN5371 - Rev 2 page 15/102

			STM32U5 series					
Periph	neral	STM32L5	STM32U535/	STM32U575/	STM32U59/ STM32U5F/			
			545xx	585xx	5Axxx	5Gxxx		
Analog peripherals	ОРАМР	2x operational amplifiers	1x operational amplifier New slew rate configuration	2x operational New slew rate				
peripriorate	Voltage reference buffer	VREF_OUT1 VREF_OUT2	VREFBUF0/1/2/3					
	AES		1x A	AES				
	SAES (secure AES)	N/A						
Cryptographic peripherals ⁽¹⁾	OTFDEC (on-the-fly decryption)	1x OTFDEC	1x OTFDEC		2x OTFDEC			
	PKA (private key accelerator)	1x PKA		1x Pk Advanced f				
	HASH (SHA-256)							
	RNG (true random number generator)	1x RNG	1x RNG Transparent usage by SAES and PKA, for DPA resist					
	Digital filters	1x DFSDM, digital filters for sigma-delta modulators (four filters)	a modulators 1x ADF, audio digital filter (one filter)					
	PSSI and DCMI (digital camera interface)	N/A	1x DCMI/PSSI					
	LTDC (LCD- TFT display controller)	N/A	N	/A		1		
	DSI	N/A	N	/A		1		
Signal-processing coprocessors accelerators	GPU2D Neo- chrom graphic processor	N/A	N	/A		1		
	JPEG codec	N/A		N/A		1		
	CORDIC coprocessor	N/A		1x COR	RDIC			
	FMAC (filter mathematical accelerator)	N/A		1x FM	AC			
	TSC (touch sensing control)		22 cha	nnels ⁽³⁾				

^{1.} These features are available on STM32U545/585/5Ax/5Gx devices except the RNG and HASH which are available on all STM32U5 series devices.

AN5371 - Rev 2 page 16/102

^{2.} Only 2 filters in STM32U535/545 devices

3. Up to 22 channels for all series except ST32U535/545 devices (with up to 20 channels)

4.2 Secure and nonsecure boundaries of peripheral memory mapping

The peripheral address mapping has been changed in the STM32U5 series compared to the STM32L5. The table below presents the peripherals register boundary addresses for STM32U5 devices compared to STM32L5. For more details on the memory mapping, refer to the product reference manual.

Table 10. STM32L5 and STM32U5 series memory mapping for secure and nonsecure boundary addresses

			STM32L5						STM	32U5	
Peripheral	Size (bytes)	Bus	Secure boundary address	Nonsecure boundary address	STM3 2U5 Bus	Secure boundary address	Nonsecure boundary address	STM32U535/545	STM32U575/585	STM32U59x/5Ax	STM32U5Fx/5Gx
LPDMA1	4 K					0x5602 5000 0x5602 5FFF	0x4602 5000 0x4602 5FFF	х	х	x	х
ADF1	4 K					0x5602 4000 0x5602 4FFF	0x4602 4000 0x4602 4FFF	x	x	x	x
GTZC2_ MPCBB4	1 K	NA				0x5602 3800 0x5602 3BFF	0x4602 3800 0x4602 3BFF	х	x	x	x
GTZC2_ TZIC	1 K					0x5602 3400 0x5602 37FF	0x4602 3400 0x4602 37FF	х	x	x	x
GTZC2_ TZSC	1 K					0x5602 3000 0x5602 33FF	0x4602 3000 0x4602 33FF	х	x	x	x
EXTI	1 K	AHB1	0x5002 F400 0x5002 F7FF	0x4002 F400 0x4002 F7FF		0x5602 2000 0x5602 23FF	0x4602 2000 0x4602 23FF	x	x	x	x
DAC1	1 K	APB1	0x5000 7400 0x5000 77FF	0x4000 7400 0x4000 77FF	AHB3	0x5602 1800 0x5602 1BFF	0x4602 1800 0x4602 1BFF	x	x	x	x
ADC2	1 K		shares the same functioning in inte			ADC2 shares th with ADC1, fund interleaved mod		-	-	x	x
ADC4(U5)	1 K	N/A				0x5602 1000 0x5602 13FF	0x4602 1000 0x4602 13FF	x	x	x	x
RCC	1 K	AHB1	0X5002 1000 0x5002 13FF	0X4002 1000 0x4002 13FF		0x5602 0C00 0x5602 0FFF	0x4602 0C00 0x4602 0FFF	x	x	x	x
PWR	1 K	APB1	0x5000 7000 0x5000 73FF	0x4000 7000 0x4000 73FF		0x5602 0800 0x5602 0BFF	0x4602 0800 0x4602 0BFF	x	x	x	x
LPGPIO1	1 K	N/A	'			0x5602 0000 0x5602 03FF	0x4602 0000 0x4602 03FF	x	x	x	x
TAMP	1 K	ADD 1	0x5000 3400 0x5000 37FF	0x4000 3400 0x4000 37FF		0x5600 7C00 0x5600 7FFF	0x4600 7C00 0x4600 7FFF	x	x	x	х
RTC	1 K	APB1	0x5000 2800 0x5000 2BFF	0x4000 2800 0x4000 2BFF		0x5600 7800 0x5600 7BFF	0x4600 7800 0x4600 7BFF	x	x	x	х
VREFBUF	1 K	4000	0x5001 0100 0x5001 01FF	0x4001 0100 0x4001 01FF	APB3	0x5600 7400 0x5600 77FF	0x4600 7400 0x4600 77FF	х	х	x	х
COMP ⁽¹⁾	1 K	APB2	0x5001 0200 0x5001 03FF	0x4001 0200 0x4001 03FF		0x5600 5400 0x5600 57FF	0x4600 5400 0x4600 57FF	х	х	x	x
OPAMP	1 K	APB1	0x5000 7800 0x5000 7BFF	0x4000 7800 0x4000 7BFF	-	0x5600 5000 0x5600 53FF	0x4600 5000 0x4600 53FF	x	x	x	x

AN5371 - Rev 2 page 17/102

	Size (bytes)		STM32I	_5					STM	32U5	
Peripheral		Bus	Secure boundary address	Nonsecure boundary address	STM3 2U5 Bus	Secure boundary address	Nonsecure boundary address	STM32U535/545	STM32U575/585	STM32U59x/5Ax	STM32U5Fx/5Gx
LPTIM4	1 K	N/A				0x5600 4C00 0x5600 4FFF	0x4600 4C00 0x4600 4FFF	х	x	х	х
LPTIM3	1 K		0x5000 9800 0x5000 9BFF	0x4000 9800 0x4000 9BFF		0x5600 4800 0x5600 4BFF	0x4600 4800 0x4600 4BFF	х	x	x	x
LPTIM1	1 K		0x5000 7C00 0x5000 7FFF	0x4000 7C00 0x4000 7FFF		0x5600 4400 0x5600 47FF	0x4600 4400 0x4600 47FF	х	x	x	x
I2C3	1 K	A DD4	0x5000 5C00 0x5000 5FFF	0x4000 5C00 0x4000 5FFF	APB3	0x5600 2800 0x5600 2BFF	0x4600 2800 0x4600 2BFF	х	x	x	x
LPUART1	1 K	APB1	0x5000 8000 0x5000 83FF	0x4000 8000 0x4000 83FF		0x5600 2400 0x5600 27FF	0x4600 2400 0x4600 27FF	х	x	x	x
SPI3	1 K		0x5000 3C00 0x5000 3FFF	0x4000 3C00 0x4000 3FFF		0x5600 2000 0x5600 23FF	0x4600 2000 0x4600 23FF	х	x	x	x
SYSCFG	1 K		0x5001 0000 0x5001 002F	0x4001 0000 0x4001 002F		0x5600 0400 0x5600 07FF	0x4600 0400 0x4600 07FF	х	x	x	x
HSPI1	1 K					0x520D 3400 0x520D 37FF	0x420D 3400 0x420D 37FF	-	N/A	х	x
OCTOSPI2 registers	1 K	N/A				0x520D 2400 0x520D 27FF	0x420D 2400 0x420D 27FF	N/A	x	x	x
OCTOSPI1 registers	1 K	ALIDO	0x5402 1000 0x5402 13FF	0x4402 1000 0x4402 13FF		0x520D 1400 0x520D 17FF	0x420D 1400 0x420D 17FF	х	x	x	x
FSMC registers	1 K	AHB3	0x5402 0000 0x5402 03FF	0x4402 0000 0x4402 03FF		0x520D 0400 0x520D 07FF	0x420D 0400 0x420D 07FF	N/A	x	x	x
DLYBOS2	1 K			'		0x520C F400 0x520C F7FF	0x420C F400 0x420C F7FF	N/A	x	x	x
DLYBOS1	1 K					0x520C F000 0x520C F3FF	0x420C F000 0x420C F3FF	х	x	x	x
SDMMC2	1 K	N/A				0x520C 8C00 0x520C 8FFF	0x420C 8C00 0x420C 8FFF	N/A	x	x	x
DLYBSD2	1 K				AHB2	0x520C 8800 0x520C 8BFF	0x420C 8800 0x420C 8BFF	N/A	x	x	x
DLYBSD1	1 K					0x520C 8400 0x520C 87FF	0x420C 8400 0x420C 87FF	х	x	х	x
SDMMC1	1 K	AHB2	0x520C 8000 0x520C 83FF	0x420C 8000 0x420C 83FF		0x520C 8000 0x520C 83FF	0x420C 8000 0x420C 83FF	х	x	x	x
OTFDEC2	1 K	N/A	1	1		0x520C 5400 0x520C 57FF	0x420C 5400 0x420C 57FF	N/A	x	x	x
OTFDEC1	1 K	AHB2	0x520C 5000 0x520C 53FF	0x420C 5000 0x420C 53FF		0x520C 5000 0x520C 53FF	0x420C 5000 0x420C 53FF	х	x	x	х
OCTOSPI M	1 K	N/A	1	1		0x520C 4000 0x520C 43FF	0x420C 4000 0x420C 43FF	N/A	x	x	х
PKA	8 K	AHB2	0x520C 2000 0x520C 3FFF	0x420C 2000 0x420C 3FFF		0x520C 2000 0x520C 3FFF	0x420C 2000 0x420C 3FFF	х	x	x	x
SAES	1 K	N/A	1	1		0x520C 0C00 0x520C 0FFF	0x420C 0C00 0x420C 0FFF	х	x	x	х

AN5371 - Rev 2 page 18/102

			STM32L	.5					STM	32U5	
Peripheral	Size (bytes)	Bus	Secure boundary address	Nonsecure boundary address	STM3 2U5 Bus	Secure boundary address	Nonsecure boundary address	STM32U535/545	STM32U575/585	STM32U59x/5Ax	STM32U5Fx/5Gx
RNG	1 K		0x520C 0800 0x520C 0BFF	0x420C 0800 0x420C 0BFF		0x520C 0800 0x520C 0BFF	0x420C 0800 0x420C 0BFF	x	x	x	х
HASH	1 K	AHB2	0x520C 0400 0x520C 07FF	0x420C 0400 0x420C 07FF		0x520C 0400 0x520C 07FF	0x420C 0400 0x420C 07FF	x	x	x	х
AES	1 K		0x520C 0000 0x520C 03FF	0x420C 0000 0x420C 03FF		0x520C 0000 0x520C 03FF	0x420C 0000 0x420C 03FF	х	x	x	x
OTG_HS	128 K					0x5204 0000 0x5205 FFFF	0x4204 0000 0x4205 FFFF	N/A	N/A	x	x
OTG_FS	512 K					0x5204 0000 0x520B FFFF	0x4204 0000 0x420B FFFF	N/A	x	N/A	N/A
PSSI	1 K	N/A				0x5202 C400 0x5202 C7FF	0x4202 C400 0x4202 C7FF	х	x	x	х
DCMI	1 K					0x5202 C000 0x5202 C3FF	0x4202 C000 0x4202 C3FF	х	x	x	х
ADC12 ⁽²⁾	1 K	AHB2	0x5202 8000 0x5202 83FF	0x4202 8000 0x4202 83FF		0x5202 8000 0x5202 83FF	0x4202 8000 0x4202 83FF	x	x	x	х
GPIOJ	1 K				AHB2	0x5202 2400 0x5202 27FF	0x4202 2400 0x4202 27FF	N/A	N/A	x	х
GPIOI	1 K	N/A			АПВ2	0x5202 2000 0x5202 23FF	0x4202 2000 0x4202 23FF	N/A	x	x	х
GPIOH	1 K		0x5202 1C00 0x5202 1FFF	0x4202 1C00 0x4202 1FFF		0x5202 1C00 0x5202 1FFF	0x4202 1C00 0x4202 1FFF	х	x	x	х
GPIOG	1 K		0x5202 1800 0x5202 1BFF	0x4202 1800 0x4202 1BFF		0x5202 1800 0x5202 1BFF	0x4202 1800 0x4202 1BFF	x	x	x	x
GPIOF	1 K		0x5202 1400 0x5202 17FF	0x4202 1400 0x4202 17FF		0x5202 1400 0x5202 17FF	0x4202 1400 0x4202 17FF	N/A	x	x	x
GPIOE	1 K	ALIDO	0x5202 1000 0x5202 13FF	0x4202 1000 0x4202 13FF		0x5202 1000 0x5202 13FF	0x4202 1000 0x4202 13FF	x	x	x	x
GPIOD	1 K	AHB2	0x5202 0C00 0x5202 0FFF	0x4202 0C00 0x4202 0FFF		0x5202 0C00 0x5202 0FFF	0x4202 0C00 0x4202 0FFF	x	x	x	x
GPIOC	1 K		0x5202 0800 0x5202 0BFF	0x4202 0800 0x4202 0BFF		0x5202 0800 0x5202 0BFF	0x4202 0800 0x4202 0BFF	х	x	x	x
GPIOB	1 K		0x5202 0400 0x5202 07FF	0x4202 0400 0x4202 07FF		0x5202 0400 0x5202 07FF	0x4202 0400 0x4202 07FF	х	x	x	x
GPIOA	1 K		0x5202 0000 0x5202 03FF	0x4202 0000 0x4202 03FF		0x5202 0000 0x5202 03FF	0x4202 0000 0x4202 03FF	x	x	x	x
BKPSRAM	2 K			,		0x5003 6400 0x5003 6BFF	0x4003 6400 0x4003 6BFF	х	x	x	x
GTZC1_ MPCBB6	1 K	N 1/6				0x5003 3C00 0x5003 3FFF	0x4003 3C00 0x4003 3FFF	N/A	N/A	N/A	x
GTZC1_ MPCBB5	1 K	N/A			AHB1	0x5003 3800 0x5003 3BFF	0x4003 3800 0x4003 3BFF	N/A	N/A	x	х
GTZC1_ MPCBB3	1 K					0x5003 3400 0x5003 37FF	0x4003 3400 0x4003 37FF	N/A	x	x	x

AN5371 - Rev 2 page 19/102

			STM32L	.5					STM	32U5	
Peripheral	Size (bytes)	Bus	Secure boundary address	Nonsecure boundary address	STM3 2U5 Bus	Secure boundary address	Nonsecure boundary address	STM32U535/545	STM32U575/585	STM32U59x/5Ax	STM32U5Fx/5Gx
GTZC1_ MPCBB2	1 K		0x5003 3000 0x5003 33FF	0x4003 3000 0x4003 33FF		0x5003 3000 0x5003 33FF	0x4003 3000 0x4003 33FF	x	x	x	x
GTZC1_ MPCBB1	1 K	AHB1	0x5003 2C00 0x5003 2FFF	0x4003 2C00 0x4003 2FFF		0x5003 2C00 0x5003 2FFF	0x4003 2C00 0x4003 2FFF	x	x	x	x
GTZC1_ TZIC	1 K	АПВІ	0x5003 2800 0x5003 2BFF	0x4003 2800 0x4003 2BFF		0x5003 2800 0x5003 2BFF	0x4003 2800 0x4003 2BFF	x	x	x	х
GTZC1_ TZSC	1 K		0x5003 2400 0x5003 27FF	0x4003 2400 0x4003 27FF		0x5003 2400 0x5003 27FF	0x4003 2400 0x4003 27FF	х	x	x	x
DCACHE2	1 K	N1/A				0x5003 1800 0x5003 1BFF	0x4003 1800 0x4003 1BFF	N/A	N/A	x	x
DCACHE1	1 K	N/A				0x5003 1400 0x5003 17FF	0x4003 1400 0x4003 17FF	x	x	x	x
ICACHE	1 K	AHB1	0x5003 0400 0x5003 07FF	0x4003 0400 0x4003 07FF		0x5003 0400 0x5003 07FF	0x4003 0400 0x4003 07FF	x	x	x	x
GPU2D ⁽³⁾	1 K					0x5002 F000 0x5002 FFFF	0x4002 F000 0x4002 FFFF	N/A	N/A	x	х
GFXMMU	1 K					0x5002 C000 0x5002 EFFF	0x4002 C000 0x4002 EFFF	N/A	N/A	x	х
DMA2D	3 K				AHB1	0x5002 B000 0x5002 BBFF	0x4002 B000 0x4002 BBFF	N/A	x	x	х
JPEG	4 K	N/A				0x5002 A000 0x5002 AFFF	0x4002 A000 0x4002 AFFF	N/A	N/A	N/A	х
RAMCFG	4 K					0x5002 6000 0x5002 6FFF	0x4002 6000 0x4002 6FFF	x	x	x	х
MDF1 ⁽⁴⁾	4 K					0x5002 5000 0x5002 5FFF	0x4002 5000 0x4002 5FFF	х	x	x	х
TSC	1 K		0x5002 4000 0x5002 43FF	0x4002 4000 0x4002 43FF		0x5002 4000 0x5002 43FF	0x4002 4000 0x4002 43FF	х	x	x	х
CRC	1 K	AHB1	0x5002 3000 0x5002 33FF	0x4002 3000 0x4002 33FF		0x5002 3000 0x5002 33FF	0x4002 3000 0x4002 33FF	х	x	x	x
FLASH registers	1 K	-	0x5002 2000 0x5002 23FF	0x4002 2000 0x4002 23FF	-	0x5002 2000 0x5002 23FF	0x4002 2000 0x4002 23FF	х	x	x	x
FMAC	1 K				-	0X5002 1400 0x5002 17FF	0X4002 1400 0x4002 17FF	х	x	x	x
CORDIC	1 K	N/A				0X5002 1000 0x5002 13FF	0X4002 1000 0x4002 13FF	x	x	x	x
GPDMA1	4 K		UX1, DMA2 and lt in STM32L5 with s.		-	0x5002 0000 0x5002 0FFF	0x4002 0000 0x4002 0FFF	x	x	x	x
DSI	4 K					0x5001 6C00 0x5001 7BFF	0x4001 6C00 0x4001 7BFF	N/A	N/A	x	х
LTDC	1 K	N/A			APB2	0x5001 6800 0x5001 6BFF	0x4001 6800 0x4001 6BFF	N/A	N/A	x	х
GFXTIM	1 K	-				0x5001 6400 0x5001 67FF	0x4001 6400 0x4001 67FF	N/A	N/A	N/A	х

AN5371 - Rev 2 page 20/102

	Size (bytes)	STM32L5							STM	32U5	
Peripheral		Bus	Secure boundary address	Nonsecure boundary address	STM3 2U5 Bus	Secure boundary address	Nonsecure boundary address	STM32U535/545	STM32U575/585	STM32U59x/5Ax	STM32U5Fx/5Gx
USB_FS RAM	2 K	APB1	0x5000 D800 0x5000 DBFF	0x4000 D800 0x4000 DBFF		0x5001 6400 0x5001 6BFF	0x4001 6400 0x4001 6BFF	х	N/A	N/A	N/A
USB_FS	1 K	APDI	0x5000 D400 0x5000 D7FF	0x4000 D400 0x4000 D7FF		0x5001 6000 0x5001 63FF	0x4001 6000 0x4001 63FF	x	N/A	N/A	N/A
SAI2	1 K		0x5001 5800 0x5001 5BFF	0x4001 5800 0x4001 5BFF		0x5001 5800 0x5001 5BFF	0x4001 5800 0x4001 5BFF	N/A	x	x	x
SAI1	1 K		0x5001 5400 0x5001 57FF	0x4001 5400 0x4001 57FF		0x5001 5400 0x5001 57FF	0x4001 5400 0x4001 57FF	х	x	x	x
TIM17	1 K		0x5001 4800 0x5001 4BFF	0x4001 4800 0x4001 4BFF		0x5001 4800 0x5001 4BFF	0x4001 4800 0x4001 4BFF	х	x	x	x
TIM16	1 K		0x5001 4400 0x5001 47FF	0x4001 4400 0x4001 47FF	APB2	0x5001 4400 0x5001 47FF	0x4001 4400 0x4001 47FF	х	x	x	x
TIM15	1 K	APB2	0x5001 4000 0x5001 43FF	0x4001 4000 0x4001 43FF		0x5001 4000 0x5001 43FF	0x4001 4000 0x4001 43FF	х	x	x	x
USART1	1 K	-	0x5001 3800 0x5001 3BFF	0x4001 3800 0x4001 3BFF		0x5001 3800 0x5001 3BFF	0x4001 3800 0x4001 3BFF	х	x	x	x
TIM8	1 K		0x5001 3400 0x5001 37FF	0x4001 3400 0x4001 37FF		0x5001 3400 0x5001 37FF	0x4001 3400 0x4001 37FF	х	x	x	x
SPI1	1 K		0x5001 3000 0x5001 33FF	0x4001 3000 0x4001 33FF		0x5001 3000 0x5001 33FF	0x4001 3000 0x4001 33FF	х	x	x	x
TIM1	1 K		0x5001 2C00 0x5001 2FFF	0x4001 2C00 0x4001 2FFF		0x5001 2C00 0x5001 2FFF	0x4001 2C00 0x4001 2FFF	х	x	x	x
UCPD1	1 K		0x5000 DC00 0x5000 DFFF	0x4000 DC00 0x4000 DFFF		0x5000 DC00 0x5000 DFFF	0x4000 DC00 0x4000 DFFF	N/A	x	x	x
FDCAN1 RAM	1 K	APB1	0x5000 AC00 0x5000 AFFF	0x4000 AC00 0x4000 AFFF		0x5000 AC00 0x5000 AFFF	0x4000 AC00 0x4000 AFFF	х	x	x	x
FDCAN1	1 K		0x5000 A400 0x5000 A7FF	0x4000 A400 0x4000 A7FF		0x5000 A400 0x5000 A7FF	0x4000 A400 0x4000 A7FF	х	x	x	x
I2C6	1 K					0x5000 9C00 0x5000 9FFF	0x4000 9C00 0x4000 9FFF	N/A	N/A	x	x
I2C5	1 K	N/A				0x5000 9800 0x5000 9BFF	0x4000 9800 0x4000 9BFF	N/A	N/A	x	x
LPTIM2	1 K	4551	0x5000 9400 0x5000 97FF	0x4000 9400 0x4000 97FF	APB1	0x5000 9400 0x5000 97FF	0x4000 9400 0x4000 97FF	х	x	x	x
I2C4	1 K	APB1	0x5000 8400 0x5000 87FF	0x4000 8400 0x4000 87FF		0x5000 8400 0x5000 87FF	0x4000 8400 0x4000 87FF	х	x	x	x
USART6	1 K	N/A				0x5000 6400 0x5000 67FF	0x4000 6400 0x4000 67FF	N/A	N/A	x	x
CRS	1 K		0x5000 6000 0x5000 63FF	0x4000 6000 0x4000 63FF	-	0x5000 6000 0x5000 63FF	0x4000 6000 0x4000 63FF	х	x	x	x
I2C2	1 K	APB1	0x5000 5800 0x5000 5BFF	0x4000 5800 0x4000 5BFF		0x5000 5800 0x5000 5BFF	0x4000 5800 0x4000 5BFF	х	x	x	x
I2C1	1 K		0x5000 5400 0x5000 57FF	0x4000 5400 0x4000 57FF		0x5000 5400 0x5000 57FF	0x4000 5400 0x4000 57FF	х	x	x	х

AN5371 - Rev 2 page 21/102

			STM32L	.5					STM	32U5	
Peripheral	Size (bytes)	Bus	Secure boundary address	Nonsecure boundary address	STM3 2U5 Bus	Secure boundary address	Nonsecure boundary address	STM32U535/545	STM32U575/585	STM32U59x/5Ax	STM32U5Fx/5Gx
UART5	1 K		0x5000 5000 0x5000 53FF	0x4000 5000 0x4000 53FF		0x5000 5000 0x5000 53FF	0x4000 5000 0x4000 53FF	х	х	х	х
UART4	1 K		0x5000 4C00 0x5000 4FFF	0x4000 4C00 0x4000 4FFF		0x5000 4C00 0x5000 4FFF	0x4000 4C00 0x4000 4FFF	х	х	x	х
USART3	1 K		0x5000 4800 0x5000 4BFF	0x4000 4800 0x4000 4BFF	-	0x5000 4800 0x5000 4BFF	0x4000 4800 0x4000 4BFF	x	х	x	х
USART2	1 K		0x5000 4400 0x5000 47FF	0x4000 4400 0x4000 47FF	-	0x5000 4400 0x5000 47FF	0x4000 4400 0x4000 47FF	N/A	х	x	х
SPI2	1 K		0x5000 3800 0x5000 3BFF	0x4000 3800 0x4000 3BFF	-	0x5000 3800 0x5000 3BFF	0x4000 3800 0x4000 3BFF	x	х	x	х
IWDG	1 K		0x5000 3000 0x5000 33FF	0x4000 3000 0x4000 33FF	_	0x5000 3000 0x5000 33FF	0x4000 3000 0x4000 33FF	x	x	x	x
WWDG	1 K	APB1	0x5000 2C00 0x5000 2FFF	0x4000 2C00 0x4000 2FFF	APB1	0x5000 2C00 0x5000 2FFF	0x4000 2C00 0x4000 2FFF	х	х	x	x
TIM7	1 K		0x5000 1400 0x5000 17FF	0x4000 1400 0x4000 17FF	-	0x5000 1400 0x5000 17FF	0x4000 1400 0x4000 17FF	x	х	x	х
TIM6	1 K		0x5000 1000 0x5000 13FF	0x4000 1000 0x4000 13FF	-	0x5000 1000 0x5000 13FF	0x4000 1000 0x4000 13FF	x	x	x	x
TIM5	1 K		0x5000 0C00 0x5000 0FFF	0x4000 0C00 0x4000 0FFF	-	0x5000 0C00 0x5000 0FFF	0x4000 0C00 0x4000 0FFF	x	х	x	x
TIM4	1 K		0x5000 0800 0x5000 0BFF	0x4000 0800 0x4000 0BFF	-	0x5000 0800 0x5000 0BFF	0x4000 0800 0x4000 0BFF	x	x	x	x
TIM3	1 K		0x5000 0400 0x5000 07FF	0x4000 0400 0x4000 07FF	-	0x5000 0400 0x5000 07FF	0x4000 0400 0x4000 07FF	x	x	x	x
TIM2	1 K		0x5000 0000 0x5000 03FF	0x4000 0000 0x4000 03FF	-	0x5000 0000 0x5000 03FF	0x4000 0000 0x4000 03FF	х	x	x	x

- 1. Only one COMP on STM32U535/545
- 2. No dual ADC mode on STM32U535/545/575/585
- 3. GPU2D supports HW vector graphic only in STM32U5Fx/5Gx
- 4. MDF features only 2 filters in STM32U535/545

AN5371 - Rev 2 page 22/102

5 Migration of security peripherals

5.1 TAMP

The STM32U5 series anti-tamper detection circuit is used to protect sensitive data from external attacks. 32 backup registers, each of 32-bit size, are retained in all low-power modes and also in VBAT mode. The main differences between STM32L5 and STM32U5 series are detailed below.

5.1.1 Tamper pins and internal events

The table below compares the tamper pins and internal events and lists the main differences between STM32L5 and STM32U5 series.

Table 11. Tamper pins and events for STM32L5 and STM32U5 series

Feature	STM32L5	STM32U5					
	8 input/output TAMP pins for 8 externa	Il tamper detection events					
	PE6 (TAMP_IN3/TAMP_OUT6)						
	PC13 (TAMP_IN1/TAMP_OUT2)						
	PA0 (TAMP_IN2/TAMP_OUT1)						
Tamper pins (not compatible)	PA1 (TAMP_IN5/TAMP_OUT4)						
	PC5 (TAMP_IN4/TAMP_OUT5)						
	PF7 (TAMP_IN6/TAMP_OUT3)	PE3 (TAMP_IN6/TAMP_OUT3)					
	PF8 (TAMP_IN7/TAMP_OUT8)	PE4 (TAMP_IN7/TAMP_OUT8)					
	PF9 (TAMP_IN8/TAMP_OUT7)	PE5 (TAMP_IN8/TAMP_OUT7)					
	5 internal tamper events	11 internal tamper events					
TAMP internal events to	 tamp_itamp1: Supply voltage monitoring tamp_itamp2: Temperature monitoring tamp_itamp3: LSE monitoring tamp_itamp5: RTC calendar overflow tamp_itamp8: Monotonic counter overflow 						
protect against transient or environmental perturbation attacks (four new internal tampers in STM32U5) series devices	N/A	 tamp_itamp6: JTAG/SWD access when RDP > 0 tamp_itamp7: Voltage monitoring through ADC analog watchdog 1 tamp_itamp9: Cryptographic peripheral fault (SAES, AES, PKA or TRNG) tamp_itamp11: IDWG reset when tamper flag is set tamp_itamp12: Voltage monitoring through ADC analog watchdog 2 tamp_itamp13: Voltage monitoring through ADC analog watchdog 3 					
	Backup registersSRAM2PKA SRAM						
List of device secrets erased by tamper	ICACHE	ICACHE/DCACHE					
	N/A	Backup SRAM (optionally)OTFDEC keys and CRC registersSAES, AES, HASH peripherals					
Tamper software filtering (potential tamper)	Configuration to detect tamper events without erasing secrets (NOERASE mode)	NOERASE mode with access to device secrets blocked					
(potential tamper)	Software control to launch device secrets erase	Software control to launch device secrets erase + timeout					

AN5371 - Rev 2 page 23/102

Feature	STM32L5	STM32U5				
TAMP pins functionality over V _{DD} mode	All tamper pins, TAMP_IN[8:1] and TAWhen external VDD power supply is pre	MP_OUT[8:1], are functional in all low-power modes esent.				
TAMP pins functionality over V BAT mode	Only TAMP_IN1, TAMP_IN 2 and TAMP_IN 3 are functional in VBAT mode. Only TAMP_OUT2 is functional in VBAT mode.	All tamper pins, TAMP_IN[8:1] and TAMP_OUT[8:1], are functional in V _{BAT} mode.				
	LSE missing detection					
LSE monitoring (tamp_itamp3)	N/A	LSE over-frequency detection				
See section 'Clock security	N/A	LSE under-frequency				
system on LSE' in the product reference manual for more details)	CSS on LSE works in all modes except V _{BAT} .	CSS on LSE works in all modes including V_{BAT} .				
dotalio	LSE clock is no longer supplied to the RTC.	LSE clock is no longer supplied to the RTC.				
Temperature monitoring	Not functional in V _{BAT} mode Functional in V _{BAT} mode					
(tamp_itamp2)	A tamper event is generated when the temperature is above or below the functional range.					
	The monitoring is performed on V_{DD} .	The monitoring is performed on Backup domain supply that is $V_{\rm DD}$ when present, $V_{\rm BAT}$ otherwise.				
N. II	Not functional in V _{BAT} mode	Functional in V _{BAT} mode				
Voltage Supply monitoring (tamp_itamp1) See section 'Backup domain voltage and temperature	A tamper event (<i>tamp_itamp1</i>) is generated when V _{DD} is above the specified threshold.	A tamper event (tamp_itamp1) is generated when the Backup domain voltage is above the specified thresholds.				
monitoring' in the product reference manual.	A BOR (Brownout reset) is generated when V _{DD} is below the functional range.	A Backup domain BOR is generated when V_{BAT} voltage is below the functional range, in VBAT mode.				
	N/A	In case of Backup domain BOR, all the device is erased including the Backup domain.				

5.1.2 Potential tamper detection mode (STM32U5 only) series

In the NOERASE configuration (see section *TAMP backup registers and other device secrets erase* in the reference manual for more details), the backup registers and other device secrets are not reset when the corresponding tamper event is detected. In addition, the read and write accesses to the backup registers and to other device secrets are blocked.

The tamp_potential signal is used to block the read and write accesses to the following device secrets:

- backup registers
- backup SRAM (optionally)
- SRAM2
- RHUK in system flash memory

In this case, the software can launch secrets erase when the potential tamper is confirmed to be a true one. The *tamp_potential* signal is used to erase the device secrets listed below and the device secrets access is blocked when erase is on-going:

- ICACHE content
- SAES, AES, HASH peripherals
- PKA SRAM

The backup registers and other device secrets are reset by software by setting the BKERASE bit in the TAMP_CR2 register. The internal tamper 11 generates a tamper event if the independent watchdog reset occurs when a tamper flag is set. This forces by hardware the reset of the backup registers and other device secrets after a timeout, in case the tamper source is in NOERASE configuration.

AN5371 - Rev 2 page 24/102

5.1.3 Boot hardware key

The first eight backup registers can be used to store a boot master key, programmed during boot for the SAES (secure AES). Once locked, the eight backup registers cannot be accessed anymore by software: they are read as 0 and write to these registers is ignored.

The locking bit BHKLOCK cannot be cleared by software. It is cleared either by hardware following a tamper event or when the readout protection (RDP) is disabled. In both cases, the backup registers are also erased. Refer to section 'Boot hardware key' of the reference manual (RM0456) for more details.

5.2 HASH (hash processor)

The STM32L5 and STM32U5 series embed a HASH hardware accelerator with same features. Both hash processors provide an interface to connect to the DMA controller. The STM32U5 series HASH peripheral supports both single and fixed DMA burst transfers of four words. However, the STM32L5 HASH only supports single DMA transfers.

The HASH registers are compatible, except a minor difference between STM32L5 and STM32U5 series HASH CR registers (ALGO[0] is moved from bit 7 to bit 17).

5.3 OTFDEC (on-the-fly decryption engine)

The STM32U545/585/5Ax/5Gx devices embed up to two OTFDEC peripherals versus only one in STM32L562 with the same features.

The OTFDEC decrypts in real-time the encrypted content stored in the external OCTOSPI memories used in Memory-mapped mode. The OTFDEC uses the AES-128 algorithm in counter mode (CTR).

5.4 RNG (true random number generator)

The STM32L5 and STM32U5 series embed a TRNG that delivers 32-bit random numbers generated by an integrated analog circuit. The latter provides full entropy raw data composed of a live entropy source (analog) and an internal conditioning component.

The RNG is a NIST SP 800-90B compliant entropy source that can be used to construct a non-deterministic random bit generator (NDRBG). It has also been tested using German BSI statistical tests of AIS-31 (T0 to T8).

The STM32L5 and STM32U5 series RNG peripherals have the same features with minor new ones added to the STM32U5 series, as shown in the table below.

Table 12. RNG features on STM32L5 and STM32U5 series

RNG features STM32L5

RNG features	STM32L5	STM32U5
True random number generator	X	X
Can be used as entropy source to construct a non-deterministic random bit generator (NDRBG)	Х	X
NIST SP800-90B approved	X	X
Tested using German BSI statistical tests of AIS-31 (T0 to T8)	X	X
Embeds start-up and NIST SP800-90B approved continuous health tests	X	X
Can be disabled to reduce power consumption Enabled with an automatic low power mode (default configuration).	Х	X
AHB slave peripheral, accessible through 32-bit word single accesses only	X	X
RNG internal tamper event signal to TAMP	N/A	X
Transparent use by SAES and PKA for DPA resistance	N/A	X

The RNG is transparently used by SAES and PKA for DPA resistance. When an unexpected error is found by the RNG, an internal tamper event is triggered in TAMP peripheral, and the RNG stops delivering random data.

When this event occurs, a secure application needs to reset the RNG either using the central reset management or the global SoC reset. Then a proper initialization of the RNG is required, again.

AN5371 - Rev 2 page 25/102

5.5 PKA (public key accelerator)

The STM32U545/585/5Ax/5Gx devices and STM32L562 embed one PKA peripheral intended for the computation of cryptographic public key primitives within the Montgomery domain. All needed computations are performed within the accelerator, so no further hardware/software elaboration is needed to process the inputs or the outputs.

The STM32U545/585/5Ax/5Gx devices and STM32L562 share almost the same PKA features but the STM32U545/585/5Ax/5Gx devices embed two new features and three new computation operators. Registers are compatible except new bits added in STM32U545/585/5Ax/5Gx devices to map the new features.

Table 13. PKA features for STM32L562 and STM32U545/585/5Ax/5Gx devices

Feature/operation	STM32L562	STM32U545/585/5Ax/5Gx
RSA modular exponentiation, RSA Chinese remainder theorem (CRT)	х	X
ECC scalar multiplication, point on curve check	х	X
ECC complete addition	N/A	X
ECC double base ladder	N/A	X
ECC projective to affine	N/A	X
ECDSA signature generation and verification	х	X
Size of RSA/DH operands (in bits)	3136	4160
Size of ECC operands		640
Arithmetic and modular operations such as addition, subtraction, multiplication, modular reduction, modular inversion, comparison, and Montgomery multiplication	х	x
Built-in Montgomery domain inward and outward transformations	х	X
Protection against differential power analysis (DPA) and related side-channels attacks	N/A	Х

5.6 AES and SAES hardware accelerators

The STM32U545/585/5Ax/5Gx devices embed two AES accelerators: one secure AES (SAES) and a faster AES. The STM32L562 embed only one fast AES that shares the same features as the AES embedded in the STM32U545/85/5Ax/5Gxdevices

In STM32U545/585/5Ax/5Gx devices, the SAES with hardware unique key embeds protection against differential power analysis (DPA) and related side channel attacks. When an unexpected hardware fault occurs, an output tamper event is triggered and the AES automatically clears key registers. A reset is required for the AES to be usable again.

In these devices, the SAES has secure bus interfacing the true RNG that seeds the embedded PRNG module within SAES. The latter ensures cryptographically separated secure storage keys management (secure, privileged) and a key usage enforcement shared with the AES.

The AES can use the SAES as security coprocessor. In this case, secure application prepares the key in robust SAES, then, when ready, the AES can load this key through a dedicated hardware keybus. Recommended sequences are described in sections 'AES shared key usage' and 'SAES operations with shared keys' of the reference manual (RM0456).

AN5371 - Rev 2 page 26/102

The table below gives the main differences between STM32U545/585/5Ax/5Gx devices and STM32L562 AES peripherals. The other features are the same, as described in the product reference manuals.

Table 14. AES/SAES features on STM32L562 and STM32U545/585/5Ax/5Gx devices

Modes and features	STM32L562	STM32U545/	585/5Ax/5Gx			
Modes and leatures	AES	AES	SAES			
ECB, CBC chaining	X	X	Х			
CTR, CCM, GCM chaining	X	Х	-			
AES 128-bit ECB encryption (in cycles)	51	51	528			
256-bit software key	X	X	X			
DHUK and BHK key selection	-	-	Х			
Protection against DPA and related side-channel attacks	-	-	X			
Shared key between SAES and AES	-	X				
AES tamper signal triggering	-	>	<			
	Computation comple	ted flag and read/writ	e error flag			
AES interrupts and error managements	-	Key en	ror flag			
	-	RNG				
Registers compatibility	Registers compatible except new registers and bits added in STM32U545/85/5Ax/5Gx devices					

5.7 GTZC (global TrustZone controller)

The security architecture of STM32L5 and STM32U5 series is based on Arm TrustZone with the Armv8-M mainline extension. Each GPIO or peripheral, DMA channel, clock configuration register, DCACHE/ICACHE or small part of flash memory or SRAM can be configured as trusted or untrusted.

The GTZC embedded in the STM32U5 series is used to configure secure-TrustZone and privileged attributes within the full system. It contains the following sub-blocks:

- TZSC: TrustZone security controller
 This sub-block defines the secure/privileged state of slave peripherals. It also controls the sub-region area size and properties for the watermark memory peripheral controller (MPCWM). The TZSC informs some peripherals (such as RCC or GPIOs) about the secure status of each securable peripheral, by sharing with RCC and I/O logic.
- MPCBB: memory protection controller block based
 This sub-block configures the internal RAM in a TrustZone-system product having segmented SRAM (pages of 512 bytes) with programmable-security and privileged attributes.
- TZIC: TrustZone illegal access controller
 This sub-block gathers all illegal access events in the system and generates a secure interrupt towards NVIC.

AN5371 - Rev 2 page 27/102

The STM32L5 and STM32U5 series GTZC registers are different (see the table below).

Table 15. GTZC features in STM32L5 and STM32U5 series

Features	STM32L5	STM32U5
Three independent 32-bit AHB interfaces for TZSC, TZIC and MPCBB	X	X
TZIC accessible only with secure transactions	X	X
Secure and nonsecure access supported for privileged and unprivileged part of TZSC	Х	Х
Secure and nonsecure access supported for privileged and unprivileged part of MPCBB	N/A (secure/nonsecure only)	Х
Registers to define secure blocks for internal and external SRAMs	X	X
Registers to define privileged blocks for internal and external SRAMs	N/A	X
Secure/privileged regions for internal backup SRAM	N/A	X
Secure/privileged access mode for securable and TrustZone-aware peripherals	Х	Х
Secure/privileged access mode for securable masters	X	X

5.7.1 GTZC implementation and resource assignments

The STM32U5 series embeds two instances of GTZC versus only one instance in STM32L5 (see the table below).

Table 16. GTZC implementation in STM32L5 and STM32U5 devices

Feature	STM32L5				STN	132U5			
reature	STW32L5	STM32L	J535/545	STM32L	J575/58 5	STM32L	J59x/5Ax	STM32U	5Fx/5Gx
GTZC block implemented	GTZC	GTZC1	GTZC2	GTZC1	GTZC2	GTZC1	GTZC2	GTZC1	GTZC2
Number of TZSC	1	1	1	1	1	1	1	1	1
Number of TZIC	1	1	1	1	1	1	1	1	1
Number of MPCBB	2	2	1	3	1	5	1	6	1
Number of MPCWM	3	2	N/A	5	N/A	6	N/A	6	N/A

AN5371 - Rev 2 page 28/102

MPCWM and MPCBB resources assignments are detailed in the tables below.

Table 17. MPCWM resources assignments in STM32L5 and STM32U5 devices

			Number			STM32U5		
GTZC block	MPC	Target memory interface	of secure/ non-secure and privileged/ unprivileged regions	Watermark granularity (bytes)	STM32L5	STM32U 535/545	STM32U 575/585	STM32U 59x/5Ax/5F x/5Gx
	MPCWM1	OCTOSPI1	2	128 K	x	x	x	х
	MPCWM2	FSMC_NOR bank	2	128 K	x	-	x	x
GTZC1	MPCWM3	FSMC_NAND BANK	1	128 K	x	-	x	х
	MPCWM4	BKPSRAM	1	32	-	x	x	х
	MPCWM5	OCTOSPI2	2	128 K	-	-	x	x
	MPCWM6	HSPI1	2	128 K	-	-	x	х

Table 18. MPCBB resources in STM32L5 and STM32U5 series

Product	GTZC block	МРС	Resource	Memory size (Kbytes)	Block size (bytes)	Number of blocks	Number of super-blocks
STM32L5 Series	GTZC	MPCBB2	SRAM1	192	256	768	24
STW32L5 Series	GIZC	MPCBB2	SRAM2	64	250	256	8
	GTZC1	MPCBB1	SRAM1	192		384	12
STM32U535/545	GIZCI	MPCBB2	SRAM2	64		128	4
	GTZC2	MPCBB4	SRAM4	16		32	1
		MPCBB1	SRAM1	192		384	12
STM32U575/585	GTZC1	MPCBB2	SRAM2	64		128	4
STW32U575/565		MPCBB3	SRAM3	512	512	1024	32
	GTZC2	MPCBB4	SRAM4	16		32	1
	GTZC1	MPCBB1	SRAM1	768		1536	48
		MPCBB2	SRAM2	64		128	4
STM32U59x/5Ax		MPCBB3	SRAM3	832		1664	52
		MPCBB5	SRAM5	832		1664	52
	GTZC2	MPCBB4	SRAM4	16		32	1
		MPCBB1	SRAM1	768		1536	48
		MPCBB2	SRAM2	64		128	4
STM32U5Fx/5Gx	GTZC1	MPCBB3	SRAM3	832		1664	52
STIVISZUSEX/SGX		MPCBB5	SRAM5	832		1664	52
		MPCBB6	SRAM6	512		1024	32
	GTZC2	MPCBB4	SRAM4	16	-	32	1

AN5371 - Rev 2 page 29/102

5.7.2 TrustZone security architecture

When the TrustZone is enabled, the Armv8-M attributes define the access permissions based on secure and nonsecure state:

- SAU (security attribution unit): up to eight SAU configurable regions available for security attribution
- IDAU (implementation defined attribution unit): provides a first memory partition as nonsecure or nonsecure callable attributes. This partition is then combined with the results from the SAU security attribution and the higher-security state is selected.

Based on IDAU security attribution, the flash memory, system SRAMs and peripheral memory space are aliased twice for secure and nonsecure states. However, the external memory space is not aliased.

The STM32L5 and STM32U5 series datasheets give the same example of memory map security attribution versus SAU configuration regions.

5.7.3 TrustZone peripheral classification

When the TrustZone security is active, a peripheral can be either securable or TrustZone-aware as follows:

- securable: peripheral protected by an AHB/APB firewall gate that is controlled from TZSC to define security properties
- TrustZone-aware: peripheral connected directly to AHB or APB bus and implementing a specific TrustZone behavior such as a subset of registers being secure

The default system security state is the same for STM32L5 and STM32U5 series.

AN5371 - Rev 2 page 30/102

6 Migration of system peripherals

This section analyzes the differences and similarities between system peripherals implemented in STM32L5 and STM32U5 series.

6.1 SYSCFG (system configuration controller)

The table below shows the differences between the SYSCFG in STM32L5 and in STM32U5 series.

Table 19. SYSCFG features in STM32L5 and STM32U5 series

Features	STM32L5	STM32U5			
	Managing robustness feature				
Common features	Configuring TrustZone security register access				
Common leatures	Configuring FPU interrupts				
	Driving capability on some I/Os and voltage bo	Driving capability on some I/Os and voltage booster for I/Os analog switches			
Managing I/O compensation cells	N/A	Compensation cells on V _{DD} /V _{DDIO2} /HSPI track the PVT conditions to control the current slew-rate and output impedance in I/O buffer.			
SRAM2 WRP	Setting SRMA2 write protection and software erase	N/A (performed by the RAMCFG)			
UCPD filter enable	N/A (only UCPD features available without filter)	UCPD BMC receiver low-pass analog filter enable (as defined by tRxFilter in the standard)			
I ² C Fast-mode Plus	Enabling/disabling the I ² C I/Os Fast-mode Plus drive	I ² C I/Os fast mode plu drive is controlled from the I2C peripheral. This mode can still be enabled/disabled in SYSCFG for four I/Os when not used by I2C.			
OTG_HS PHY ⁽¹⁾		Configuring the OTG_HS PHY			
HSPI supply capacitance ⁽¹⁾	N/A	Adjust the HSPI supply capacitance			
SRAMs cacheability by DCACHE2 ⁽¹⁾		Disable internal SRAMs cacheability by DCACHE2			

^{1.} These features are only available on STM32U59x/5Ax/5Fx/5Gx.

6.2 Flash memory

Compared to the STM32L5, the STM32U5 series flash memory includes bigger memory space (except the STM32U535/545xx devices) with advanced features (see the table below).

Table 20. Flash memory features in STM32L5 and STM32U5 devices

		STM32U5				
Feature	STM32L5	STM32U535/545	STM32U575/585	STM32U59x/ 5Ax/5Fx/5Gx		
Size	 512 Kbytes (128 x 2-Kbyte pages): Single-bank page size is 4 Kbytes. Dual bank page size is 2 Kbytes. 	512 Kbytes dual bank (32 x 8 Kbytes pages per bank)	2 Mbytes dual bank (128 x 8 Kbytes pages per bank)	4 Mbytes dual bank (256 x 8 Kbytes pages per bank)		
	Nonsecure information block:	3				

AN5371 - Rev 2 page 31/102

		STM32U5				
Feature	STM32L5	STM32U535/545	STM32U575/585	STM32U59x/ 5Ax/5Fx/5Gx		
Size	Secure information block: RSS: 8 Kbytes RSS library: 2 Kbytes	Secure information block RSS: 24 Kbytes RSS library: 8 Kbyt				
	Read (R), Write (W) and read-whi	le-write (RWW)				
Access modes	Single bank mode (DBANK = 0): 128 bit read access Dual bank mode (DBANK = 1): 64 bit read access	Dual bank mode: 128 bit read access (no single bank mode)				
ECC	8 bits per 64 bit double word (SECDED). The ECC mechanism supports: One error detection and correction Two errors detection	9 bits per 128-bit quad we One error detection Two errors detection		echanism supports:		
Read-access latency	Up to 4 wait-states (WS) depending on the supply voltage and the frequency	The flash memory supports a low-power read mode (LPM). The number of WS depends on LPM: • LPM = 0: up to 4 WS depending on supply voltage and frequency • LPM = 1 (reduced consumption and increased latency): up to 15 WS depending on supply voltage and frequency				
read doocoo laterloy	Increasing/decreasing the CPU frequency to tune the number of wait statements.					
	N/A	Instruction prefetch through ICACHE can be enabled by setting the PRFTEN bit that increases code execution speed.				
		Programmable switching sequences between normal read mode to low				
Power-down mode per Bank	N/A	After reset, both banks are in normal mode. Each bank can be independently put in power-down				
New endurance capability	10 Kcycles	 Increased endurance thanks to the smart write module: 10 Kcycles (written and erased) on all flash memory 100 Kcycles (written and erased) on 256 Kbytes (32 pages) per bank 				
Flash program and	Page/bank if dual bank activated/mass erase	Page/bank/mass erase (b	ooth banks)			
erase operations	64-bits (double word) programming	128-bit (quad word) programming				
New option bytes	N/A	8 additional option bytes versus STM32L5 (see Table 20): • IO_VDDIO2_HSLV/IO_VDD_HSLV/IO_VDD_HSLV • SRAM_RST • OEM1KEY/OEM2KEY (4 options) • UNLOCK write protection (4 options bits)				
	Write protection (WRP)					
	Readout protection (RPD)					
Flash memory protection	Secure protection when TrustZone is active: Up to 2 secure watermark-based non-volatile areas Up to 2 secure block-based volatile areas Up to 2 secure-hide protection areas	1	ermark-based non-volatile a d volatile areas with page gr			

AN5371 - Rev 2 page 32/102

		STM32U5				
Feature	STM32L5	STM32U535/545	STM32U575/585	STM32U59x/ 5Ax/5Fx/5Gx		
Flash memory	Privileged protection bit (PRIV) for both privileged	Privileged block-based volatile areas with page granularity. PRIV in STM32L5 is replaced by SPRIV and NSPRIV in STM32U5 series devices:				
protection	or unprivileged, secure and nonsecure access.	 Any page programmable on-the-fly as privileged or unprivileged Privileged register protection: Grant flash register access to privilege code independently for secure (SPRIV) and nonsecure (NSPRIV) accesses 				
Locking keys for RDP regression from L1 and L2	The RDP transition between levels is performed by modifying the option bytes values Full mass erase performed only when L1 or L0.5 is active and L0 is requested No mass erase when the protection level is increased (such as 0 to 0.5 or 1 to 2)					
	No OEM locking key between levels	OEM key required in RDP transition between levels: • Possible RDP transition between L1 and L0 which OEM1 key				
	Regression not allowed between L2 and L1					
	Regression possible from L0.5 or L1 to L0, and L1 to L0.5. Regression not possible from L2.	Regression not possible from L0.5. Regression possible from L2 with OEM2Keys when provisioned. Regression always possible from L1. OEM1 key are mandatory from L1 to L0 when provisioned.				

The option bytes are configured by the end user depending on the application requirements (see the table below and refer to section 'Flash memory option bytes' of the product reference manual for more details).

Table 21. Main option bytes in STM32L5 and STM32U5 devices

Option bit/byte	STM32L5	STM32U5			
Global TrustZone activation	TZEN: global TrustZone security enable o: global TrustZone security disabled 1: global TrustZone security enabled				
Readout Protection	RDP level: • 0xAA: L0 (RDP not active) • 0x55: L0.5 (RDP not active) active (TZEN = 1) • 0xCC: L2 (device RDP active) • Others: L1 (memories RD)	e, only nonsecure debug access possible), only available when TrustZone is ctive)			
Reset	 BOR_LEV [2:0]: BOR reset level. These bits contain the VDD supply level threshold that activates/ releases the reset. RST_STOP: reset generation in STOP mode nRST_STDBY: reset generation in Standby mode nRST_SHDW: reset generation in Shutdown mode N/A SRAM_RST: SRAM1, SRAM3 ⁽¹⁾ , SRAM4, SRAM5 ⁽²⁾ , SRAM6 ⁽³⁾ are erased when a system reset occurs				
Watchdog	SRAM2_RST: SRAM2 erase when system reset IWDG_SW: Hardware or Software Independent Watchdog selection IWDG_STOP: Independent Watchdog counter freeze in Stop mode IWDG_STDBY: Independent watchdog counter freeze in Standby mode WWDG_SW: Window Watchdog selection				
Secure and nonsecure boot	 nSWBOOT0: Software BOOT0 nBOOT0 option bit nSBOOTADD0[24:0]: nonsecure boot base-address 0 nSBOOTADD1[24:0]: nonsecure boot base-address 1 SECBOOTADD0[24:0]: Secure boot base-address 0 BOOT_LOCK: When this bit is set, the boot is always forced to value defined in SECBOOTADD0[24:0] 				
Flash memory secure watermark	Bank 1: • SECWM1_PSTRT[6:0]: fin	rst page of the secure area in bank 1			

AN5371 - Rev 2 page 33/102

Flash memory secure watermark Bank 2 Bank 2	HDP1_PEND[6:0]: last path HDP1EN: Hide protection 2: SECWM2_PSTRT[6:0]: fix SECWM2_PEND[6:0]: last path HDP2_PEND[6:0]: last path HDP2EN: Hide protection 1: PCROP1_PSTRT[6:0]: first page of PCROP area in bank 1 PCROP1EN: PCROP1 area enable 2: PCROP2_PSTRT[6:0]: first page of PCROP area in bank 2 PCROP2EN: PCROP2 area enable 1: WRP1A_PSTRT[6:0]: first WRP1A_PEND[6:0]: first WRP1B_PSTRT[6:0]: first WRP1B_PEND[6:0]: last WRP1B_PEND[6:0]: last	irst page of the secure area in bank 2 st page of the secure area in bank 2 age of HDP area in bank 2 a second area enable N/A It page of the WPR area A in bank 1 It page of the WPR area B in bank 1 It page of the WPR area B in bank 1	
Flash memory secure watermark Bank 1 Bank 2	SECWM2_PSTRT[6:0]: fis SECWM2_PEND[6:0]: last path PDP2_PEND[6:0]: last path PDP2EN: Hide protection it: PCROP1_PSTRT[6:0]: first page of PCROP area in bank 1 PCROP1EN: PCROP1 area enable it: PCROP2_PSTRT[6:0]: first page of PCROP area in bank 2 PCROP2EN: PCROP2 area enable it: WRP1A_PSTRT[6:0]: first wRP1A_PEND[6:0]: the it wRP1B_PSTRT[6:0]: last wRP1B_PEND[6:0]: last	st page of the secure area in bank 2 age of HDP area in bank 2 a second area enable N/A It page of the WPR area A in bank 1 last page of the WPR area A in bank 1 st page of the WPR area B in bank 1	
Flash memory secure watermark Bank 1 Bank 2 Bank 2	SECWM2_PEND[6:0]: last path HDP2_PEND[6:0]: last path HDP2EN: Hide protection it: PCROP1_PSTRT[6:0]: first page of PCROP area in bank 1 PCROP1EN: PCROP1 area enable it: PCROP2_PSTRT[6:0]: first page of PCROP area in bank 2 PCROP2EN: PCROP2 area enable it: WRP1A_PSTRT[6:0]: first wRP1A_PEND[6:0]: first wRP1B_PSTRT[6:0]: first wRP1B_PSTRT[6:0]: first page of PCROP2 area enable it:	st page of the secure area in bank 2 age of HDP area in bank 2 a second area enable N/A It page of the WPR area A in bank 1 last page of the WPR area A in bank 1 st page of the WPR area B in bank 1	
Flash memory secure watermark Bank 2	PCROP1_PSTRT[6:0]: first page of PCROP area in bank 1 PCROP1EN: PCROP1 area enable 2: PCROP2_PSTRT[6:0]: first page of PCROP area in bank 2 PCROP2EN: PCROP2 area enable 1: WRP1A_PSTRT[6:0]: firs WRP1A_PEND[6:0]: the WRP1B_PSTRT[6:0]: lists WRP1B_PEND[6:0]: last	of page of the WPR area A in bank 1 last page of the WPR area A in bank 1 of page of the WPR area B in bank 1	
Flash memory write protection (WRP) areas	WRP1A_PSTRT[6:0]: firs WRP1A_PEND[6:0]: the WRP1B_PSTRT[6:0]: firs WRP1B_PEND[6:0]: last	last page of the WPR area A in bank 1 st page of the WPR area B in bank 1	
N/A	 WRP1A_PEND[6:0]: the last page of the WPR area A in bank 1 WRP1B_PSTRT[6:0]: first page of the WPR area B in bank 1 WRP1B_PEND[6:0]: last page of the WPR area B in bank 1 Bank 2: WRP2A_PSTRT[6:0]: first page of the WPR area A in bank 2 WRP2A_PEND[6:0]: last page of the WPR area A in bank 2 WRP2B_PSTRT[6:0]: first page of the WPR area B in bank 2 		
		UNLOCK, 4 option bits to unlock the following areas: bank 1 WPR first area A bank 1 WPR second area B bank 2 WPR first area A bank 2 WPR second area B	
Flash memory locking keys for RDP level regression N/A		 OEM1KEY[31:0]: OEM1 least significant bytes key OEM1KEY[63:32]: OEM1 most significant bytes key OEM2KEY[31:0]: OEM2 least significant bytes key OEM2KEY[63:32]: OEM2 most significant bytes key 	
	Removed, replaced by ECC options bits. ECC detection and correction enable for the following mem BKPRAM_ECC for backup RAM SRAM2_ECC for SRAM2 SRAM3 ECC for SRAM3		
SWAP	_BANK: used to swap ba	nks	
	K: selection of single or ank flash with contiguous sses	DBANK removed	
Flash memory banking DB256 Kbyte		 DUALBANK: dual-bank configuration: 256 Kbyte and 128 Kbyte flash memory devices for STM32U535/545 1 Mbyte flash memory devices for STM32U575/585 	

AN5371 - Rev 2 page 34/102

Option bit/byte	STM32L5	STM32U5		
	PA15_PUPEN: PA15 pull-up enable O: USB power delivery dead-battery enabled/TDI pull-up deactivated 1: USB powder delivery dead-battery disabled/TDI pull-up activated			
I/O speed and pull-up selection	N/A	 IO_VDD_HSLV: high-speed I/O configuration bit at low VDD is below 2.5V IO_VDDIO2_HSLV: high-speed I/O configuration bit at low V_{DDIO2} voltage. This bit can be set only with V_{DD} is below 2.5V 		

- 1. SRAM3 is not available on STM32U535/545 devices.
- 2. SRAM5 is not available on STM32U535/545/575/585 devices.
- 3. SRAM6 is not available on STM32U535/545/575/585/59x/5Ax devices.

6.3 SRAMs

In STM32L5, the control of SRAM1 and SRAM2 is integrated within the SYSCFG. However, In STM32U5 series, a new peripheral, RAMCFG controller, is dedicated to the control of SRAM1, SRAM2, SRAM3, SRAM4, and BKPSRAM (refer to section 'RAMs configuration controller' in the product reference manual for more details). The table below compares the embedded SRAMs features in STM32L5 and STM32U5 devices.

Table 22. SRAMs in STM32L5 and STM32U5 devices

Feature		CTM2015	STM32U5					
rea	iture	STM32L5	STM32U535/545	STM32U575/585	STM32U59x/5Ax	STM32U5Fx/5Gx		
			274:	786:	2514:	3026:		
			SRAM1 = 192	SRAM1 = 192	SRAM1 = 768	SRAM1 = 768		
		256 for STM32L552xx/	SRAM2 = 64	SRAM2 = 64	SRAM2 = 64	SRAM2 = 64		
Cina (Khu	4\	562xx devices:	SRAM4 = 16	SRAM3 = 512	SRAM3 = 832	SRAM3 = 832		
Size (Kby	tes)	• SRAM1 = 192	BKPSRAM = 2	SRAM4 = 16	SRAM4 = 16	SRAM4 = 16		
		• SRAM2 = 64		BKPSRAM = 2	SRAM5 = 832	SRAM5 = 832		
					BKPSRAM = 2	SRAM6 = 512		
						BKPSRAM = 2		
Access by	/ DMA and	Bytes, half-words (16 bits	rtes, half-words (16 bits) or full words (32 bits) possible access					
CPU access	System bus	SRAM1, SRAM2	SRAM1, SRAM2, SRAM4, and BKPSRAM	SRAM1, SRAM2, SRAM3, SRAM4 and BKPSRAM	SRAM1, SRAM2, SRAM3, SRAM4, SRAM5 and BKPSRAM	SRAM1, SRAM2, SRAM3, SRAM4, SRAM5, SRAM6 and BKPSRAM		
bus	C-bus access	SRAM1, SRAM2	SRAM1 and SRAM2	SRAM1, SRAM2 and SRAM3	SRAM1, SRAM2, SRAM3 and SRAM5	SRAM1, SRAM2, SRAM3, SRAM5 and SRAM6		
or s of S reta		Either 64 Kbytes or upper 4 Kbytes of SRAM2 can be retained in Standby mode.	Either 8, 56, or 64 Kbytes of SRAM2 can be retained in Standby mode.					
			BKPSRAM					
		N/A		Standby mode ention in V _{BAT} mode				
Security		When the TrustZone sec	curity is enabled, all	SRAMs are secure a	after reset.			

AN5371 - Rev 2 page 35/102

Feature	STM32L5	STM32U5			
		STM32U535/545	STM32U575/585	STM32U59x/5Ax	STM32U5Fx/5Gx
Security	The SRAMs can be programmed as nonsecure using the MPCBB- with a block granularity of 256 bytes.	The SRAMs can be programmed as nonsecure using the MPCBB with a block granularity of 512 bytes.			
Hardware erase conditions	All SRAMs are erased in case of RDP level regression from L1 to L0.	All SRAMs are erased by hardware in case of RDP level regression to L0.5 or L0.			
	SRAM2 is protected by the tamper detection circuit and is erased by hardware in case of tamper detection.	SRAM2 and optionally BKPSRAM are protected by the tamper detection circuit and are erased by hardware in case of tamper detection.			
	SRAM2 is erased by Backup domain reset.	SRAM2 and BKPSRAM are erased by hardware in case of Backup domain reset.			
Software erase conditions	The SRAM2 erase can be requested by software by setting a single bit in the SYSCFG SRAM2 control and status (SYSCFG_SCSR) register.	All SRAMs erase can be requested by executing a specific software sequence, detailed in section 'RAMCFG' of the product reference manuals.			
System reset erase	SRAM2 is erased when a system reset occurs if SRAM2_RST option bit is selected in the flash memory of 1 Kbytes.				
	N/A	SRAM1, SRAM3, SRAM4 and SRAM5 are erased when a system reset occurs if SRAM_RST option is selected in flash memory user option bytes.			
WRP	SRAM2 is made of 64 1-Kbyte pages. SRAM2 can be write protected with a page granularity of 1 Kbyte.				
	The write protection can be enabled in SYSCFG SRAM2 write protection register (SYSCFG_SWRP).	Each 1-Kbyte page can be write-protected by setting its corresponding PxWP (x = to 63) bit in RAMCFG registers.			
Errors detection and correction	Parity check: 4 bits added per 32 bits (1 bit per byte)	ECC: 7 bits added per 32 bits			
	N/A	ECC enabled by user option bytes (see Section 6.2)			
	One error detection and no error correction	Double-error detection on memory read access Single-error correction			
	Parity check supported by the SRAM2 only	ECC supported by SRAM2, SRAM3 and BKPSRAM			
	If one parity bit fails, an NMI is generated. Event can be linked to the BRK_IN break input of TIM1, TIM8, TIM15, TIM16 or TIM17	Interrupts are generated when single and/or double ECC errors are detected: 2 ECC RAMCFG interrupts 1 ECC NMI interrupt Interrupts allow the device to exit Sleep, Stop 0 or Stop 1 mode, but not Standby mode.			
Read access latency	N/A	3-bit programmable wait-states depending on AHB clock frequency (HCLK) and voltage scaling range (for all SRAMs).			

AN5371 - Rev 2 page 36/102

More details about the main features of STM32U5 series SRAMs are given in the table below.

Table 23. SRAMs main features in STM32U5 series

Feature	STM32U5							STM32L5
reature	SRAM1	SRAM2	SRAM3	SRAM4	SRAM5	SRAM6	BKPSRAM	equivalence
Size (Kbytes)	768 (for STM32U59x/ 5Ax) 192 (for STM32U535/ 545/575/585)	64	832 (for STM32U59/5 Ax/5Fx/5Gx) 512 (for STM32U575/ 585)	16	832 (available only on STM32U59x/ 5Ax/5Fx/ 5Gx)	512 (available only on STM32U5Fx/ 5Gx)	2	-
DMA accessibility in Stop 0/1	x	х	х	x	x	х	х	N/A
DMA accessibility in Stop 2	-	-	-	x	-	-	-	- IVA
Optional retention in Standby mode	-	х	-	-	-	-	х	SRAM2 (64 Kbytes)
Optional retention in V _{BAT} mode	-	-	-	-	-	-	x	N/A
Erase with RDP regression	x	х	х	x	x	x	x	SRAM2
Erase with tamper detection	-	Х	-	-	-	-	X	SRAM2
Optional erase with system reset	x	x	х	x	x	x	-	SRAM2
Software erase	x	x	x	х	x	x	x	SRAM2
ECC	-	х	х	-	-	-	х	Parity check on SRAM2
Write protection	-	х	-	-	-	-	-	same
Wait states	х	х	х	х	х	х	х	N/A

6.4 Caches

The STM32U5 series embeds an ICACHE and DCACHEs (DCACHE1 and DCACHE2) that allow the more efficient use of the external memory through OCTOSPI and FSMC ports.

The STM32L5 embeds only an ICACHE with the same features as the STM32U5 series.

Table 24. Embedded Caches on STM32L5 and STM32U5 devices

Feature		STM32L5	STM32U5		
			STM32U535/545	STM32U575/585	STM32U59x/5Ax/5Fx/5Gx
	ICACHE	8		32	
CACHEs (Kbytes)	DCACHE1	N/A	4	1	16
	DCACHE2	IN/A	N/A		10

AN5371 - Rev 2 page 37/102

6.5 DMA

STM32L5 and STM32U5 series devices have different DMA architectures and features, with no compatible registers.

STM32U5 series DMA modules are called GPDMA (general-purpose DMA) and LPDMA (low-power DMA). The STM32U5 series embeds also a Chrom-ART Accelerator (DMA2D), that is a specialized DMA dedicated to image manipulation (not present in STM32L5 and STM32U535/545).

The table below gives the main differences between GPDMA, LPDMA, and DMA modules.

Table 25. DMA features in STM32L5 and STM32U5 series

Factoria	STM32L5		STM32U5		
Features	DMA1	DMA2	GPDMA1	LPDMA1	
Architecture	Each instance of DMA controller is bus master and system				
Number of masters	1 single bidirectional AHB master per instance		Dual bidirectional AHB master	Single bidirectional AHB master	
Linked-List	N/A		 Separately programmed source and destination transfers Programmable data handling between source and destination Block-level (programmable number of data bytes) Linear source and destination addressing: Programmable signed address offsets between successive burst transfers 		
Linked-List 2D addressing	N/A		 2D source and destination addressing Scatter-gather (multi-buffer transfers), data interleaving and deinterleaving via 2D addressing 	N/A	
Data transfers from source to destination	Peripheral-to-memory, memory-to-peripheral, memory-to-peripheral and peripheral-to-peripheral			eral-to-peripheral	
Number of channels	8		16	4	
Number of	127 requests and 23	triggers	Up to 114 requests and 44 triggers	Up to 16 requests and 32 triggers	
requests/ triggers	Each DMA controller is connected to DMA requests from AHB/APB peripherals through the DMAMUX.		Same function integrated within GPDMA and LPDMA		
Autonomous data transfer in	Autonomous data tra	ansfers and	Autonomous data transfers and wakeup during the low-power modes below		
Sleep and Stop modes	wakeup during Sleep	mode	Sleep, Stop 0 and Stop 1	Sleep, Stop 0, Stop 1 and Stop 2	
TrustZone privileged/ unprivileged	Same features	me features			

6.6 RCC (reset and clock control)

The STM32U5 series RCC manages clocks and resets of system and peripherals, the same features than the STM32L5, plus some new ones. Registers are not compatible.

The RCC clocks are listed below:

- five internal RC oscillators: HSI16, LSI, MSI (MSIS+MSIK) and HSI48
- two external oscillators (crystal or resonator): HSE and LSE
- three PLLs: PLL1, PLL2 and PLL3

AN5371 - Rev 2 page 38/102

The table below gives an overview of STM32L5 and STM32U5 series clock sources and resets.

Table 26. RCC features in STM32L5 and STM32U5 series

Feature	STM32L5	STM32U5		
Safe and flexible reset management without external components	System reset, power reset and Backup domain reset Registers are not compatible.			
Clocks compatibility	STM32L5 clock	Advanced RCC features		
Internal clock sources High flexibility on clock source selection to meet consumption and accuracy requirements	4 internal RC oscillators: HSI16 MSI LSI 32 kHz HSI48	 5 internal RC oscillators: HSI16 (high-speed 16 MHz) MSIS (multi-speed for system clock) MSIK (peripheral kernel clock) LSI 32 kHz (IWDG, optionally drives RTC) HSI48: 48 MHz for RNG, USB OTG FS and SDMMC 		
External clock sources	HSE: high-speed external crystal or user clock with clock security system (CSS)	HSE: high-speed external crystal or user clock with clock security system (CSS)		
High flexibility on clock source selection	From 4 to 48 MHz	From 4 to 50 MHz		
to meet consumption and accuracy requirements	LSE low-speed 32.768 kHz external crystal optionally drives the RTC with clock security system (CSS)			
	Each of the 3 PLLs provides up to 3 independent outputs.			
	The PLL input can be one of HSI16, HSE and MSI(S).			
PLLs	PLL (main PLL)	PLL1 (main PLL)		
	PLLSAI1	PLL2		
	PLLSAI2	PLL3		

The table below lists the RCC input/output signals and their mapping on STM32L5 and STM32U5 series. The external kernel clock input for SAI2 digital audio interface (SAI2_EXTCLK) is replaced by AUDIOCLK in the STM32U5 series.

Table 27. RCC pin names in STM32L5 and STM32U5 series

Alternate function	Pin name (L5)	Pin name (U5)	
NRST	NR	ST	
OSC32_IN	PC	:14	
OSC32_OUT	PC	:15	
OSC_IN	PH0		
OSC_OUT	PH1		
MCO	PA8		
LSCO	PA2		
SAI1_EXTCLK	PA0/PB0		
SAI2_EXTCLK	PA2/PC9	PA0/PB0	

AN5371 - Rev 2 page 39/102

The table below details the RCC clock sources for STM32L5 compared to STM32U5 series.

Table 28. Clock sources in STM32L5 and STM32U5 series

Clock source	STM32L5	STM32U5		
System clock	 MSI, HSI16, HSE or PLL 110 MHz maximum frequency 4 MHz after reset using MSI 	 MSIS, HSI16, HSE or PLL 160 MHz maximum frequency 4 MHz after reset using MSI 		
HSE	4 to 48 MHz	4 to 50 MHz		
LSE	32.768 kHz, configurable drive/consumption, available in backup domain (VBAT)			
LSI	32 kHz RC, low consumption, high accuracy (refer to electrical characteristics section of the datasheet)	32 kHz RC, low consumption, high accuracy (refer to electrical characteristics section of the datasheet), available in backup domain (VBAT)		
	MSI	MSI = MSIS (system) + MSIK (kernel)		
	1 output clock (MSI) with 12 frequency ranges	2 output clocks (MSI + MSIK) with 16 frequency ranges		
MSI	4 MHz default clocklow-power oscillator	ory and user trimmed value after reset or Shutdown mode with programmable frequency up to 48 MHz		
	MSI can be selected as sy	stem clock after wakeup from Stop modes.		
MSI + PLL + LSE high accuracy	When used in PLL-mode with LSE: MSI provides a very accurate clock source that can be used by the USB_FS. MSI feeds the PLL to run the system at 80 MHz maximum speed.	When used in PLL-mode with LSE: The MSI provides a very accurate clock source that can be used by the USB FS. The MSI feeds the PLL to run the system at 160 MHz maximum speed.		
MSI calibration	Hardware auto-calibration	from LSE and software calibration possible		
HSI16	16 MHz RC factory acan be used as a ba	nternal 16 MHz RC oscillator and user trimmed ickup clock source (auxiliary clock) if HSE crystal oscillator fails system clock after wakeup from Stop modes		
	48 MHz RC independent oscillator			
HSI48	Can drive RNG, SDMMC and USB FS	Can drive RNG, SDMMC, USB, and OTG FS		
	One of the following clock signals can be selected as MCO:	One of the following clock signals can be selected as MCO:		
Clock-out capabilities MCO and LSCO	LSI, LSE, SYSCLK, HSI16, HSI48, HSE, PLLCLK or MSI.	LSI, LSE, SYSCLK, HSI16, HSI48, HSE, PLLCLK, MSIS or MSIK.		
	One of the following clock	signals can be selected as LSCO:		
	LSI or LSE. This output rer	mains available in Stop 0, Stop 1, Stop 2 and Standby modes.		
Clock measurement and calibration using TIM15, TIM16 or TIM17	All on board clock sources. The frequency can be measured by mean of the TIM15, TIM16 or TIM17 channel 1 input capture. Calibration using LSE: HSI16 and MSI calibration using LSE and TIM15/TIM16/TIM17			

AN5371 - Rev 2 page 40/102

Clock source	STM32L5	STM32U5	
	Calibration using HSE: HSI16 and MSI calibration using HSE and TIM16/TIM17 LSI calibration using HSE and TIM16/TIM17		
the LPTIM1 or LPTIM2 channel 2 input cap Clock measurement and calibration using LPTIM1 and LPTIM2 N/A LPTIM1 and LPTIM2 the LPTIM1 or LPTIM2 channel 2 input cap Calibration using LSE: HSI16 and MSI calibration using HSE: HSI16 and MSI calibration using		 HSI16 and MSI calibration using LSE and LPTIM2 	
	Equivalent interrupt vector to the one below is available for secure events. The RCC secure interrupt vector is used only when TrustZone is enabled.		
	CSS (linked to NMI IRQ)		
	LSECSS		
Interrupte	MSIRDY	MSISRDY and MSIKRDY	
Interrupts	PLLRDY, PLLSAI1RDY, PLLSAI2RDY	PLL1RDY, PLL2RDY, PLL3RDY	
	N/A	SHSIRDY and HSI48RDY	
		LSIRDY, LSERDY, HSIRDY and HSERDY	
	N/A	MSI_PLL_UNLOCK ⁽¹⁾	

Not available in STM32U575/585 revision X devices. Available in all other STM32U575/585 revisions, and in the other STM32U5 series devices.

6.6.1 PLL

The PLL architecture of the STM32U5 series supports the same as STM32L5, but with the updated features detailed in the table below.

Table 29. PLL features in STM32L5 and STM32U5 series

Feature	STM32L5	STM32U5
Number of PLL	RCC features three completely independent PLLs: PLL (main PLL) PLLSAI1 (for SAI1 device) PLLSAI2 (for SAI2 device)	RCC features three completely independent PLLs: PLL (main PLL) used to provide clocks to the CPU and to some peripherals PLL2 and PLL3 used to generate the kernel clock for dedicated peripherals
Input/output frequencies	 Input frequency range: 4 to 16 MHz Each PLL offers three outputs with post-dividers. The internal PLLs can be used to multiply the HSI16, HSE or MSI output clock frequency. 	
	The output frequency must not exceed 110 MHz.	The output frequency must not exceed 160 MHz.
sigma-delta ($\Sigma\Delta$) modulator N/A		13-bit sigma-delta ($\Sigma\Delta$) modulator, used to fine-tune the VCO frequency by steps of 11 to 0.3 ppm The $\Sigma\Delta$ modulator can be updated on-the-fly, without generating frequency overshoots on PLLs outputs.
Integer/fractional mode	Capability to work in integer mode only: each PLL selected source is divided by a factor from 1 to 8.	Capability to work either in integer or in fractional mode

AN5371 - Rev 2 page 41/102

6.6.2 Bus frequencies versus voltage scaling

The table below lists the maximum frequencies of internal bus in STM32L5 and STM32U5 series, depending on the product voltage range.

Table 30. Bus max frequency versus voltage scaling in STM32L5 and STM32U5 series

Product voltage range	STM32L5 AHB1, AHB2, AHB3, APB1, APB2, ABP3 max frequency (MHz)	STM32U5 AHB1, AHB2, APB1, APB2, APB3 max frequency (MHz)
Range1	110	160
Range2	80	110
Range3	26	55
Range4	N/A	25

6.6.3 CSS (clock security system)

The table below lists the CSS updates of the STM32L5 compared with the STM32U5 series.

Table 31. CSS in STM32L5 and STM32U5 series

Same f		
Samo n	features	
rks in all modes except VBAT.	Works in all modes including VBAT	
ock missing detection	Under-frequency and over-frequency detection	
The CSS on LSE detection event is connected to the internal tamper of the TAMP peripheral. A tamper event and the associated interrupt wake up the system from low-power modes.		
oc e ar	k missing detection CSS on LSE detection event is connected	

6.6.4 Specific ADC and DAC clocks features

The STM32U5 series RCC clocks driving ADC and DAC have the same features than the STM32L5, in particular:

- If ADC or DAC is precisely triggered by a TIMx timer without any uncertainty, the HCLK must be selected as ADC and DAC kernel clock source. The other clock sources are asynchronous to TIMx timers. The LPTIMx timers are also asynchronous.
- The DAC requires an additional low-power clock (LSI or LSE) to operate in sample-and-hold mode, available in Stop mode. This clock is selected with DAC1SEL in RCC CCIPR3.

6.6.5 RTC and TAMP clock

The table below lists the features of RTC and TAMP clock sources for STM32L5 and STM32U5 series.

Table 32. RTC and TAMP clock in STM32L5 and STM32U5 series

Feature	STM32L5	STM32U5	
Clock source for RTC and TAMP	HSE / 32, LSE or LSI		
Only the backup registers used in TAMP with tampers in edge detection mode	No kernel clock required		
Backup domain active clocks	LSE	LSE and LSI	

6.6.6 Timer and watchdog clock sources

STM32L5 and STM32U5 series share the same features for timer and watchdog clock sources.

AN5371 - Rev 2 page 42/102

The timer clock frequencies are automatically defined by hardware, with the following cases:

- If the APB prescaler equals one, the timer clock frequencies are set to the APB domain frequency.
- Otherwise, they are set to twice (x 2) the APB domain frequency.

If the independent watchdog (IWDG) is started by either hardware option or software access, the LSI oscillator is forced on and cannot be disabled. After the LSI oscillator temporization, the LSI 32 kHz clock is provided to the IWDG.

6.6.7 Peripherals clock gating and reset

Since the address mapping of some peripherals has been changed in the STM32U5 series compared to the STM32L5, different registers must be used to:

- Enable/disable the peripheral clock
- Enter/exit the periheral from Reset mode

The STM32U5 series has in addition the enable/disable of the autonomous mode in the SmartRun domain. The table below shows the RCC registers used for peripheral access configuration for STM32L5 and STM32U5 series.

Table 33. RCC clock and reset registers for STM32L5 and STM32U5 series

Register	STM32L5	STM32U5
AHB: [enter/exit] AHB peripherals from Reset	RCC_AHB1RSTRRCC_AHB2RSTRRCC_AHB3RSTR	 RCC_AHB1RSTR RCC_AHB2RSTR 1 RCC_AHB3RSTR RCC_AHB2RSTR2
APB: [enter/exit] APB peripherals from Reset	RCC_APB1RSTR1RCC_APB1RSTR2RCC_APB2RSTR	RCC_APB1RSTR1RCC_APB1RSTR2RCC_APB2RSTRRCC_APB3RSTR
AHB: [enable/disable] the AHB peripheral clock	RCC_AHB1ENRRCC_AHB2ENRRCC_AHB3ENR	RCC_ AHB1ENRRCC_ AHB2ENR1RCC_ AHB3ENRRCC_AHB2ENR2
APB: [enable/disable] the APB peripheral clock	RCC_APB1ENR1RCC_APB1ENR2RCC_APB2ENR	RCC_ APB1ENR1RCC_ APB1ENR2RCC_ APB2ENRRCC_ APB3ENR
AHB: [enable/disable] the AHB peripheral clock in Sleep mode	RCC_AHB1SMENRRCC_AHB2SMENRRCC_AHB3SMENR	RCC_ AHB1SMENRRCC_ AHB2SMENR 1RCC_ AHB3SMENRRCC_AHB2SMENR2
APB: [enable/disable] the APB peripheral clock in Sleep mode	RCC_APB1SMENR1RCC_APB1SMENR2RCC_APB2SMENR	 RCC_APB1SMENR1 RCC_APB1SMENR2 RCC_APB2SMENR RCC_APB3SMENR
SRD(SmartRun domain): [enable/disable] the peripheral in autonomous mode enable in Stop 0, Stop 1 and Stop 2 modes	N/A	RCC_SRDAMR

Caution:

After the enable bit is set, the clock is active after two cycles of the peripheral bus clock.

The SMEN bit of the peripheral must be set to allow the generation of an interrupt capable to wake up the device from Stop mode. This is not necessary when the peripheral wakeup interrupt is generated though the EXTI.

6.6.8 Peripheral clock source migration

This section provides the differences between the peripheral clock sources in STM32L5 and STM32U5 series.

AN5371 - Rev 2 page 43/102

Table 34. Peripheral clock sources in STM32L5 and STM32U5 series

Peripheral		STM32L5 STM32U5				
IWDG	DG LSI RC 32 kHz		LSI RC 32 kHz or 180 Hz			
WWDG		PCLK1				
UCPD1		HSI16 RC				
RTC		LSE, LSI, HSE/32				
LPTIM1, 3,	4	HSI16, LSE, LSI, PCLK1 (APB1 clock),	HSI16, LSE, LSI, MSIK			
LPTIM2		external clock mapped on LPTIMx_IN1	HSI16, LSE, LSI, SYSCLK			
TIMx (x = 2	7)	PCLK1				
TIMx (x = 1	,8,15,16,17)	PCLK2				
USARTx (x	= 25)	LSE, HSI16, PCLK1, SYSCLK				
USART1		LSE, HSI16, PCLK2, SYSCLK				
LPUART1		HSI16, LSE, PCLK1, SYSCLK	HSI16, LSE, MSIK, SYSCLK			
SPI1		PCLK2	HSI16, MSIK, PCLK2, SYSCLK			
SPI2		PCLK1	HIS16, MSIK, PCLK1, SYSCLK			
SPI3		PCLK1	HSI16, MSIK, PCLK3, SYSCLK			
I2Cx (x = 1	, 2, 4)	HSI16, PCLK1, SYSCLK	HSI16, MSIK, PCLK1, SYSCLK			
12C3		HSI16, PCLK1, SYSCLK	HSI16, MSIK, PCLK1, SYSCLK			
OCTOSPI1		MSI, PLL48M1CLK, SYSCLK	MOUS alls a shadle a shadward			
OCTOSPI2			MSIK, pll1_q_ck, pll2_q_ck, SYSCLK			
SAES		N/A	SHSI RC, SHS RC/2			
Digital	DFSDM	HSI16, MSI, PLLSAI1CLK, PLLSAI2CLK, PLLSAI3CLK, SAI1_EXTCLK	N/A			
filters	ADF1, MDF1	N/A	AUDIOCLK (external), MSIK, pll1_p_ck, HCLK, pll3_p_ck			
SAI1	1	HSI16, MSI, PLLSAI1CLK,PLLSAI2CLK, PLLSAI3CLK,SAI1_EXTCLK	AUDIOCLK (external), HSI16, pll1_p_ck, pll2_p_ck,			
SAI2 ⁽¹⁾		HSI16, MSI, PLLSAI1CLK,PLLSAI2CLK, PLLSAI3CLK,SAI2_EXTCLK	pll3_p_ck			
SDMMC1		HSI48, MSI, PLL48M1CLK (main PLL VCO), PLL48M2CLK (PLLSAI1 VCO), PLLSAI3CLK	HSI48, MSIK, pll1_p_ck, pll1_q_ck, pll2_q_ck			
SDMMC2		N/A	HSI48, MSIK, pll1_p_ck, pll1_q_ck, pll2_q_ck			
USB		HSI48, MSI, PLL48M1CLK, PLL48M2CLK	HSI48, MSIK, pll1_q_ck, pll2_q_ck			
OTG_FS						
OTG_HS		N/A	HSE, pll1_q_ck, HSE/2, pll1_q_ck/2			
DSI			HSE, pll3_p_ck			
RNG		HSI48, MSI, PLL48M1CLK, PLL48M2CLK	HSI16, HSI48, HSI48/2			
ADC1, ADC	C2, ADC4	PLLADC1CLK, SYSCLK	HCLK, HSE, HSI16, MSIK, pll2_r_ck, DAC SYSCLK			

AN5371 - Rev 2 page 44/102

Peripheral	STM32L5	STM32U5	
DAC		HCLK, HSE, HSI16, MSIK, pll2_r_ck,	
DAC	PCLK1	DAC SYSCLK	
DAC1 Sample and Hold		LSE, LSI	
FDCAN1, 2	HSE, PLL48M1CLK, PLLSAI1CLK	HSE, PCLK1, pll1_q_ck, pll2_p_ck	
LPGPIO1	N/A	HCLK	
GPIOx	HCLK		
VREFBUF	PCLK2		
COMP	PCLK2	PCLK3	
OPAMP	PLCK1		
FSMC	HCLK	'	
DLYB	N/A	HCLK	
OTFDEC1	HCLK		
OTFDEC2 ⁽¹⁾	N/A	HCLK	
OCTOSPIM ⁽¹⁾	N/A	HCLK	
PKA	HCLK		
AES	HCLK		
PSSI	HCLK		
DCMI	N/A	HCLK	
TSC			
CRC	HCLK		
FMAC		lua.	
CORDIC	N/A	HCLK	
CRS	HSI48	,	

^{1.} These instances are not available on STM32U535/545 devices.

6.6.9 System clock after wakeup

This section provides the differences between the system clock used after wakeup in STM32L5 and STM32U5 series.

Table 35. System source after wakeup in STM32L5 and STM32U5 series

Power mode	STM32L5	STM32U5	
Sleep (Sleep-now or Sleep-on-exit)	Same clock as before entering Sleep mode		
Stop 0, Stop 1, Stop 2	HSI16 or MSI (same frequency as before entering Stop mode)	HSI16 or MSIS (same frequency as before entering Stop mode, limited to 24	
Stop 3	N/A	MHz)	
Standby	MSI (from 1 to 8 MHz)	MSIS (from 1 to 4 MHz)	
Shutdown	MSI (4 MHz)	MSIS (4 MHz)	

AN5371 - Rev 2 page 45/102

6.6.10 Autonomous mode in STM32U5 series

For STM32U5 series microcontrollers, some peripherals support an autonomous mode in Stop 0, Stop 1 and Stop 2 modes:

- Peripherals are able to generate a kernel clock request and a AHB/APB bus clock request when needed, even in Stop mode.
- The MSI or HSI16 oscillator is woken up.
- In autonomous mode with DMA, the AHB/APB clocks as well as the oscillator (HSI16 or MSI) are
 automatically switched off as soon as the transfer is finished. The device automatically goes back in Stop
 mode.
- If the autonomous peripheral is configured with interrupt enabled, the interrupt wakes up the device into Run mode.

The autonomous mode is not supported by STM32L5 peripherals. On the opposite, they have the following limited capabilities in Stop mode when needed:

- If HSI16 is selected as clock source for U(S)ARTs, LPUARTs and I2C, HSI16 can be enabled by these
 peripherals in Stop 0, Stop 1 or Stop 2 mode.
- The LSE can remain always ON in Stop mode, with no on-the-fly activation capability, when it drives U(S)ARTs and LPUARTs.

The table below lists the main features of the autonomous mode supported by the STM32U5 series only.

Table 36, STM32U5 series autonomous mode

Feature	Description			
CPU domain (CD)	 Autonomous peripherals in Stop 0 and Stop 1 modes only Enabled if both xxEN and xxSMEN bits of the peripheral are set (xx = instance name) Autonomous peripherals mapped on AHB1, AHB2, APB1 and APB2 GPDMA1 is associated. SRAM1, SRAM2, SRAM3 are associated. SRAM4 belongs to SmartRun domain (SRD) but can be addressed by GPDMA 1 in Stop 0 and Stop 1 modes. 			
SmartRun domain (SRD)	 Autonomous peripherals in Stop 0, Stop 1 and Stop 2 modes Enabled if both xxEN and xxSMEN bits, plus the xxAMEN bit of the peripheral in the RCC SRD peripheral autonomous mode register (RCC_SRDAMR). Autonomous peripherals mapped on AHB3 or APB3 LPDMA1 is associated. SRAM4 is associated. 			
Autonomous peripherals in CD	 U(S)ARTx (x = 1 to 6) SPIx (x = 1, 2) I2Cx (x = 1, 2, 4, 5, 6) LPTIM2 MDF1 GPDMA1 			
Autonomous peripherals in SRD	 LPUART1 SPI3 I2C3 LPTIMx (x = 1, 3, 4) ADF1 DAC1 ADC4 LPDMA1 			
Autonomous peripheral requesting its kernel clock in Stop 0, Stop 1 or Stop 2 mode	 The internal oscillator (HSI16 or MSI) is woken up, if it was off. The kernel clock is propagated only to the peripheral requesting it. When the peripheral releases its kernel clock request, the HSI16 or MSI is switched off if no other peripheral requests it. 			
Autonomous peripheral in CD, requesting its bus clock in Stop 0 or Stop 1 mode	 The internal oscillator (HSI16 or MSI) is woken up, if it was off. The system clock is propagated to all peripherals configured with both xxEN and xxSMEN bits set. 			

AN5371 - Rev 2 page 46/102

Feature	Description			
Autonomous peripheral belonging to SRD, requesting its bus clock in Stop 2 mode	 The internal oscillator (HSI16 or MSI) is woken up if it was off. The HCLK3 and PCLK3 clocks are propagated to all peripherals of the SmartRun domain configured with xxEN, xxSMEN and xxAMEN set. 			
Forcing MSIK or HSI16 ON in Stop 0, Stop 1 or Stop 2 mode	 Can be done by configuring MSIKERON or HSIKERON is RCC_CR. The oscillator is propagated only to the kernel clock of the enabled autonomous peripherals with this oscillator selected as kernel clock. This allows the peripheral baud rates or conversion rates increase, as there is no need to wait for the oscillator wakeup time when the peripheral requests its kernel clock. 			
LSE or LSI as kernel clock	The LSE or LSI selected as peripheral kernel clock remains always ON in Stop mode.			
Forcing AHB3 and APB3 clocks ON in SRD domain	 Performed by setting the SRDRUN bit in PWR_CR2 Allows the LPDMA1 latency to be improved as no oscillator wakeup time when the peripheral requests its bus clock. 			

6.6.11 Low-power modes

The table below lists the main low-power modes and main clock sources of STM32L5 and STM32U5 series.

Table 37. Low-power modes in STM32L5 and STM32U5 series

	Feature	STM32L5	STM32U5	
Software enable/disable		AHB and APB peripheral clocks, including DMA clock, can be disabled by software.		
Sleep mode		 Sleep mode stops the CPU clock. The memory interface clocks can be stopped by software during Sleep mode. AHB to APB bridge clocks are disabled by hardware during Sleep mode, when all the clocks of the peripherals connected to them are disabled. 		
		Stop 0, Stop 1, Stop 2	Stop 0, Stop 1, Stop 2, Stop 3	
Stop modes		Stop all the clocks in the V _{CORE} domain MSI and HSE oscillators.	and disable the PLLs, HSI16, HSI48,	
	Autonomous mode	N/A	Autonomous mode in Stop 0, Stop 1 and Stop 2 modes	
Stop modes and	HSI or MSI clock source	All U(S)ARTs, LPUARTs and I2Cs can enable the HSI16 even when the MCU is in Stop mode.	HSI16 or MSI can be switched ON if the peripheral requests it for	
Autonomous	LSE/LSI clock source	All U(S)ARTs and LPUARTs can be driven by the LSE oscillator when the system is in Stop mode.	autonomous mode purpose, or to generate a wakeup interrupt.	
		The LSE remains always ON in Stop mode.	LSI and LSE remain active in Stop mode.	
Standby and Shuto	down modes	These modes stop all the clocks in the V _{CORE} domain and disable the PLLs, HSI16, HSI48 (U5 only), MSI and HSE oscillators.		
CPU Deepsleep m	ode	This mode can be overridden for debugging.		
		 When exiting Stop modes, the system clock is either MSIS (MSI for STM32L5) or HSI16, depending on the software configuration. The user trim of HSI16 is kept. 		
Exiting Stop modes		N/A	Internal oscillators (other than HSI16 or MSI) can be automatically woken up in addition to the one used by the system clock, in order to avoid waiting for the other oscillator wakeup time when the device is back in Run mode	
Leaving Standby and Shutdown modes		The system clock is MSI when leaving these modes.	The system clock is MSI(S) when leaving these modes.	

AN5371 - Rev 2 page 47/102

Feature	STM32L5	STM32U5		
Leaving Standby and Shutdown modes	The MSI frequency at wakeup from Standby mode is configured from 1 to 8 MHz.	The MSIS and MSIK frequency at wakeup from Standby mode is configured from 1 to 4 MHz.		
	The MSI frequency at wakeup from Shutdown mode is 4 MHz. The user trim is lost.			
Low-power modes and flash memory	 If a flash memory programming operation is ongoing, Stop, Standby or Shutdown mode entry is delayed until the flash memory interface access is finished. If an access to the APB domain is ongoing, Stop, Standby or Shutdown mode entry is delayed until the APB access is finished. 			
programming	N/A	If an autonomous peripheral generates a system clock request, Stop, Standby or Shutdown mode entry is delayed until the system clock request is released.		

6.6.12 RCC security and privilege functional description

When the TrustZone security is activated, the RCC is able to secure RCC configuration and status bits from being modified by nonsecure accesses. The RCC_SECCFGR register is used in both STM32L5 and STM32U5 series to prevent nonsecure access to read or modify the items listed in the table below.

Table 38. Secured RCC items in STM32L5 and STM32U5 series

Feature	STM32L5	STM32U5	
Clock sources configuration and status bits	HSE, HSE-CSS, HSI, MSI, LSI, LSE, LSE-CSS, HSI48		
PLLs , AHB and APB prescaler configuration and status bits	Main PLL, PLLSAI1, PLLSAI2, AHB	PLL1, PLL2, PLL3, AHB and APB	
System and independent clocks	SYSCLK and HSI48 source clock selection and status bits		
Clock out capability	MCO and LSCO		
Wake up configuration and status bits	STOPWUCK STOPWUCK and STOPKERWU		
Remove reset flog settings	RMVF		

When a peripheral is configured as secure, its related clock, reset, clock source selection, and clock enable during low-power modes control bits are also secure. The registers listed in the table below have a secured access for STM32L5 and STM32U5 series.

Table 39. RCC secure-access registers in STM32L5 and STM32U5 series

STM32L5	STM32U5	
RCC_AHBXENR, RCC_APBXENR, RCC_AHBXSMEN, RCC_	APBxSMEN, RCC_SRDAMEN, RCC_CCIPR, RCC_CCIPR2	
N/A	RCC_CCIPR3 and RCC_BDCR	

The security configuration bits in RCC_SECCFGR are similar in STM32L5 and STM32U5 series. Moreover, when one security configuration bit is set, some configuration and status bits are secured.

The RCC registers may contain secure and nonsecure bits (refer to the product reference manual for more details).

6.6.13 RCC privilege protection modes

In STM32U5 series, there is dedicated register for privileged and unprivileged access: RCC_PRIVCFGR (SPRIV and NSPRIV bits). In STM32L5, there only one dedicated bit in RCC_CR register (PRIV).

AN5371 - Rev 2 page 48/102

By default, after a reset, all RCC registers can be read or written with privileged and unprivileged access, except RCC_PRIVCFGR (PRIV bit in STM32L5) that can be written with privileged access only.

RCC_PRIVCFGR can be read by secure and nonsecure, privileged and unprivileged access.

The table below summarizes the possible software configuration in STM32L5 and STM32U5 series.

Table 40. Privileged and unprivileged accesses in STM32L5 and STM32U5 series

Feature	STM32L5	STM32U5		
Software RCC privileged configuration	Bit configuration: PRIV (bit 31 of RCC_CR) After reset, this PRIV bit can be written with privileged access only.	Register configuration RCC_PRIVCFGR: SPRIV: RCC secure functions privilege configuration NSPRIV: RCC nonsecure functions privilege configuration After reset, RCC_PRIVCFGR can be written with privileged access only.		
Dedicated bit for secure privileged access	N/A	SPRIV can be written with secure privileged access only. SPRIV configures the privileged access of all RCC secure functions.		
Dedicated bit for secure and nonsecure privileged access	IN/A	 NSPRIV can be written with privileged access only, secure or nonsecure. NSPRIV configures the privileged access of all RCC nonsecure functions 		

6.7 Power (PWR)

The STM32L5 and STM32U5 series share the same PWR features, except:

- the regulator bypass option that is present in STM32L5 only
- the following STM32U5 features, not covered by STM32L5:
 - SMPS (DC-DC) power converter function in parallel to LDO, with on-the-fly selection, for optimum power consumption and noise filtering
 - Low-power background autonomous mode (LPBAM): autonomous peripherals with DMA, functional down to Stop 2 mode
 - SRAM power down in Stop with 64-Kbyte max granularity
 - Stop 3 mode
 - Up to 24 multiplexed wakeup pins from Stop 3, Standby, and Shutdown modes
 - Registers privilege configuration for secure distinct from nonsecure

6.7.1 Power-supply pins

The power-supply pin-numbers are not fully aligned in STM32L5 and STM32U5 series. The following tables include only the common packages and differences between pins.

Table 41. Power-supply pins in STM32L5 and STM32U5 series (packages with SPMS)

Pin name		Pin number				
STM32L5	STM32U5	LQFP64_SMPS	LQFP100_SMPS	UFBGA132_SMPS	LQFP144_SMPS	
VDDSMPS	VLXSMPS	28	46	M9	68	
VLXSMPS	VDDSMPS	29	47	M10	69	
VSS	VDD11	31	49	M11 (V15SMPS in L5)	71	
VSS	VDD11	62	98	B4 (V15SMPS in L5)	142	
V15SMPS	VSS	32	50	M11 (VDD11 in U5)	72	
V15SMPS	VSS	63	99	B4 (VDD11 in U5)	143	

AN5371 - Rev 2 page 49/102

Table 42. Power-supply pins in STM32L5 and STM32U5 series (packages without SPMS)

Pin name				Pin number		
STM32L5 STM32U5		LQFP48	LQFP64	LQFP100	UFBGA132	LQFP144
PB11	VCAP	22	30	48	L10	70

The table below details power-supply pins that are specific to the STM32U5 series.

Table 43. STM32U5 specific power-supply pins

Pin name	STM32L5	STM32U5
		WKUPx (x = 1 to 8) input wakeup pins
WKUPx	WKUPx (x = 1 to 5) input wakeup pins	Up to 24 multiplexed wakeup pins from Stop 3, Standby and Shutdown modes
CSLEEP		CSLEEP output MCU in Sleep mode
CDSTOP	N/A	CDSTOP output CPU domain in Stop mode
SRDSTOP		SRDSTOP output SmartRun domain in Stop mode (no system clock running)

6.7.2 PWR main features

The table below details PWR main features for STM32L5 and STM32U5 series.

Table 44. PWR in STM32L5 and STM32U5 series

Feature		STM32L5	STM32U5	
	V _{DD}	V _{DD} = 1.71 V to 3.6 V		
	Core (V _{CORE})	1.0 V to 1.28 V depending on power ranges	0.9 V to 1.28 V depending on power ranges	
	Backup (V _{BAT})	V _{BAT} = 1.55 V to 3.6 V		
	V _{DDA}	 V_{DDA} min value: 1.62 V for ADCs and COMPs 1.8 V for DACs and OPAMPs 2.4 V for VREFBUF V_{DDA} max value = 3.6 V 	 V_{DDA} min value: 1.62 V for ADCs, COMPs, DACs and OPAMPs 2.4 V for VREFBUF V_{DDA} max value = 3.6 V 	
	Internal SMPS	Supply for the SMPS power stage (available only on SMPS packages)		
		V _{DDSMPS} = 2 V to 3.6 V	V _{DDSMPS} = 1.71 V to 3.6 V	
Power supplies and supply	V _{DDIO2} on PG[15:2]	V _{DDIO2} = 1.08 V to 3.6 V		
domains	V _{DDUSB} for USB transceiver	V _{DDUSB} = 3.0 V to 3.6 V for USB/OTG_FS/OTG_HS transceivers V _{DD11USB} = 1.0 V to 1.26 V for OTG_HS transceivers (only available on STM32U59x/5Ax/5Fx/5Gx) V _{DDDSI} = 1.71V to 3.6 V (only available on STM32U59x/5Ax/5Fx/5Gx devices) V _{DD11DSI} = 1.0 V to 1.26 V (only available on STM32U59x/5Ax/5Fx/5Gx devices)		
$V_{REF-} = V_{SSA}$ $V_{REF+} \le V_{DDA}$ V_{REF-}, V_{REF+} V_{REF+} Voltages generated by V_{REF+} around 2		 V_{REF+} ≤ V_{DDA} Voltages generated by internal reference: V_{REF+} around 2.048 V when V_{DDA} ≥ 2.4 		

AN5371 - Rev 2 page 50/102

Feature		STM32L5	STM32U5	
Power supplies and supply domains	V _{REF-} , V _{REF+}	N/A	Voltages generated by the internal reference: • V _{REF+} around 1.5 V This requires V _{DDA} ≥ 1.8 V • V _{REF+} around 1.8 V This requires V _{DDA} ≥ 2.1 V	
		SMPS step-down converter or LDO linear voltage regulator SMPS fast startup configuration option available		
		External SMPS (regulator bypass)	N/A	
		SMPS, LDO and bypass selected by the user	SMPS and LDO function in parallel, with on- the-fly selection	
System supply-voltage regulation		SMPS enabled and configured by the user in: HPM (high-power mode) used in range 0, 1 and 2 LPM (low-power mode used in range 2 Bypass mode	LDO or SMPS can be used in all voltage scaling ranges, and in all Stop modes.	
		HPM is the default selected mode after POR reset.	After reset, the regulator is the LDO in range 4.	
		When exiting low-power mode, the SMPS is set to the mode selected prior to the low-power mode selection.	When exiting Stop or Standby mode, the voltage range is range 4.	
Dynamic voltage scaling ranges		 Three power ranges: Range 0: high performance V_{CORE} 1.28 V, sysclk 110 MHz Range 1: medium performance V_{CORE} 1.2 V, sysclk 80 MHz Range 2: low-power range V_{CORE} 1.0 V, sysclk 26 MHz 	Four power ranges: Range 1: high performance VCORE 1.2 V, sysclk 160 MHz Range 2: medium performance VCORE 1.1 V, sysclk 100 MHz Range 3: medium low-power range VCORE 1.0 V, sysclk 50 MHz Range 4: low-power range VCORE 0.9 V, sysclk 24 MHz	
Power-supply supervision		 POR/PDR BOR monitor PVD monitor PVM monitor (VDDA, VDDUSB, VDDIO2) Out of functional range temperature monitor N/A Out of functional range core domain monitor		
		N/A	(range 2 and range 3 only) Out of functional range Backup domain	
BOR monitoring		Upper V _{DD} voltage threshold monitor		
		BOR monitors only V _{DD} .	BOR monitors the Backup domain supply voltage: V _{DD} when present or V _{BAT} otherwise.	
Programmable voltage detector (PVD) Can generate an interrupt if enabled Can be set in ultra-low-power mode the current consumption.		Can generate an interrupt if enabled thre Can be set in ultra-low-power mode dur the current consumption.	ough EXTI registers. ing Stop 2 and Stop 3 modes, to further reduce	
		PVD interrupt can wake up from the Stop mode.		
Peripheral voltage monitoring (PVM) • V _{DDA} , V _{DDIO2} and V _{DDUSB} can be independent from V _{DD} . • Each PVM output is connected to an EXTI line and can generate an interest enabled.				

AN5371 - Rev 2 page 51/102

Feature	STM32L5	STM32U5
	Four PVM thresholds are defined for these independent power supplies:	
	 UVM monitors the V_{DDUSB}. 	
	 IO2VM monitors the PG[15:2] supply V_{DDIO2}. 	
	$-$ AVM1 and AVM2 are two thresholds that monitor the analog supply $V_{DDA}.$	

6.7.3 Power modes

The ultra-low-power STM32U5 series devices support eight low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wake-up sources. The table below shows the related STM32U5 series power modes compared to those in STM32L5.

Table 45. Power modes in STM32L5 and STM32U5 series

Power mode	STM32L5	STM32U5	
Run mode	 Prescalers can be programmed for slowing down system clocks (SYSCLK, HCLK, PCLK) and peripheral clocks before entering the sleep mode. Peripheral clock gating: HCLK and PCLK for individual peripherals and memories can be stopped. 		
Low-power run mode	 Regulator can be configured in low-power mode. System clock frequency is reduced below 2 MHz. Code is executed from SRAM or from flash memory. 	This mode is replaced by range in voltage scaling: system clock frequency up to 24 MHz	
Sleep mode	CPU clock off. All peripherals can run and wak occurs.	se up the CPU when an interrupt or an event	
Low-power sleep mode	This mode is entered from low-power run mode.	This mode is replaced by the range 4 in voltage scaling.	
	Stop 0, Stop 1 and Stop 2 modes	Stop 0, Stop 1, Stop 2 and Stop 3 modes	
	SRAM1 or SRAM2	SRAM1, SRAM2, SRAM3, ⁽¹⁾ SRAM4, SRAM5 ⁽²⁾ , and SRAM6 ⁽³⁾	
	N/A	SRAM blocks can be powered down to reduce consumption.	
	 SRAMs and all registers content are retained. All clocks in the V_{CORE} domain are stopped. PLL, MSI (MSIS and MSIK) RC, HSI16 RC and HSE crystal oscillators are disabled. LSE or LSI is still running. RTC can remain active. 		
Stop modes	Some peripherals can enable the HSI16 RC to detect their wakeup condition.	Some peripherals are autonomous and can operate in Stop mode: request their kernel clock and their bus (APB or AHB) when needed transfer data with DMA	
	Stop 0 and Stop 1 offer largest number of active peripherals and wakeup sources, smaller wakeup time but a higher consumption than Stop 2.		
	In Stop 2, the V _{CORE} domain is put in a lower leakage mode.	In Stop 2 and Stop 3, the V _{CORE} domain is put in a lower leakage mode.	
	N/A	Stop 3 is the lowest power mode with full retention: Functional peripherals and sources of wakeup are reduced to the same ones than in Standby mode.	
	The system clock, when exiting Stop mode, can be either MSI up to 48 MHz or HSI16, depending on the software configuration.	The system clock, when exiting Stop mode, can be either MSIS up to 24 MHz or HSI16, depending on software configuration.	
Standby mode	V _{CORE} domain is powered off.		

AN5371 - Rev 2 page 52/102

Power mode	STM32L5	STM32U5	
	 PLL, MSI (MSIS and MSIK in case of U5), HSI16 and HSE are also switched off. RTC can remain active. BOR remains always active. 		
	 Wakeup sources: WKUPx pin edge, RTC event, external reset in NRST pin, IWDG reset, BOR reset A tamper detection can be raised either due to external pins or due to an internal failure detection. 		
Standby mode	5 WKUPx pin edge sources	24 WKUPx pin edge sources	
Standby mode	Standby system clock after wakeup: MSI from 1 MHz up to 8 MHz.	Standby system clock after wakeup: MSIS up to 4 MHz.	
	Standby and I/Os: I/Os are by default in floating state. The state of each I/O can be selected by software: I/O with internal pull-up, internal		
	The state of each I/O can be selected by software: I/O with internal pull-up, internal pull-down or floating.		
	The full SRAM2 or only the upper 4 Kbytes can be retained.	The full SRAM2, 8 Kbytes or 56 Kbytes can be retained.	
Shutdown mode	 V_{CORE} domain is powered off. All clocks in the V_{CORE} domain are stopped. PLL, MSI, HSI16, LSI and HSE are disabled. LSE can be kept running. RTC and TAMP can remain active. BOR is not available (no power monitoring). Switch to the Backup domain is not possible. The system clock, when exiting Shutdown mode, is MSI at 4 MHz. 		
Auto-wakeup from a low- power mode	RTC can be used to wake up the MCU from a low-power mode without depending on an external interrupt (auto-wakeup mode).		

- 1. SRAM3 not available on STM32535/545 devices.
- 2. SRAM5 available only on STM32U59x/5Ax/5Fx/5Gx devices.
- 3. SRAM6 available only on STM32U5Fx/5Gx devices.

6.7.4 Autonomous peripherals and low-power background autonomous mode (LPBAM)

This mode is a key feature of STM32U5 series in order to reduce power consumption. Several peripherals support the autonomous mode which allows it to be functional and perform DMA transfers in Stop 0, Stop 1, and Stop 2 modes. The low-power background autonomous mode (LPBAM) is supported for Stop 2 mode, allowing to build more complex use cases with autonomous peripherals, without any CPU wake-up as a result of DMA transfers.

AN5371 - Rev 2 page 53/102

The autonomous peripherals request their kernel clock and their bus (APB or AHB) when needed in order to transfer data with DMA. The assigned DMA can be LPDMA1 or GPDMA1 as specified in the table below. For more details about this mode, refer to product reference manual.

Table 46. STM32U5 autonomous peripherals to DMA assignment in autonomous mode

Mode	DMA and memory transfers	Autonomous peripherals ⁽¹⁾
Stop 0 and Stop 1 modes	GPDMA1 and SRAM1 to SRAM6	 LPTIM2 USARTx (x = 1 to 6) SPI1, SPI2 I2C1, I2C2, I2C4, I2C5, I2C6 MDF1
Stop 0, Stop 1 and Stop 2 modes	LPDMA1 and SRAM4	 ADC4 DAC1 LPTIM1, LPTIM3 LPUART1 SPI3 I2C3 ADF1

The autonomous peripherals are the peripherals supporting DMA requests in Stop mode. All other peripherals that are functional in Stop mode can be accessed by DMA in Stop mode, using memory to memory mode. Refer to RM0456 for more details.

6.7.5 PWR security and privilege

The STM32U5 series embeds the same TrustZone security features as the STM32L5. The PWR_SECCFGR register defines whether secure protection is enabled or disabled for the following:

- Low-power mode
- Wake-up (WKUP) pins
- Voltage detection and monitoring
- VBAT mode
- The system clock selection is secure in RCC: the voltage scaling (VOS) configuration and the regulator booster (BOOSTEN) are secure.
- A GPIO is configured as secure: its corresponding bit for pull-up/pull-down configuration in Standby mode is secure.
- The UCPD1 is secure in GTZC. The PWR_UCPDR register is secure.

AN5371 - Rev 2 page 54/102

The STM32U5 series embeds a configuration bit for privileged secure accesses distinct from privileged non-secure ones, in order to define secure privileged and nonsecure privileged zones. The table below summarizes the different privilege modes for the STM32L5 and STM32U5 series.

Table 47. Privilege modes in STM32L5 and STM32U5 series

STM32L5		STM32U5	
PWR unprivileged	PWR privileged	Secure privileged accesses	
(PRIV = 0 in	(PRIV = 1 in	(SPRIV = 1 in PWR_PRIVCFGR)	
PWR_PRIVCFGR)	PWR_PRIVCFGR)	This bit can be written by secure privileged access only.	
Privileged accesses to all PWI	R registers	Privileged access of all PWR secure functions.	
Unprivileged accesses to all PWR registers Not possible: Unprivileged access to PWR registers is RAZ/WI.		 PWR secure bits can be written only with privileged access, including PWR_SECCFGR. PWR secure bits can be read only with privileged access. PWR_SECCFGR and PWR_PRIVCFGR can be read by privileged or unprivileged access. An unprivileged access to a privileged PWR function is discarded: Read as zero and write is ignored (RAZ/WI). 	
N/A		nonsecure privileged accesses (NSPRIV = 1 in PWR_PRIVCFGR) This bit can be written by privileged access only, secure or nonsecure. This bit defines the privileged access of all PWR nonsecure functions (securable functions that are defined as non-secure).	
		 PWR (securable) bits that are configured as nonsecure, can be written only with privileged access. PWR (securable) bits that are configured as non-secure, can be read only with privileged access, except PWR_PRIVCFGR that can be read by privileged or unprivileged accesses. An unprivileged access to a privileged PWR bit or register is discarded: read as zero and write is ignored 	

6.7.6 PWR interrupts

The power interrupts sources of the STM32L5 and STM32U5 series are listed in the table below.

Table 48. PWR interrupt sources of STM32L5 and STM32U5 series

Interrupt vector	Description	Event flag	STM32L5	STM32U5
PWR_S3WU	Wakeup from Stop 3 interrupt	WUFx (x = 1 to 8)	N/A	24 pins
	Programmable voltage detector	PVDO	Same (EX	TI line 16)
	USB supply voltage monitor	VDDUSBRDY	EXTI line 35	EXTI line 19
PVD_PVM	VDDIO2 supply voltage monitor	VDDIO2RDY	EXTI line 36	EXTI line 20
	Analog supply voltage monitor1	VDDA1RDY	EXTI line 37	EXTI line 21
	Analog supply voltage monitor2	VDDA2RDY	EXTI line 38	EXTI line 22

6.8 CRC

The CRC architecture is the same in STM32L5 and STM32U5 series, with the same features.

AN5371 - Rev 2 page 55/102

7 Migration of timer peripherals

The STM32L5 and STM32U5 series include two advanced-control timers, up to seven general-purpose timers, two basic timers, up to four low-power timers, two watchdog timers and two SysTick timers.

This section compares the features of the above listed timers and RTC in STM32L5 and STM32U5 series.

7.1 Advanced-control timers (TIM1/8)

The STM32L5 and STM32U5 series include two advanced-control timers, TIM1 and TIM8, with identical features detailed in the table below.

Table 49. Advanced-control timers (TIM1/TIM8) in STM32L5 and STM32U5 series

Feature	STM32L5 and STM32U5	
Counter resolution and type	16-bit up, down, up/down auto-reload counter	
Prescaler factor	16-bit programmable prescaler used to divide (also on-the-fly) the counter clock frequency by any factor between 1 and 65536	
Channels	Up to six independent channels for: Input capture (but channels 5 and 6) Output compare PWM generation (edge and center-aligned mode) One-pulse mode output	
Complementary outputs	Complementary outputs with programmable dead-time	
Synchronization with external circuits and general-purpose	Synchronization circuit to control the timer with external signals and to interconnect several timers together	
timers	The advanced-control (TIM1/TIM8) and general-purpose (TIMx) timers are completely independent, and do not share any resources.	
Repetition counter	Repetition counter to update the timer registers only after a given number of counter cycles	
Break inputs	Two break inputs to put the timer output signals in a safe user selectable configuration	
Interrupt/DMA generation	Interrupt/DMA generation on the following events: Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) Trigger event (counter start, stop, initialization or count by internal/external trigger) Input capture Output compare	
Encoders and sensors	Support incremental (quadrature) encoder and Hall-sensor circuitry for positioning purposes	
Trigger input	Trigger input for external clock or cycle-by-cycle current management	
Application examples	 Measuring the pulse lengths of input signals (input capture) Generating output waveforms (output compare, PWM, complementary PWM with dead-time insertion) 	

AN5371 - Rev 2 page 56/102

The STM32L5 and STM32U5 series alternate functions (AF) pins of advanced timers TIM1 and TIM8 are mapped as described in the table below.

Table 50. TIM1/8 AF pins on STM32L5 and STM32U5 series

AF pin	STM32L5	STM32U5
TIM1_BKIN	PA6	
TIM1_BKIN	PB12	
TIM1_BKIN	PE	15
TIM1_BKIN2	PA	.11
TIM1_BKIN2	PE	14
TIM8_BKIN	P.	46
TIM8_BKIN	N/A	PI4
TIM8_BKIN	PE	37
TIM8_BKIN2	PE	36
TIM8_BKIN2	PC	C9
TIM1_ETR	PA	12
TIM1_ETR	PE	= 7
TIM8_ETR	PA0	
TIM8_ETR	N/A	PI13
TIM1_CH1	PA8, PE9	
TIM1_CH1N	PA7, PB13, PE8 PA7, PE8	
TIM1_CH2	PA9, PE11	
TIM1_CH2N	PB0, PE10, PB14	
TIM1_CH3	PA10, PE13	
TIM1_CH3N	PB1, PB	15, PE12
TIM1_CH4	PA11, PE14	PA11, PE14
TIM1_CH4N	N/A	PC5, PE15
TIM8_CH1	PC6	PC6, PI5
TIM8_CH1N	PA5, PA7	PA5, PA7, PH13
TIM8_CH2	PC7	PC7, PI6
TIM8_CH2N	PB0, PB14	PB0, PB14, PH14
TIM8_CH2N	PB0, PB14	PB0, PB14, PH14
TIM8_CH3	PC8	PC8, PI7
TIM8_CH3N	PB1, PB15	PB1, PB15, PH15
TIM8_CH4	PC9	PC9, PI2
TIM8_CH4N	N/A	PB2, PD0, PH12

AN5371 - Rev 2 page 57/102

7.2 GP timers with up, down, up-down auto-reload counter (TIM2/3/4/5)

The GP (general-purpose) timers consist of a 16-bit or 32-bit auto-reload counter driven by a programmable prescaler. The STM32L5 and STM32U5 series include GP timers with up, down or up-down auto-reload counter (TIM2, TIM3, TIM4 and TIM5), with identical features detailed in the table below.

Table 51. GP timers with up, down, up-down auto-reload counter in STM32L5 and STM32U5 series

Feature	STM32L5	STM32U5	
32-bit resolution	TIM2/TIM5	TIM2/TIM3/TIM4/TIM5	
16-bit resolution	TIM3, TIM4	-	
Counter resolution and type	16- or 32-bit up, down, up/down auto-reloa	ad counter	
Prescaler factor	16-bit programmable prescaler used to divide (also on-the-fly) the counter clock frequency by any factor between 1 and 65536		
Channels	Up to four independent channels for: Input capture Output compare PWM generation (edge and center-aligned mode) One-pulse mode output		
Synchronization with external circuits and other timers	Synchronization circuit to control the timer with external signals and to interconnect several timers		
Interrupt/DMA generation	Interrupt/DMA generation on the following events: Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) Trigger event (counter start, stop, initialization or count by internal/external trigger) Input capture Output compare		
Encoders and sensors	Supports incremental (quadrature) encoder and Hall-sensor circuitry for positioning purposes		
Trigger input	Trigger input for external clock or cycle-by-cycle current management		
Application examples	 Measuring the pulse lengths of input signals (input capture) Generating output waveforms (output compare, PWM, complementary PWM with dead-time insertion) 		

The STM32U5 and STM32L5 series AF pins of GP timers TIM2/3/4/5 are mapped as described in the table below.

Table 52. TIM2/3/4/5 AF pins on STM32L5 and STM32U5 series

AF pin	STM32L5	STM32U5
TIM2_ETR	PA0, PA5, PA15	
TIM3_ETR	PD2,	PE2
TIM4_ETR	PE	E0
TIM5_ETR	PF	⁻ 6
TIM2_CH1	PA0, PA5, PA15	
TIM2_CH2	PA1, PB3	
TIM2_CH3	PA2, PB10	
TIM2_CH4	PA3, PB11	
TIM3_CH1	PA6, PB4, PC6, PE3	
TIM3_CH2	PA7, PB5, PC7, PE4	

AN5371 - Rev 2 page 58/102

AF pin	STM32L5 STM32U5		
TIM3_CH3	PB0, PC	C8, PE5	
TIM3_CH4	PB1, PB	E6, PC9	
TIM4_CH1	PD12	, PB6	
TIM4_CH2	PB7, PD13		
TIM4_CH3	PB8, PD14		
TIM4_CH4	PB9, PD15		
TIM5_CH1	PA0, PF6 PA0, PF6, PH10		
TIM5_CH2	PA1, PF7 PA1, PF7, PH11		
TIM5_CH3	PA2, PF8 PA2, PF8, PH12		
TIM5_CH4	PA3, PF9 PA3, PF9, PI10		

7.3 GP timers with auto-reload up-counter (TIM15/16/17)

The STM32L5 and STM32U5 series include three 16-bit resolution GP timers with a 16-bit auto-reload up-counter (TIM15, TIM16 and TIM17) with identical features detailed in the tables below.

Table 53. GP timer with auto-reload up-counter (TIM15) in STM32L5 and STM32U5 series

Feature	STM32L5	STM32U5	
Counter resolution and type	16-bit auto-reload up-counter		
Prescaler factor	16-bit programmable prescaler used to divide (also on-the-fly) the counter clock frequency by any factor between 1 and 65536		
Channels	Up to two independent channels for: Input capture Output compare PWM generation (edge and center-aligned mode) One-pulse mode output		
Complementary outputs	Complementary outputs with programmab	le dead-time (for channel 1 only)	
Synchronization with external circuits and other timers	Synchronization circuit to control the timer with external signals and to interconnect several timers		
Repetition counter	Repetition counter to update the timer registers only after a given number of counter cycles		
Break inputs	One break input to put the timer output signals in the reset state or a known state		
Interrupt/DMA generation	Interrupt/DMA generation on the following events: Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) Trigger event (counter start, stop, initialization or count by internal/external trigger) Input capture Output compare Break input (interrupt request)		
Application examples	 Measuring the pulse lengths of input signals (input capture) Generating output waveforms (output compare, PWM, complementary PWM with dead-time insertion) 		

AN5371 - Rev 2 page 59/102

Table 54. GP timers with auto-reload up-counter (TIM16/17) in STM32L5 and STM32U5 series

Feature	STM32L5	STM32U5		
Counter resolution and type	16-bit auto-reload up-counter	16-bit auto-reload up-counter		
Prescaler factor	16-bit programmable prescaler used to divi frequency by any factor between 1 and 655			
Channels	Up to two independent channels for: Input capture Output compare PWM generation (edge and center-a One-pulse mode output	 Input capture Output compare PWM generation (edge and center-aligned mode) 		
Complementary outputs	Complementary outputs with programmable	Complementary outputs with programmable dead-time (for channel 1 only)		
Repetition counter	Repetition counter to update the timer regis counter cycles	Repetition counter to update the timer registers only after a given number of counter cycles		
Break inputs	One break input to put the timer output sign	One break input to put the timer output signals in the reset state or a known state		
Interrupt/DMA generation	Interrupt/DMA generation on the following events: Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) Trigger event (counter start, stop, initialization or count by internal/external trigger) Input capture Output compare Break input (interrupt request)			
Application examples	 Measuring the pulse lengths of input signals (input capture) Generating output waveforms (output compare, PWM, complementary PWM with dead-time insertion) 			

The STM32U5 and STM32L5 series AF pins of GP timers TIM15/16/17 are mapped as described in the table below.

Table 55. TIM15/16/17 AF pins on STM32L5 and STM32U5 series

AF pin	STM32L5	STM32U5	
TIM15_BKIN	PA9, PB12		
TIM16_BKIN	PE	35	
TIM17_BKIN	PA10	PB4	
TIM15_CH1	PA2, PB14,	PF9, PG10	
TIM15_CH1N	PA1, PB13, PG9		
TIM15_CH2	PA3, PB15, PF10, PG11		
TIM16_CH1	PA6, PB8, PE0		
TIM16_CH1N	PB6		
TIM17_CH1	PA7, PB9, PE1		
TIM17_CH1N	PB7		

AN5371 - Rev 2 page 60/102

7.4 Basic timers (TIM6/7)

The basic timers TIM6 and TIM7 consist in a 16-bit auto-reload counter driven by a programmable prescaler. These timers are completely independent, and do not share any resources. The STM32L5 and STM32U5 series have the same basic timers features detailed in the table below.

Table 56. Basic timers (TIM6/TIM7) in STM32L5 and STM32U5 series

Feature	STM32L5	STM32U5	
Counter resolution and type	16-bit auto-reload up-counter		
Prescaler factor	16-bit programmable prescaler used to divide (also on-the-fly) the counter clock frequency by any factor between 1 and 65536		
Synchronization signals	Synchronization circuit to trigger the DAC		
Interrupt/DMA generation	Interrupt/DMA generation on the update event, counter overflow		
Application examples	Time-base generationDriving the DAC		

The basic timers TIM6 and TIM7 have no AF pins mapped to I/O, on both STM32L5 and STM32U5 series.

7.5 Low-power timers (LPTIM1/2/3/4)

The LPTIMx is a 16-bit timer that benefits from the ultimate developments in power-consumption reduction. The STM32U5 series includes four LPTIMs versus three in the STM32L5. LPTIMs share the same features in both series, but new features are added in the STM32U5 series such as:

- Two independent channels per LPTIM
- Input capture channel
- DMA requests
- Autonomous function in Stop modes

The table below summarizes the LPTIMx features in STM32L5 and STM32U5 series.

Table 57. LPTIMx in STM32L5 and STM32U5 series

Feature	STM32L5	STM32U5	
LPTIMx	LPTIM1, LPTIM2 and LPTIM3	LPTIM1, LPTIM2, LPTIM3 and LPTIM4	
Counter resolution and type	16 bit up-counter		
Prescaler factor	3-bit prescaler with eight possible dividing	factors (1, 2, 4, 8, 16, 32, 64 or 128)	
Selectable clock	 Internal clock sources: LSE, LSI, HSI or APB clock External clock source over LPTIM input (working with no LP oscillator running, used by pulse counter application) 		
Auto-reload	16-bit ARR auto-reload register		
Capture/compare	16-bit capture/compare register		
Continuous mode	Continuous/One-shot mode		
Trigger mode	Selectable software/hardware input trigger		
Glitch filter	Programmable digital glitch filter		
Configurable output	Configurable output: pulse, PWM		
Polarity	Configurable I/O polarity		
Encoder mode	Encoder mode		
Repetition counter	Repetition counter to update the timer registers only after a given number of counter cycles		

AN5371 - Rev 2 page 61/102

Feature	STM32L5	STM32U5	
Input capture, PWM and one-pulse channels	N/A	Up to two independent channels for input capture, PWM generation (edge and center-aligned mode), and one-pulse mode output	
Interrupt generation on events	9 events	10 events	
DMA requests	N/A	DMA request generation on the following events: Update event Input capture	

The above features are not similarly implemented on LPTIMs peripherals, as described in the table below.

Table 58. LPTIMx feature implementation in STM32L5 and STM32U5 series

Feature		STM32L5			STM	32U5	
reature	LPTIM1	LPTIM2	LPTIM3	LPTIM1	LPTIM2	LPTIM3	LPTIM4
Encoder mode	Х	-	-	Х	Х	-	-
PWM mode	X	Х	Х	X	Х	Х	Х
Input Capture	-	-	-	Х	Х	Х	-
Number of channels	1	1	1	2	2	2	-
Number of DMA requests	-	-	-	3	3	3	-
Wakeup from Stop mode	X ⁽¹⁾	X ⁽²⁾	X ⁽¹⁾	X ⁽¹⁾	X ⁽²⁾	X ⁽¹⁾	X ⁽¹⁾
Autonomous mode	-	-	-	Х	Х	Х	-

^{1.} Wakeup supported from Stop 0, Stop 1 and Stop 2 modes.

The STM32L5 and STM32U5 series AF pins of LP timers LPTIM1/2/3 and LPTIM4 (only in STM32U5 series) are mapped as described in the table below.

Table 59. LPTIMx AF pins on STM32L5 and STM32U5 series

AF pin	STM32L5 STM32U5		
LPTIM1_ETR	PB6, PC3, PG12		
LPTIM2_ETR	PA5,	PC3, PD11	
LPTIM3_ETR	PB14, PC10, PF4	PB14, PC10, PD10, PF4	
LPTIM4_ETR		PD2, PF12	
LPTIM1_CH1		PA14, PB2, PB3, PC1, PG15	
LPTIM1_CH2	1	PA1, PB4, PG14	
LPTIM2_CH1		PA4, PA8, PD13	
LPTIM2_CH2	N/A	PA7, PC7, PD10	
LPTIM3_CH1		PB0, PB10, PC3, PC8, PF5	
LPTIM3_CH2		PB1, PC9, PD15, PF2	
LPTIM4_CH1		N/A	
LPTIM4_CH2		N/A	
LPTIM1_IN1	PB5, PC0, PG10		
LPTIM1_IN2	PB7, PC2, PG11		

AN5371 - Rev 2 page 62/102

^{2.} Wakeup supported from Stop 0 and Stop 1 modes.

AF pin	STM32L5	STM32U5	
LPTIM1_OUT	PA14, PB2, PC1, PG15	N/A	
LPTIM2_IN1	PB1, PC	0, PD12	
LPTIM2_IN2	N/A	PA10, PB15, PD9	
LPTIM2_OUT	PA4, PA8, PD13	N/A	
LPTIM3_IN1	PB13, PC11, PF3	PB13, PC11, PF3, PD9	
LPTIM3_IN2	N/A		
LPTIM3_OUT	PB10, PC3, PF5	N/A	
LPTIM4_IN1		PD13, PF11	
LPTIM4_IN2	N/A	N/A	
LPTIM4_OUT		PD7, PF13	

7.6 Watchdogs

The STM32L5 and STM32U5 series embed two watchdogs:

- a system window watchdog (WWDG) with same features
- an independent watchdog (IWDG) with same features except the STM32U5 series capability to generate an early wakeup interrupt

STM32U5 STM32L5 **Feature** LSI used as IWDG kernel clock (iwdg_ker_ck) Х Х Window function Χ Χ Early wakeup interrupt generation Χ System reset generation (refer to the RCC section of the product reference Χ Χ manual for more details) Capability to work in system Stop Х Х Capability to work in system Standby Χ Χ Capability to generate an interrupt in system Stop Χ Capability to generate an interrupt in system Standby Х Χ Capability to be frozen when the MCU enters in debug mode Χ Χ Option bytes to control the activity in Stop mode Χ Option bytes to control the activity in Standby mode Х Option bytes to control the hardware mode Х

Table 60. IWDG features in STM32L5 and STM32U5 series

7.7 Real-time clock (RTC)

The STM32U5 series implements the same RTC features as the STM32L5, but with the introduction of the new binary mode with 32-bit free-running counter (refer to the product reference manual for more details).

AN5371 - Rev 2 page 63/102

The STM32U5 series and STM32L5 AF pins of RTC are mapped as described in the table below.

Table 61. RTC AF pins in STM32L5 and STM32U5 series

AF pin	STM32L5 STM32U5	
RTC_REFIN	PB	15
RTC_TS	PC13	
RTC_OUT1	PC	13
RTC _OUT2	PE	32

7.8 SysTick timer

The STM32L5 and STM32U5 series Cortex-M33 with TrustZone embed two SysTick timers. When TrustZone is activated, the two SysTick timers are available, but when TrustZone is disabled, only one SysTick timer is available.

This SysTick timer (secure or nonsecure) is dedicated to real-time operating systems, but can also be used as a standard down-counter.

AN5371 - Rev 2 page 64/102

8 Migration of communication peripherals

8.1 Serial peripheral interface (SPI)

This section highlights the SPI features implemented on STM32L5 and STM32U5 series.

Both families share the same SPI features. New to the STM32U5 series is the autonomous mode, new slave selects (SS) features pin signal, new ready (RDY) signal and separation of clock domains into three independent domains.

Table 62. SPI features in STM32L5 and STM32U5 series

Feature	STM32L5	STM32U5
SPI peripherals	SPI1, SPI2 and SPI3 (same features in the three instances)	SPI1, SPI2 (full feature set instances) SPI3 (limited feature set instance)
Full-duplex synchronous transfer on three lines	X	X
Half-duplex synchronous transfer on two lines (with bidirectional data line)	X	X
Simplex synchronous transfer on two lines (with unidirectional data line)	×	X
Data size	4- to 16-bit data size selection	4- to 32-bit data size selection on SPI1, SPI2
	N/A	Fixed to 8- and 16-bit only on SPI3
Multimaster or multislave mode capability	X	X
Clock inputs	One input: PCLK is the unique SPI clock source.	Two independent clock inputs: peripheral kernel clock (spi_ker_ck) is independent of PCLK.
Baudrate prescalers	Master/slave mode baudrate prescalers up to f _{PCLK} / 2	Baudrate prescaler up to kernel frequency / 2
	N/A	spi_ker_ck prescaler can be bypassed from RCC in master mode.
Protection of configuration and settings	N/A	X
Slave select (SS) management	NSS management by hardware or software for both master and slave: dynamic change of master/slave operations	Hardware or software management of SS for both master and slave
Adjustable minimum delays between data and between SS and data flow	N/A (fixed)	X
Configurable SS signal polarity and timing	N/A	Configurable SS signal polarity and timing, MISO x MOSI swap capability
Programmable clock polarity and phase	X	X
Programmable data order with MSB-first or LSB-first shifting	Х	X
Programmable transaction data	X	Programmable number of data within a transaction to control SS and CRC
Dedicated transmission and reception flags with interrupt capability	X	X
SPI Motorola and Texas Instrument formats support	Х	X

AN5371 - Rev 2 page 65/102

Feature	STM32L5	STM32U5
Hardware CRC feature can secure communication at the end of transaction by: adding CRC value in Tx mode automatic CRC error checking for Rx mode	CRC fixed to 8- or 16-bit for all SPIs	 SPI1 and SPI2: CRC polynomial length configurable from 9 to 17 bits SPI3: CRC polynomial length configurable from 9 to 17 bits
Interrupt events and error detection with interrupt capability	Interrupts: Transmit TXFIFO ready to be loaded Data received in receive RXFIFO Master mode fault Overrun error TI frame format error CRC protocol error	Interrupts: TxFIFO ready to be loaded Data received in RxFIFO Both TXP and RXP active Transmission Transfer Filled Overrun error Underrun error TI frame format Error CRC error Mode fault End of transfer Master mode suspended TxFIFO transmission complete
	N/A	All the interrupt events can wak eup the system from Sleep mode at each instance
FIFO size	Two 32-bit embedded Rx and Tx FIFOs with DMA capability	Two 16x or 8x 8-bit embedded Rx and TxFIFOs with DMA capability
Number of transferred data	Number defined by the counter for the SPI transmission DMA channel	Programmable number of data in transaction: SPI1 and SPI2: unlimited, expandable SPI3: up to 1024 (no data counter)
FIFO thresholds	Fixed threshold to 1/2 FIFO or 1/4 FIFO level	Configurable FIFO thresholds (data packing)
Configurable behavior at slave underrun condition	N/A	X (support of cascaded circular buffers)
Autonomous functionality in Stop modes (handling of the transaction flow and required clock distribution) with wakeup from Stop capability	N/A	 SPI 1/2: Stop 0 and Stop 1 modes with wakeup SPI3: Stop 0, Stop 1 and Stop 2 modes
RDY status pin	N/A	Optional status pin RDY signalizing the slave device ready to handle the data flow

AN5371 - Rev 2 page 66/102

8.1.1 Mapping of SPI alternate function pins

In STM32L5 and STM32U5 series, SPI peripherals have the same mapping of alternate function (AF) pins: $SPIx_SCK$, $SPIx_NSS$, $SPIx_MISO$ and $SPIx_MOSI$ AF pins (x = 1 to 3) are fully compatible. However, the STM32U5 packages have a new AF pin called $SPIx_RDY$ (x = 1 to 3), not present in STM32L5.

STM32L5 AF pin function STM32U5 SPI1_MOSI PA7, PE15, PG4, PA12, PB5 SPI1_MISO PA6, PE14, PG3, PA11, PB4 SPI1_SCK PA1, PA5, PE13, PG2, PB3 SPI1_NSS PA4, PB0, PE12, PG5, PA15 SPI1 RDY N/A PA8. PB2. PE11. PG6. PA2 PC1, PC3, PB15, PD4 SPI2 MOSI N/A PI3⁽¹⁾ PC2, PB14, PD3 SPI2_MISO N/A PI2⁽¹⁾ PB13, PA9, PD3, PD1, PB10 SPI2 SCK N/A PI1⁽¹⁾ PB12, PD0, PB9 SPI2_NSS N/A PI0 SPI2_RDY N/A PB11, PC0, PD5, PI4 SPI3_MOSI PC12, PD6, PG11, PB5 SPI3 MISO PC11, PG10, PB4 PC10, PG9, PB3 SPI3_SCK SPI3 NSS PA4, PA15, PG12 SPI3_RDY N/A PA0, PB8, PG13

Table 63. SPIx RDY AF pins in STM32L5 and STM32U5 series

The slave select (SS) and ready (RDY) signals can be applied optionally just to set up the communication with concrete slave and to assure the data flow is properly handled. The Motorola[®] data format is used by default, but some other specific modes are supported as well. The main features of SPI_RDY pin implementation are the following:

- In master, the RDY input stops the communication acting on the MFSM. This requires some clock cycles due to synchronizers.
- Slave puts the RDY pin low when TXFIFO is almost empty or RXFIFO is almost full, to be able to stop
 master even if there is a free location on FIFOs. This is not true (RDY pin remains high) when the
 communication is at the end.
- RDY feature cannot be used when the data size is configured shorter than 8 bits.

AN5371 - Rev 2 page 67/102

^{1.} These pins are not available on STM32U535/545 devices.

8.1.2 SPI autonomous mode

The SPI1 and SPI2 peripherals in STM32U5 series support autonomous operation down to Stop 1 mode and SPI3 down to Stop 2 with the following main features:

- The SPI can handle and initialize transactions autonomously, requiring no specific system execution interaction till the ongoing transaction ends.
- SPI logic is able to provide temporary clock requests addressed to RCC to ensure clocking of those SPI domains just necessary for handling the data flow with SRAM.
- In Stop mode, the APB clock is requested by the peripheral each time the SPI registers need to be updated, based on specific traffic events (mainly TXP and RXP).
- Slave mode: Kernel requests are generated only for TI mode in order to have the delay on MISO.
- Master mode: The SCK signal is derived from the kernel clock fed from RCC upon permanent kernel clock request, provided by the SPI when the device is in Stop mode.

8.2 I2C

The STM32U5 series I2C peripherals share the same feature as the STM32L5 ones. Differences between STM32L5 and STM32U5 I2C are shown in the table below.

In addition, the STM32U5 series I2C embed the autonomous mode of I2C peripherals, allowing the I2C to be functional in Stop mode. The I2C receives its kernel clock only when it is implicated in the transfer. It is possible also to use the autonomous mode in Run, Sleep or Stop modes.

Feature STM32L5 STM32U5 Number of instances 7- and 10-bit addressing mode Standard-mode (up to 100 Kbit/s) Fast-mode (up to 400 Kbit/s) I2C1, I2C2, I2C3, I2C4, I2C5⁽¹⁾, I2C6⁽¹⁾ Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) Independent clock SMBus/PMBus[™] Wakeup from Stop 0 and Stop 1 modes Wakeup from Stop 2 mode I2C3 I2C1, I2C2, I2C4, I2C5,(1), I2C6(1) in CD (CPU domain) Autonomous mode N/A I2C3 in SRD (SmartRun domain)

Table 64. I2C features in STM32L5 and STM32U5 series

The table below summarizes the I2C AF pinout compatibility between STM32L5 and STM32U5 series.

Table 65. I2C AF pins in STM32L5 and STM32U5 series

AF pin function	STM32L5	STM32U5
I2C1_SCL	PB6, PB8, PG14	
I2C1_SDA	PB7, PB9, PG13	
12C1_3DA	N/A	PB3
I2C1_SMBA	PA1, PA14, PB5, PG15	
1202 801	PB10, PB13, PF1	
I2C2_SCL	N/A	PH4 ⁽¹⁾
I2C2_SDA	PB11, PB14, PF0	

AN5371 - Rev 2 page 68/102

^{1.} I2C5 and I2C6 are only available for STM32U59x/5Ax/5Fx/5Gx devices.

AF pin function	STM32L5	STM32U5
I2C2_SDA	N/A	PH5 ⁽¹⁾
IOCO CMDA	PB12, PF2	
I2C2_SMBA	N/A	PH6 ⁽¹⁾
I2C3_SCL	PA7, PC0,	PG7, PH7
1202 CDA	PB4, PC1, PG8	
I2C3_SDA	N/A	PH8 ⁽¹⁾
I2C3 SMBA	PB2, PG6	
IZC3_SIVIBA	N/A	PH9 ⁽¹⁾
I2C4_SCL	PB6, PB10, PD12, PF14	
I2C4_SDA	PB7, PB11, PD13, PF15	
I2C4_SMBA	PA14, PD11, PF13	

^{1.} These pins are not available on STM32U535/545 devices.

8.3 U(S)ART and LPUART

The STM32U5 series implements the same U(S)ART (universal synchronous asynchronous receiver transmitter) and LPUART (low-power UART) features than the STM32L5, with four USARTs, two UARTs and one LPUART. The STM32U5 series LPUART has a new feature, the autonomous mode that allows LPUART to be functional in Stop mode. This autonomous mode can be used in Run, Stop and Sleep modes (refer to the product reference manual for more details).

Table 66. U(S)ART/LPUART features in STM32L5 and STM32U5 series

Feature	STM32L5	STM32U5
Number of instances	USART1, USART2 ⁽¹⁾ , USART3, USART6 ⁽²⁾ , UART4, UART5, LPUAR	
Interrupts	23 interrupt so	urces with flag
Hardware flow control for modem		<
Continuous communication using DMA		<
Multiprocessor communication		<
Synchronous mode (master/slave)	LICADTA LICADTO	USART3, USART6 ⁽²⁾
Smartcard mode	USARTI, USARTZ,	USARTS, USARTO
Single-wire half-duplex communication		<
IrDA SIR ENDEC block	All except LPUART	
LIN mode		
Dual-clock domain and wakeup from Stop mode	All except LPUART support wakeup from Stop 0 and Stop 1 n	
Buar-clock domain and wakeup from clop mode	LPUART supports wakeup from S	Stop 0, Stop 1 and Stop 2 modes.
Receiver timeout interrupt		
Modbus communication	All except LPUART	
Auto-baudrate detection		
LPUART limitation	LPUART does not support Synchronous mode (SPI master), Smartcar mode, IrDA, LIN, Modbus, receiver timeout interrupt and auto-baudrat detection.	
Driver enable	X	
USART data length	7, 8 an	d 9 bits
Tx/Rx FIFO		<

AN5371 - Rev 2 page 69/102

Feature	STM32L5	STM32U5
Tx/Rx FIFO size	8 t	pits
Autonomous mode	-	X

- 1. This instance is not available on STM32U535/545 devices.
- 2. This instance is not available on STM32L5 and STM32U535/545/575/585 devices.

The AF pins of these peripherals are fully compatible in STM32L5 and STM32U5 series similar packages. STM32L5 and STM32U5 series AF pins of UART/USART and LPUART instances are mapped as described in the table below.

Table 67. U(S)ART/LPUART AF pins in STM32L5 and STM32U5 series

AF pin function	STM32L5	STM32U5
USART1_TX	PA9, PB6, PG9	
USART1_RX	PA10, PB7, PG10	
USART1_CK	PA8, PB	5, PG13
USART1_CTS	PA11, PE	34, PG11
USART1_RTS_DE	PA12, PE	33, PG12
USART2_TX ⁽¹⁾	PA2,	PD5
USART2_RX ⁽¹⁾	PA3, PA	15, PD6
USART2_CK ⁽¹⁾	PA4,	PD7
USART2_CTS ⁽¹⁾	PA0,	PD3
USART2_RTS_DE	PA1,	PD4
LIADTO TV	PB10, PC4,	PC10, PD8
UART3_TX	N/A	PA7
LIADT2 DV	PB11, PC5,	PC11, PD9
UART3_RX	N/A	PA5
UART3_CK	PB0, PB12, PC12, PD10	
UART3_CTS	PA6, PB ²	13, PD11
USART3_RTS_DE	PA15, PB1, PB14, PD2, PD12	
UART4_TX	PA0,	PC10
UART4_RX	PA1,	PC11
UART4_CK	N/	/A
UART4_CTS	PB7	
UART4_RTS_DE	PA15	
UART5_TX	PC12	
UART5_RX	PD2	
UART5_CK	N/A	
UART5_CTS	PB5	
UART5_RTS_DE	PB4	
LPUART1_TX	PA2, PB11, PC1, PG7	
LPUART1_RX	PA3, PB10, PC0, PG8	
LPUART1_CK	N/A	
LPUART1_CTS	PA6, PB13, PG5	

AN5371 - Rev 2 page 70/102

AF pin function	STM32L5	STM32U5
LPUART1_RTS_DE	PB1, PB	12, PG6

^{1.} This instance is not available on STM32U535/545 devices.

8.4 Serial-audio interface (SAI)

The SAI offers a wide set of audio protocols due to its flexibility and wide range of configurations. Many stereo or mono audio applications may be targeted. I²S standards, LSB- or MSB-justified, PCM/DSP, TDM, and AC'97 protocols may be addressed for example. SPDIF output is offered when the audio block is configured as a transmitter.

The STM32L5 or STM32U5 series embeds two SAI, SAI1 and SAI2, with exactly the same features as described in the table below.

Saatura	STM32L5 and STM32U5	
Feature	SAI1	SAI2 ⁽¹⁾
I ² S standards, LSB- or MSB-justified, PCM/DSP, TDM, and AC'97 protocols	×	
Mute mode		
Stereo and mono audio frame capability		
Configurable data size (8, 10, 16, 20, 24, or 32 bits)		
SPDIF		
FIFO size	8 words	
PDM	X	-

Table 68, SAI features in STM32L5 and STM32U5 series

The SAI1 and SAI2 pins/balls are fully compatible except that SAI2_EXTCLK pin is not mapped in STM32U5 packages. SAI2_EXTCLK is replaced by a single AUDIOCLK on STM32U5.

The AF pins of these peripherals are fully compatible in STM32L5 and STM32U5 series similar packages. STM32L5 or STM32U5 series AF pins of SAI instances are mapped as described in the table below.

Table 69. SAI AF pins in STM32L5 and STM32U5 series

AF pin function	STM32L5	STM32U5
SAI1_CK1	PA3, PB8, PE2, PG7	
SAI1_CK2	PA8,	PE5
SAI1_SCK_A	PA8, PB	10, PE5
SAI1_SCK_B	PB3, PE	E8, PF8
SAI1_SD_A	PA10, PC1, P	C3, PD6, PE6
SAI1_SD_B	PA13, PB5, P	E3, PE7, PF6
SAI1_FS_A	PA9, PB9, PE4	
SAI1_FS_B	PA4, PA14, PB6, PE9, PF9	
SAI1_D1	PA10, PC3, PD6, PE6	
SAI1_D2	PB9, PE4	
SAI1_D3	PC5, PF10	
SAI1_MCLK_A	PA3, PB8, PE2, PG7	
SAI1_MCLK_B	PB4, PE10, PF7	

AN5371 - Rev 2 page 71/102

^{1.} This instance is not available on STM32U535/545 devices.

AF pin function	STM32L5	STM32U5
SAI1_EXTCLK ⁽¹⁾ / AUDIOCLK	PA0, PB0	
SAI2_SCK_A ⁽²⁾	PB13, PI	010, PG9
SAI2_SCK_B ⁽²⁾	PC10	, PG2
SAI2_SD_A ⁽²⁾	PB15, PD11, PG12	
SAI2_SD_B ⁽²⁾	PC12, PG5	
SAI2_FS_A ⁽²⁾	PB12, PC0, PD12, PG10	
SAI2_FS_B ⁽²⁾	PA15, PG3	
SAI2_MCLK_A	PB14, PC6, PD9, PG11	
SAI2_MCLK_B ⁽²⁾	PC7, PC11, PG4	
SAI2_EXTCLK/AUDIOCLK	PA2, PC9	PA0, PB0

^{1.} On STM32L5.

8.5 FD controller area network (FDCAN)

The controller area network (CAN) subsystem consists of one CAN module, a shared message RAM memory and a configuration block.

The modules (FDCAN) are compliant with ISO 11898-1: 2015 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0. A 0.8-Kbyte message RAM implements filters, receives FIFOs, transmits event FIFOs and transmits FIFOs.

The STM32L5 and STM32U5 series embed one FDCAN peripheral with exactly the same features as listed in the table below.

Table 70. FDCAN features in STM32L5 and STM32U5 series

Feature	STM32L5 and STM32U5
Number of instances	FDCAN1
Number of interrupts	2
Conform with CAN protocol version 2.0 part A, B and ISO 11898-1: 2015, -4	
CAN FD with maximum 64 data bytes supported	
CAN error logging	
AUTOSAR and J1939 support	
Improved acceptance filtering	
Two receive FIFOs of three payloads each (up to 64 bytes per payload)	
Separate signaling on reception of high-priority messages	X
Configurable transmit FIFO/queue of three payload (up to 64 bytes per payload)	
Configurable transmit event FIFO	
Programmable loop-back test mode	
Maskable module interrupts	
Two clock domains: APB bus interface and CAN core kernel clock	
Power-down support	

AN5371 - Rev 2 page 72/102

^{2.} These pins are not available on STM32U535/545 devices.

The FDCAN AF pins are fully compatible on similar packages. In addition, STM32U5 series map FDCAN1_RX and FDCAN1_TX signals on PF7 and PF8 pins respectively. STM32L5 and STM32U5 series AF pins of FDCAN1 are mapped as described in the table below.

Table 71. FDCAN AF pins in STM32L5 and STM32U5 series

AF pin function	STM32L5	STM32U5	
EDCANA DV	PA11, PB8, PD0		
FDCAN1_RX	N/A	PF7, PH14 ⁽¹⁾	
EDCAN1 TV	PA12, P	B9, PD1	
FDCAN1_TX	N/A	PF8, PH13 ⁽¹⁾	

^{1.} These pins are not available on STM32U535/545 devices.

8.6 SDMMC

The SD/SDIO MultiMediaCard host interface (SDMMC) provides an interface between the AHB bus and SD memory cards, SDIO cards and MMC devices. The STM32U575/585/59x/5Ax/5Fx/5Gx devices embed two SDMMCs with almost the same features as the SDMMC1 in the STM32L5. The internal DMA (IDMA) linked-list, SDR104 and HS200 operating modes are the main new features implemented in STM32U5 series.

Table 72. SDMMC features in STM32L5 and STM32U5 series

Feature	STM32L5	STM32U5	
Number of instances	SDMMC1	SDMMC1, SDMMC2 ⁽¹⁾	
Pinout compatibility	SDMMC1 AF pins are fully compatible.		
	Specification version 4.51	Specification version 5.1	
Compliance with Embedded	Card support for three different data bus modes: 1-bit (default), 4-bit and 8-bit		
MultiMediaCard System	N/A	HS200 SDMMC_CK speed limited to maximum allowed I/O speed, HS400 is not supported.	
Backward compatibility	Full compatibility with previous	s versions of MultiMediaCards	
	Full compliance with SD memory card specifications version 4.1	Full compliance with SD memory card specifications version 6.0	
Compliance with SD memory card specifications	N/A	SDR104 SDMMC_CK speed limited to maximum allowed I/O speed	
	SPI mode and UHS-I	I mode not supported	
	Full compliance with SDIO card specification version 4.0. Card support for two different databus modes: 1-bit (default) and 4-bit.		
Compliance with SDIO card specification version 4.0	N/A	SDR104 SDMMC_CK speed limited to maximum allowed I/O speed	
	SPI mode and UHS-I	I mode not supported	
Data transfer speed	Up to 104 Mbyte/s for the 8-bit mode, de	pending on maximum allowed I/O speed	
Control of external bidirectional drivers	Data and command output enable signa	ls to control external bidirectional drivers	
Internal IDMA transfer	The IDMA supports burst transfers of 8 beats	, in transmit and receive burst transfer modes.	
	IDMA provides a single-buff	ered channel configurations.	
Internal IDMA channel configuration	IDMA provides a double-buffered channel configurations.	N/A	
	N/A	IDMA provides a linked-list support channel configuration.	
Connection to the host	The MultiMediaCard/SD bus connects cards to the host.		

AN5371 - Rev 2 page 73/102

Feature	STM32L5	STM32U5	
Number of SD cards supported	The SDMMC current version supports only one SD/SDIO/e•MMC [™] card at any one time and a stack of e•MMC [™] .		
	DS (default speed), HS (high speed), SDR12, SDR25, DDR50, SDR50 (optional use of variable delay for this latter)		
SD and SDIO operation modes	N/A	SDR104: This mode requires variable delay support using sampling point tuning. The delay can be provided by delay block (DLYB) peripheral. (2)	
	Legacy compatible, high-speed SDR, high-speed DDR		
e•MMC operation modes	N/A	High speed HS200: This mode requires variable delay support using sampling point tuning. The delay can be provided by delay block (DLYB) peripheral. (2)	

- 1. Not available on STM32U535/545 devices.
- 2. The DLYB can be used in conjunction with the SDMMC adapter, to tune the phase of the sampling clock for incoming data in SDMMC receive mode. It is required for the SDMMC to support the SDR104 and HS200 operating modes, and it is optional for SDR50 and DDR50 modes.

AN5371 - Rev 2 page 74/102

STM32L5 and STM32U5 series AF pins of SDMMC1 are fully compatible and mapped as described in the table below (SDMMC2 is not available in the STM32L5 nor the STM32U535/545 devices).

Table 73. SDMMC AF pins in STM32L5 and STM32U5 series

AF pin function	STM32L5	STM32U5	
SDMMC1_CKIN	PB8		
SDMMC1_CDIR	PE	B9	
SDMMC1_D0DIR	PC	C6	
SDMMC1_D123DIR	PC7		
SDMMC1_CK	PC	C12	
SDMMC1_CMD	PE	D2	
SDMMC1_D0	PC	C8	
SDMMC1_D1	PC	C9	
SDMMC1_D2	PC	210	
SDMMC1_D3	PC	C11	
SDMMC1_D4	PE	B8	
SDMMC1_D5	PB9,	PC0	
SDMMC1_D6	PC	C6	
SDMMC1_D7	PC	C7	
SDMMC2_CKIN ⁽¹⁾			
SDMMC2_CDIR ⁽¹⁾	N	/A	
SDMMC2_D0DIR ⁽¹⁾	TV	/^	
SDMMC2_D123DIR ⁽¹⁾			
SDMMC2_CK ⁽¹⁾		PC1, PD6	
SDMMC2_CMD ⁽¹⁾		PA0, PD7	
SDMMC2_D0 ⁽¹⁾		PB14	
SDMMC2_D1 ⁽¹⁾	_	PB15	
SDMMC2_D2 ⁽¹⁾		PB3	
SDMMC2_D3 ⁽¹⁾	- N/A	PB4	
SDMMC2_D4 ⁽¹⁾	1	PB8	
SDMMC2_D5 ⁽¹⁾	1	PB9	
SDMMC2_D6 ⁽¹⁾		PC6	
SDMMC2_D7 ⁽¹⁾		PC7	

^{1.} SDMMC2 pins are not available on STM32U535/545 devices.

8.7 DCMI and PSSI

The DCMI (digital camera interface) and PSSI (parallel synchronous slave interface) peripherals are present in STM32U5 series only.

DCMI and PSSI use the same circuitry and cannot then be used at the same time: when using the PSSI, the DCMI registers cannot be accessed, and vice-versa. In addition, PSSI and DCMI share the same alternate functions and interrupt vector.

AN5371 - Rev 2 page 75/102

The DCMI main features are the following:

- 8-, 10-, 12- or 14-bit parallel interface
- Embedded/external line and frame synchronization
- Continuous or snapshot mode
- Crop feature
- Following data formats supported:
 - 8-, 10-, 12-, and 14-bit progressive video (either monochrome or raw Bayer)
 - YCbCr 4:2:2 progressive video
 - RGB 565 progressive video
 - Compressed data JPEG

The PSSI peripheral main features are listed below:

- Slave mode operation
- 8- or 16-bit parallel data input or output
- 4-word (16-byte) FIFO
- Data enable (PSSI_DE) alternate function input and ready (PSSI_RDY) alternate function output STM32U5 series AF pins of DCMI and PSSI are mapped as described in the table below (no DCMI and PSSI in STM32L5).

DCMI AF pin function	PSSI AF pin function	STM32U5
DCMI_HSYNC	PSSI_DE	PA4, PD8, PH8
DCMI_PIXCLK	PSSI_PDCK	PA6, PD9, PH5
DCMI_VSYNC	PSSI_RDY	PB7, PI5
DCMI_D0	PSSI_D0	PA9, PC6, PH9
DCMI_D1	PSSI_D1	PA10, PC7, PH10
DCMI_D2	PSSI_D2	PC8, PC11, PE0, PH11
DCMI_D3	PSSI_D3	PC9, PE1, PH12
DCMI_D4	PSSI_D4	PC11, PE4, PH14
DCMI_D5	PSSI_D5	PB6, PD3, PI4
DCMI_D6	PSSI_D6	PB8, PE5, PI6
DCMI_D7	PSSI_D7	PB9, PE6, PI7
DCMI_D8	PSSI_D8	PC10, PH6, PI1
DCMI_D9	PSSI_D9	PC12, PH7, PI2
DCMI_D10	PSSI_D10	PB5, PD6, PI3
DCMI_D11	PSSI_D11	PD2, PF10, PH15
DCMI_D12	PSSI_D12	PB4, PF11, PF6
DCMI_D13	PSSI_D13	PG15, PI0

Table 74. DCMI and PSSI AF pins in STM32U5 series

Note: Some pins are not available on STM32U535/545 devices. Refer to the device datasheet for more details.

8.8 Universal serial bus interface (USB)

The STM32U575/585/59x/5Ax/5Fx/5Gx devices and STM32L5 series embed one USB Type-C/USB Power Delivery interface (UCPD) with the same features. The STM32U575/585 devices implement one USB OTG_FS (on-the-go full-speed) and the STM32U59x/5Ax/5Fx/5Gx implement one USB OTG_HS (on-the-go high speed) while the STM32L5 and STM32U535/545 include one USB FS. One major difference between STM32L5 and STM32U535/545 is that STM32L5 supports only device mode while STM32U535/545 supports both device and host mode.

AN5371 - Rev 2 page 76/102

All features supported by the STM32L5 are also supported by the STM32U5 series. The STM32U575/585/59x/5Ax/5Fx/5Gx devices also implement advanced features related to OTG/Host operating modes.

Table 75. USB features in STM32L5 and STM32U5 devices

		STM32U5			
Features	STM32L5	STM32U535/545	OTG_FS for STM32U575/585	OTG_HS for STM32U59x/ 5Ax/5Fx/5Gx	
Certification	USB specificat speed complia	ion version 2.0 full- nt	USB-IF certified to the Universal Specification Rev 2.0		
			Full support (PHY) for the OTG protocol detailed in the On-The-Go Supplement Rev 2.0 specification:		
Full support (PHY) for the OTG protocol			 Integrated support for A-B device identification (ID line) Integrated support for host negotiation protocol (HNP) and session request protocol (SRP) Allows the host to turn V_{BUS} off to conserve battery power in O applications. Supports OTG monitoring of V_{BUS} levels with internal compara 		
			Supports dynamic host-peripheral sv	witch of role.	
		N/A	Software-configurable to operate as	:	
Software configurable			SRP capable USB FS peripheSRP capable USB FS/LS hosUSB OTG_FS dual-role device	t (A-device) ⁽¹⁾	
FS SOF and LS keep-alive support			Supports FS/HS SOF (Start of frame SOF pulse PAD connectivity SOF pulse internal connection Configurable framing period		
			Configurable end-of-frame interrupt		
Power saving	USB suspend/	resume operations	System stops during USB suspend, switch-off of clock domains internal to the digital core, PHY and DFIFO power management.		
			Dedicated RAM of 1.25 Kbytes with advanced FIFO control:	Dedicate RAM of 4 Kbytes with advanced FIFO control:	
Dedicated memory	Dedicated packet buffer memory (SRAM) of 1 Kbyte	Dedicated packet buffer memory (SRAM) of 2 Kbyte	flexible and efficient use of RA Each FIFO can hold multiple p Dynamic memory allocation	packets are not factor of two, to allow the	
		Guarantees max USB bandwidth for up to one frame (1 ms) w system intervention.		up to one frame (1 ms) without	
Battery charging	Battery charging specification revision 1.2 support		BCD (Battery charging detection) support: It supports charging port detection as described in battery charging specification revision 1.2 on the FS PHY transceiver only.		
	CRC (Cyclic redundancy check) generation/checking, NRZI (non-return-to-zero inverted) encoding/decoding and bit-stuffing		N/A		
Other general features	Frame-locked generation	clock-pulse			
	USB 2.0 LPM	(link power manageme	ent) support		
	USB connect/o	disconnect capability (c	controllable embedded pull-up resistor on USB-DP line)		
		N/A	ADP (attach detection protocol) support		

AN5371 - Rev 2 page 77/102

			STM32U5		
Features	STM32L5	STM32U535/545	OTG_FS for STM32U575/585	OTG_HS for STM32U59x/ 5Ax/5Fx/5Gx	
		N/A	1 bidirectional control endpoint() 6 device bidirectional endpoints (including EP0)	1 bidirectional control endpoint() 9 device bidirectional endpoints (including EP0)	
	isochronous transfers: • 4 IN endpoints		12 configurable EP (6 IN + 6 OUT, including the control endpoint) to support bulk, interrupt or isochronous transfers: 5 IN endpoints 5 OUT endpoints	16 configurable EP (5 IN + 5 OUT, including the control endpoint) to support bulk, interrupt or isochronous transfers: 8 IN endpoints 8 OUT endpoints	
Peripheral mode	Double-buffere endpoint suppo	ed bulk/isochronous ort	Management of a shared Rx FIFO and a Tx-OUT FIFO for efficient usage of the USB data RAM. Management of up to 6 dedicated Tx-IN FIFOs (one for each active IN EP) to put less load on the application Bidirectional endpoints fully usable in isochronous (or bulk) mode thanks to an advanced FIFO buffer memory management (no double-buffer mode that would reduce the number of available endpoints)	 Management of a shared Rx FIFO and a Tx-OUT FIFO for efficient usage of the USB data RAM. Management of up to 9 dedicated Tx-IN FIFOs (one for each active IN EP) to put less load o the application Bidirectional endpoints fully usable in isochronous (or bulk) mode thanks to an advanced FIFO buffer memory management (no double-buffer mode that would reduce the number of available endpoints) 	
		N/A	Support for the soft disconnect feature		
			 External charge pump for V_{BUS} voltage generation Up to 12 host channels (pipes): each channel is dynamically reconfigurable to allocate any type of USB transfer. 	External charge pump for V _{BUS} voltage Up to 16 host channels (pipes): each channel is dynamically reconfigurable to allocate any type of SB transfer.	
Host mode	mode N/A X		Built-in hardware scheduler holding: Up to 12 interrupt plus isochronous transfer requests in the periodic hardware queue Up to 12 control plus bulk transfer requests in the non-periodic hardware queue Management of a shared RX FIFO, periodic Tx FIFO for efficient usage		

^{1.} These features are available only for STM32U575/585 devices.

AN5371 - Rev 2 page 78/102

The AF pins of USB peripherals in STM32L5 and STM32U5 series are not entirely compatible as detailed in the table below.

Table 76. USB AF pins in STM32L5 and STM32U5 devices

	Pin number			
AF pin name	STM32L5		STM32U	5
	STWISZES	STM32U535/545	STM32U575/585	STM32U59x/5Ax/5Fx/5Gx
OTG_FS_SOF/OTG_HS_SOF	N/	^	PA8, PA14	
OTG_FS_ID/OTG_HS_ID	IN/	A	PA10	
OTG_FS_DM/OTG_HS_DM/USB_DM			PA11	
OTG_FS_DP/OTG_HS_DP/USB_DP			PA12	
OTG_FS_NOE/OTG_HS_NOE	PA13, PC9		PA13, PC9	
USB_NOE	FA13, FC9		N/A	
UCPD1_DB2	PB15		PB14	
UCPD1_CC2			PB15	
UCPD1_CC1			PA15	
UCPD1_DB1	PB5		PB5	
UCPD1_FRSTX1	PA2		PA2	
UCPD1_FRSTX1	PB2		PB2	
UCPD1_FRSTX2	PB13, PC11, PG7		PC11, PF11, PG7	

AN5371 - Rev 2 page 79/102

9 Migration of analog peripherals

9.1 Analog-to-digital converter (ADC)

The STM32U5 series embeds:

• One ADC1 (14-bit resolution) and ADC4 (12-bit resolution), while the STM32U59x/5Ax/5Fx/5Gx devices embed one additional ADC (ADC2, 14-bit resolution), all up to 2.5 Msps

The STM32L5 embeds:

ADC1 and ADC2 with the same features

in comparison with the STM32U5 for which:

- ADC1/ADC2 offers similar functionalities on U5 (dual mode, interleaved master/slave, injected channels)
- ADC2 is only available on STM32U59x/5Ax/5Fx/5Gx devices
- ADC4 is added on all STM32U5 series in smart run and can be used for LPBAM feature

Table 77. ADC implementation in STM32L5 and STM32U5 devices

		STM32U5 series			ies
Features	STM32L5	STM32U535/545/	STM32U	59x/5Ax	STM32U535/545/575/585
		575/585	575/585 /5Fx/5Gx		59x/5Ax/5Fx/5Gx
	ADC1 and ADC2	ADC1	ADC1	ADC2	ADC4
Resolution	12 bits	14 bits			12 bits
Maximum sampling speed	5 Msps	2.5 Msps			2.5 Msps
Hardware offset calibration	х	x			х
Single-ended inputs	х	x			X
Differential inputs	х	x			-
Injected channel conversion	х	х		-	
oversampling	Up to x256	Up to x1024		Up to x256	
Data register	16 bits	32 bits		16 bits	
DMA support	х	x		x	
Parallel data output to MDF	x (DFSDM)	x			-
Dual mode	х	-	x		-
Autonomous mode	-	-		x	
Offset compensation	-	х		-	
Gain compensation	-	x		-	
Number of analog watchdogs	-	3		3	
Wakeup from Stop mode	-	-			x ⁽¹⁾

^{1.} Wakeup supported from Stop 0, Stop 1 and Stop 2 modes.

The table below compares the STM32U5 series ADC1 and ADC2 (as ADC1 and ADC2 have the same features) to the STM32L5 ADC1 and ADC2.

Table 78. ADC features in STM32L5 and STM32U5 series

Feature	STM32L5	STM32U5	
reature	ADC1 and ADC2	ADC1 and ADC2	
	12-, 10-, 8- or 6-bit configurable resolution 14-, 12-, 10- or 8-bit configurable resolution		
High-performance features	ADC conversion time independent from the AHB bus clock frequency		

AN5371 - Rev 2 page 80/102

	STM32L5	STM32U5	
Feature	ADC1 and ADC2	ADC1 and ADC2	
	Faster conversion time by lowering resolution		
	Manage single-ended or differential inputs	Management of single-ended or differential inputs (programmable per channels)	
	AHB slave bus interface to allow fast data hand	dling	
	Self-calibration	Self-calibration (both offset and linearity)	
	Channel-wise programmable sampling time		
	N/A	Flexible sampling time control	
High-performance features	Up to four injected channels (fully configurable analog input assignment to regular or injected channels)		
	Hardware assistant to prepare the injected cha	nnel context and enable fast context switching	
	Data alignment with in-built data coherency		
	Data can be managed by DMA for regular channel conversions	Data management by general-purpose DMA for regular channel conversions with FIFO	
	Data can be routed to DFSDM for post processing	Data routing to MDF for post processing	
	Four dedicated data registers for the injected c	hannels	
	Up to two ADCs that can operate in dual mode		
Dual ADC mode	 ADC1 is connected to 16 external chann ADC2 is connected to 16 external chann 		
	16-bit data register	32-bit data register	
Oversampling	Oversampling ratio adjustable from 2 to 256	Oversampling ratio adjustable from 2 to 1024	
	Programmable data shift up to 8 bits	Programmable data right and left shift	
Data preconditioning	N/A	Gain and offset compensation	
Low-power features	frequencySupport of slow-bus frequency application	ons while keeping optimum ADC performance in AHB bus clock low-frequency application	
Channels and dedicated GPIOs pads	Up to 5 fast channels and 11 slow channels from GPIO pads	Up to 17 external analog input channels connected to dedicated GPIO pads	
	One channel for internal reference voltage (V_{RI} sensor (V_{SENSE})	EFINT) and one channel for internal temperature	
Internal channels	V _{BAT} monitoring channel (V _{BAT} /3), connected to ADC1	One channel for V _{BAT} monitoring (V _{BAT} /4)	
	DAC1 and DAC2 internal channels connected to ADC2	DAC1 and DAC2 internal channels connected to ADC4	
	Start-of-conversion can be initiated:		
Start-of-conversion	 by software for both regular and injected conversions by hardware triggers with configurable polarity (internal timers events or GPIO input events) for both regular and injected conversions 		
Conversion modes	 Single mode: The ADC converts a single channel. The conversion is triggered by a special event. Scan mode: The ADC scans and converts a sequence of channels. Continuous mode: The ADC converts continuously selected inputs. Discontinuous mode: The ADC converts a subset of the conversion sequence. 		
Interrupt generation	An interrupt is generated when the ADC is ready: at the end of sampling at the end of the conversion (regular or injected)		

AN5371 - Rev 2 page 81/102

Feature	STM32L5	STM32U5	
reature	ADC1 and ADC2	ADC1 and ADC2	
	by the analog watchdog 1, 2 or 3when an overrun event occurs		
Analog watchdogs	The three watchdogs per ADC can perform filtering to ignore out-of-range data.		
ADC input range	ADC input range: V _{REF} ≤ V _{IN} ≤ V _{REF} +		

9.2 Digital-to-analog converter (DAC)

STM32L5 and STM32U5 series DAC peripheral have identical electrical parameters and configuration options, with only two differences in the new autonomous mode and double-data DMA capability for STM32U5 series:

- Autonomous mode to reduce the power consumption for the system
 The autonomous mode can be used to update the DAC output voltage in Stop mode. This allows DMA
 transfers to be performed when the device operates in Run, Sleep or Stop mode. The autonomous mode is
 supported only when the DAC is in sample-and-hold mode.
- Double-data DMA capability to reduce the bus activity
 When the DMA controller is used in normal mode, only 12-bit (or 8-bit) data are transferred by a DMA request. As the AHB width is 32 bits, two 12-bit data may be transferred simultaneously.

The DAC main features implemented in STM32L5 and STM32U5 series are listed in the table below (refer to the product reference manual for more details).

Feature	STM32L5 STM32U5			
Dual channel	×		V	
Output buffer				
I/O connection	DAC1_OUT1 on PA4 and DAC1_OUT2 on PA5			
Maximum sampling time	1 Msps			
Autonomous mode		X		
Double-data DMA	-	X		

Table 79. DAC features in STM32L5 and STM32U5 series

9.3 Comparator (COMP)

The STM32L5 and STM32U5 series embed two ultra-low-power comparators, COMP1 and COMP2 (not available on STM32U535/545 devices), with the same electrical parameters and configuration options. These comparators can be used for a variety of functions including:

- Wakeup from low-power mode triggered by an analog signal
- Analog signal conditioning
- Cycle-by-cycle current control loop when combined with a PWM output from a timer

The STM32L5 and STM32U5 series AF pins of COMP instances are fully compatible and mapped as described in the table below.

Table 80. COMP AF pins in STM32L5 and STM32U5 series

AF pin function	STM32L5	STM32U5
COMP1_OUT	PB0, PB10	
COMP2_OUT ⁽¹⁾	PB5, PB11	

^{1.} This instance is not available on STM32U535/545 devices.

9.4 Voltage reference buffer (VREFBUF)

The internal VREFBUF is an operational amplifier, with programmable gain. The amplifier input is connected to the internal voltage reference VREFINT.

AN5371 - Rev 2 page 82/102

The STM32L5 and STM32U5 series embed one VREFBUF that can be used as voltage reference for ADCs and DACs. VREFBUF can also be used as voltage reference for external components through the VREF+ pin. The STM32U5 VREFBUF supports four voltages, whereas the STM32L5 supports only two voltages.

Table 81. VREFBUF features in STM32L5 and STM32U5 series

STM32L5		VREFBUF_OUT in STM32U5	
Symbol	Voltage (V)	Symbol	Voltage (V)
		VREFBUF0	1.5
-		VREFBUF1	1.8
VREF_OUT1	2.048	VREFBUF2	2.048
VREF_OUT2	2.5	VREFBUF3	2.5

9.5 Operational amplifier (OPAMP)

The two OPAMP1 and OPAMP2 (two inputs and one output each) in STM32U575/585/59x/5Ax/5Fx/5Gx devices or STM32L5 have identical features.

The three I/Os can be connected to the external pins to enable any type of external interconnections. The OPAMP can be configured internally as a follower or as an amplifier with a non-inverting gain ranging from 2 to 16. The positive input can be connected to the internal DAC. The output can be connected to the internal ADC.

The only difference is that the STM32U5 series OPAMP supports the high-speed mode and achieves a better slew rate.

Note: STM32U535/545 devices embed only one operational amplifier (OPAMP).

AN5371 - Rev 2 page 83/102

Migration of signal/image processing accelerators

The STM32U575/585/59x/5Ax/5Fx/5Gx devices embed a Chrom-ART Accelerator (DMA2D) that is a specialized DMA dedicated to image manipulation (not present in STM32L5 and in STM32U535/545).

These devices also include the following hardware accelerators and co-processors for signal processing:

- MDF (multi-function digital filter) and ADF (audio digital filter) that implement advanced architectures with new features versus the DFSDM (digital filter for sigma-delta modulators) implemented in STM32L5
- CORDIC co-processor and FMAC (filter mathematical accelerator) peripherals (not implemented in STM32L5)

10.1 MDF and ADF hardware digital filters

The STM32U5 series implements two hardware digital filters, MDF and ADF. ADF features are a subset of the MDF ones. However, the ADF includes a dedicated module to sound activity detection with wakeup. MDF and ADF are, like the DFSDM in STM32L5, high-performance dedicated modules intended to interface external $\Sigma\Delta$ modulators. MDF and ADF also feature parallel data stream input from internal ADC peripherals.

MDF and ADF can connect external sensors and DFSDM can acquire parallel data stream input from internal device memory. MDF and ADF are functional in Stop 0 and Stop 1 modes according to autonomous mode feature. In addition, the ADF is autonomous in Stop 2 mode: mapped to the AHB3 bus in SRD, the ADF is capable to wake up from Stop 2 mode.

Table 82. Digital filter features in STM32L5 and STM32U5 devices

Features	STM32L5	STM32U5	STM32U535/545	STM32U575/585	STM32U59x/5Ax/ 5Fx/5Gx
	DFSDM1	ADF1		MDF1	
Number of filters and interfaces	4 internal 166 bits data channels	1 DFLT (digital filter) and 1 SITF (serial interface)	2 DFLT (digital filter) and 2 SITF (serial interface)		r) and 6 SITF (serial face)
MDF_CKIy/MDF_CKI0 connected to pins	N/A	-	-	:	x
ADF_CKI0 connected to pins	N/A	x	-)	x
Sound activity detection (SAD)	N/A	х		-	
RxFIFO depth (number of 24-bit words)	N/A (1)	4		4	
Number of RxFIFO	N/A ⁽¹⁾	1		4	
Motor dedicated features: SCD (short-circuit detector), OLD (out-of-limit detector), OEC (offset error cancellation), INT (integrators), snapshot, break	x	-		x	
Main path with CIC4, CIC5	х	х	X ((with advanced feature	es)
Main path with CIC1/2/3 or FastSinc	х	-		х	
RSFLT (reshape filter), HPF (high-pass filter), SAT (saturation blocks), SCALE, DLY, Discard functions	_(2)	x		x	

AN5371 - Rev 2 page 84/102

Features	STM32L5	STM32U5	STM32U535/545	STM32U575/585	STM32U59x/5Ax/ 5Fx/5Gx
	DFSDM1	ADF1		MDF1	
Autonomous in Stop modes	-	x (Stop 0, Stop 1 and Stop 2 modes)	x (5	Stop 0 and Stop 1 mod	les)
Input from internal ADC	x	-	x (ADC1 connec	ted to ADCITF1)	x (ADC1 connected to ADCITF1 and ADC2 to ADCITF2)

The maximum output data resolution is up to 24 bits. DFSDM does not include a FIFO. The data can be automatically stored in a system RAM buffer through DMA.

STM32L5 and STM32U5 series AF pins of MDF/DFSDM are mapped as described in the table below.

Table 83. MDF/DFSDM AF pins in STM32L5 and STM32U5 series

AF pin function	DFSDM1 in STM32L5	MDF1_CKI5 in STM32U5		
MDF1_CCK0	N/A	PB8, PE9, PG7		
MDF1_CCK1	IV/A	PC2, PF10		
MDF1_CKIN0	PB2,	PD4		
MDF1_CKIN1	PB13	, PD7		
MDF1_CKIN2 ⁽¹⁾	PB15	, PE8		
MDF1_CKIN3 ⁽¹⁾	PC6,	PE5		
MDF1_CKIN4 ⁽¹⁾	N/A	PC1, PE11		
MDF1_CKIN5 ⁽¹⁾	N/A	PB7, PE13		
MDF1_SDIN0	PB1, PD3			
MDF1_SDIN1	PB12, PD6			
MDF1_SDIN2 ⁽¹⁾	PB14, PE7			
MDF1_SDIN3 ⁽¹⁾	PC7, PE4			
MDF1_SDIN4 ⁽¹⁾	N/A	PC0, PE10		
MDF1_SDIN5 ⁽¹⁾		PB6, PE12		
DFSDM1_CKOUT	PB8, PC2, PE9, PF10, PG7	N/A		

^{1.} Not available on STM32U535/545 devices.

STM32U5 series AF pins of ADF are mapped as described in the table below (no ADF on STM32L5 Series).

Table 84. ADF AF pins in STM32U5 series

AF pin function	STM32U5
ADF1_CCK0	PB3, PE9
ADF1_CCK1	PC10
ADF1_SDIN0	PB4, PC11, PE10

10.2 CORDIC

The CORDIC co-processor provides hardware acceleration of certain mathematical functions (mainly trigonometric ones) commonly used in motor control, metering, signal processing and many other applications.

AN5371 - Rev 2 page 85/102

^{2.} Only pulses skipper equivalent to clock skipper delay in STM32U5 series (DLY).

The CORDIC speeds up the calculation of these functions compared to a software implementation, making it possible the use of a lower operating frequency, or freeing up processor cycles in order to perform other tasks.

The cording main features are the following:

- 24-bit CORDIC rotation engine
- Circular and Hyperbolic modes
- Rotation and Vectoring modes
- Functions: sine, cosine, sinh, cosh, atan, atan2, atanh, modulus, square root, natural logarithm
- Programmable precision
- Low-latency AHB slave interface
- Results readable as soon as ready, without polling or interrupt
- DMA read and write channels
- Multiple register read/write by DMA

10.3 FMAC

The FMAC is implemented on STM32U5 series only. The FMAC performs arithmetic operations on vectors. It comprises a multiplier/accumulator (MAC) unit, together with address generation logic that allows FMAC to index vector elements held in local memory.

The FMAC main features are the following:

- 16 x 16-bit multiplier
- 24 + 2-bit accumulator with addition and subtraction
- 16-bit input and output data
- 256 x 16-bit local memory
- Up to 3 areas in memory for data buffers (two inputs, one output) can be defined by programmable base address pointers and associated size registers
- · Circular input and output buffers
- Filter functions: FIR, IIR (direct form 1)
- Vector functions: dot product, convolution, correlation
- AHB slave interface
- DMA read and write data channels

10.4 Touch sensing controller (TSC)

The STM32L5 and STM32U5 series embeds a touch sensing controller (TSC) with same features. The TSC provides a simple solution to add capacitive-sensing functionality to any application. A capacitive-sensing technology can detect a finger presence near an electrode that is protected from direct touch by a dielectric (such as glass or plastic). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. Refer to the STM32U5 reference manual (RM0456) for more details of TSC features).

The number of capacitive-sensing channels is dependent on the size of the package and subject to I/O availability. The TSC input/output signals and their pins mapping are fully compatible between STM32L5 and STM32U5 series.

STM32U5 series AF pins of TSC are fully compatible and mapped as described in the table below.

Table 85. TSC AF pins in STM32L5 and STM32U5 series

AF pin function	STM32L5	STM32U5
TSC_SYNC	PB10, PD2	
TSC_G1_IO1	PB	12
TSC_G1_IO2	PB13	
TSC_G1_IO3	PB14	
TSC_G1_IO4 ⁽¹⁾	PC3	
TSC_G2_IO1	PB4	

AN5371 - Rev 2 page 86/102

AF pin function	STM32L5	STM32U5
TSC_G2_IO2	PB\$	5
TSC_G2_IO3	PB6	6
TSC_G2_IO4	PB7	7
TSC_G3_IO1 ⁽¹⁾	PC	2
TSC_G3_IO2	PC1	0
TSC_G3_IO3	PC1	1
TSC_G3_IO4	PC1	2
TSC_G4_IO1	PC6	6
TSC_G4_IO2	PC	7
TSC_G4_IO3	PC	8
TSC_G4_IO4	PC:	9
TSC_G5_IO1	PE1	0
TSC_G5_IO2	PE1	1
TSC_G5_IO3	PE1	2
TSC_G5_IO4	PE13	
TSC_G6_IO1	PD10	
TSC_G6_IO2	PD11	
TSC_G6_IO3	PD12	
TSC_G6_IO4	PD1	3
TSC_G7_IO1	PE	2
TSC_G7_IO2	PEC	3
TSC_G7_IO3	PE4	
TSC_G7_IO4	PE5	
TSC_G8_IO1 ⁽²⁾	PF14	
TSC_G8_IO2 ⁽²⁾	PF15	
TSC_G8_IO3 ⁽²⁾	PG	0
TSC_G8_IO4 ⁽²⁾	PG ⁻	1

^{1.} These pins are not available on STM32U5 devices.

AN5371 - Rev 2 page 87/102

^{2.} These pins are not available on STM32U535/545 devices.

11 Migration of external-memory interface peripherals

The STM32U5 series microcontrollers implement three peripherals dedicated to external-serial memories: FSMC, OCTOSPI, and HSPI. The STM32U575/585/59x/5Ax/5Fx/5Gx devices FSMC shares the same features with the STM32L5. The STM32U5 series embeds the same OCTOSPI features as the STM32L5, with updates related to the I/O management. The HSPI peripheral is available only on STM32U59x/5Ax/5Fx/5Gx microcontrollers.

Note: FSMC is not available on STM32U535/545 devices.

11.1 OCTOSPI and HSPI interfaces

The OCTOSPI peripheral provides a serial interface that enables communication with external serial memories such as flash memory, PSRAM, HyperRAM[™], HyperFlash[™] and some specific circuits like FPGA or ASICs. The Octo-SPI specialized communication interface targets single-, dual-, quad- or octal-SPI memories. The OCTOSPI can be configured in three modes: Indirect mode, Status-polling mode and Memory-mapped mode. The OCTOSPI I/O manager (OCTOSPIM) is a hardware peripheral that implements a low-level interface that enables:

- an efficient OCTOSPI pin assignment with a full I/O matrix (before alternate function map)
- multiplex of single-, dual-, quad- or octal-SPI interfaces over the same bus

The HSPI integrates all protocols supported by the Octo-SPI (OCTOSPI) and it provides new advanced ones:

- The HSPI can support 16-bit SPI memories or two octal-SPI memories at the same time.
- The HSPI integrates a high speed interface, that can reach a frequency up to 160MHz in double-transfer rate mode.

	OCTOSPI		н	SPI
Feature	STM32L5	STM32U5	STM32L5	STM32U5
Number of instances	OCTOSPI1	OCTOSPI1 and OCTOSPI2 ⁽¹⁾	N/A	1 x HSPI ⁽²⁾
OCTOSPI I/O manager (OCTOSPIM)	N/A	N/A x		/A
High speed interface	N/A x			x
Other features	Same features			

Table 86. OCTOSPI and HSPI features in STM32L5 and STM32U5 series

- 1. Not available on STM32U535/545 devices.
- 2. Only available on STM32U59x/5Ax/5Fx/5Gx devices.

The STM32L5 and STM32U5 devices AF pins of OCTOSPI/OCTOSPIM instances are fully compatible and mapped as described in the table below (OCTOSPIM2 is not available in STM32L5. OCTOSPIM is not supported in STM32U535/545 devices).

Table 87. OCTOSPIM AF pins in STM32L5 and STM32U575/585/59x/5Ax/5Fx/5Gx devices

AF pin function	STM32L5	STM32U575/585/59x/5Ax/5Fx/5Gx		
OCTOSPIM_P1_CLK	PA3, PB10, PE10, PF10			
OCTOSPIM_P1_NCLK	PB5, PB12, PE9, PF11			
OCTOSPIM_P1_DQS	PA1, PB2,	PE3, PG6		
OCTOSPIM_P1_NCS	PA2, PA4, PB11, PC11, PE11			
OCTOSPIM_P1_IO0	PB1, PE12, PF8			
OCTOSPIM_P1_IO1	PB0, PE13, PF9			
OCTOSPIM_P1_IO2	PA7, PE14, PF7			
OCTOSPIM_P1_IO3	PA6, PE	15, PF6		

AN5371 - Rev 2 page 88/102

AF pin function	STM32L5	STM32U575/585/59x/5Ax/5Fx/5Gx
OCTOSDIM D4 IO4	PA6, PE	15, PF6
OCTOSPIM_P1_IO4	N/A	PH2
OCTOCDIM D4 IOF	PC2, PD	5, PG11
OCTOSPIM_P1_IO5	N/A	PI0
OCTOSPIM_P1_IO6	PC3,	PD6
OCTOSPIM_P1_IO7	PC0, PC	C4, PD7
OCTOSPIM_P2_CLK		PF4, PH6, PI6
OCTOSPIM_P2_NCLK		PF5, PH7, PI7
OCTOSPIM_P2_DQS		PF12, PG7, PG15, PH4
OCTOSPIM_P2_NCS	N/A	PD3, PG12, PI5, PI8
OCTOSPIM_P2_IO0		PF0, PI3
OCTOSPIM_P2_IO1		PF1, PI2
OCTOSPIM_P2_IO2	IN/A	PF2, PI1
OCTOSPIM_P2_IO3		PF3, PH8
OCTOSPIM_P2_IO4		PG0, PH9
OCTOSPIM_P2_IO5		PG1, PH10
OCTOSPIM_P2_IO6		PG9, PH11, PH15
OCTOSPIM_P2_IO7		PG10, PH12

11.2 Flexible static memory controller (FSMC)

The STM32U575/585/59x/5Ax/5Fx/5Gx devices FSMC peripheral shares the same features as the STM32L5. It includes two memory controllers:

- NOR/PSRAM memory controller
- NAND memory controller

The FSMC can interface with synchronous and asynchronous static memories, and NAND flash memory. FSMC main purposes are:

- to translate AHB transactions into the appropriate external device protocol
- to meet the access time requirements of the external memory devices

Table 88. FSMC features in STM32L5 and STM32U575/585/59x/5Ax/5Fx/5Gx devices

Feature	STM32L5	STM32U575/585/59x/ 5Ax/5Fx/5Gx
External memory interfaces supported	external SRAM NOR flash memory/Onel PSRAM (4 memory bank Ferroelectric RAM (FRAI NAND flash memory with 8 Kbytes of data	(s)
Interface with parallel LCD modules, supporting Intel [®] 8080 and Motorola 6800 modes	×	
Burst mode support for faster access to synchronous devices (such as NOR flash memory or PSRAM)		
Programmable continuous clock output for asynchronous and synchronous accesses	8-,16-bit wi	de data bus
Independent chip select control for each memory bank		,
Independent configuration for each memory bank	X	

AN5371 - Rev 2 page 89/102

Feature	STM32L5	STM32U575/585/59x/ 5Ax/5Fx/5Gx
Write enable and byte lane select outputs for use with PSRAM, SRAM devices	×	
External asynchronous wait control		
Write FIFO depth	16 x32-l	oit depth

STM32U575/585/59x/5Ax/5Fx/5Gx devices and STM32L5 AF pins of FSMC are fully compatible. They are mapped as described in the table below.

Table 89. FSMC AF pins in STM32L5 and STM32U575/585/59x/5Ax/5Fx/5Gx devices

AF pin function	STM32L5	STM32U575/585/59x/5Ax/5Fx/5Gx
FMC_CLK	PD	3
FMC_NL	PB	7
FMC_NBL0	PE	0
FMC_NBL1	PE	1
FMC_NOE	PD	4
FMC_NWE	PD	5
FMC_NWAIT	PD	6
FMC_NCE/FMC_NE1	PD	7
FMC_NCE/FMC_NE2	PG	9
FMC_A0	PF	0
FMC_A1	PF	1
FMC_A2	PF:	2
FMC_A3	PF:	3
FMC_A4	PF	4
FMC_A5	PF:	5
FMC_A6	PF1	2
FMC_A7	PF1	3
FMC_A8	PF1	4
FMC_A9	PF1	5
FMC_A10	PG	0
FMC_A11	PG	1
FMC_A12	PG	2
FMC_A13	PG	3
FMC_A14	PG	4
FMC_A15	PG	5
FMC_A16	PD1	11
FMC_A17	PD1	2
FMC_A18	PD1	13
FMC_A19	PE	3
FMC_A20	PE	4
FMC_A21	PE	5

AN5371 - Rev 2 page 90/102

AF pin function	STM32L5	STM32U575/585/59x/5Ax/5Fx/5Gx
FMC_A22	PE6	
FMC_A23	PE2	
FMC_A24	PG13	
FMC_A25	PG14	
FMC_D0	PD14	
FMC_D1	PD15	
FMC_D2	PD0	
FMC_D3	PD1	
FMC_D4	PE7	
FMC_D5	PE8	
FMC_D6	PE9	
FMC_D7	PE10	
FMC_D8	PE11	
FMC_D9	PE12	
FMC_D10	PE13	
FMC_D11	PE14	
FMC_D12	PE15	
FMC_D13	PD8	
FMC_D14	PD9	
FMC_D15	PD10	

AN5371 - Rev 2 page 91/102

12 Software migration

12.1 Reference documents

Check the following documents for more details:

- STM32 Cortex[®]-M33 MCUs programming manual (PM0264)
- Cortex®-M33 Processor Technical Reference Manual, available on Arm® website

12.2 Cortex-M33 overview

The Cortex-M33 processor is excellence in ultra-low-power, performance and security. This processor is based on the Armv8-M architecture for use in environments requiring more security implementation. The Cortex-M33 core implements a full set of DSP (digital signal processing) instructions, TrustZone aware support and a memory protection unit (MPU) that enhances the application security.

The Cortex-M33 core also features a single-precision floating-point unit (FPU), that supports all the Arm single-precision data-processing instructions and all the data types. The STM32 Cortex-M33 implementation is illustrated in the figure below.

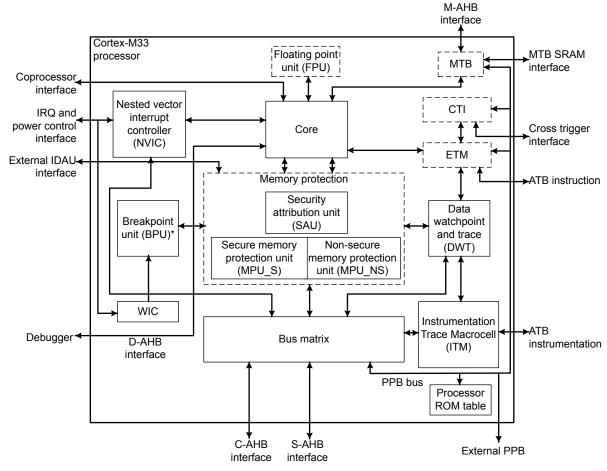


Figure 3. STM32 Cortex-M33 implementation

AN5371 - Rev 2 page 92/102

^{*} Flash patching is not supported in the Cortex-M33 processor.

Cortex-M33 key features are listed below:

- Arm-v8M architecture with 2/3 stage pipeline, Harvard, 1,4 DMIPS/MHz
- Single-cycle branch, no branch prediction
- Hardware divide instruction
- Debug (CoreSight compliant)
- Memory exclusive instructions
- NVIC without interrupts increased up to 480 max (256 priority levels)
- Enhanced MPU, more flexible (32 bytes) up to 16 regions (for each one of the secure and nonsecure states)
- New AMBA[®] 5 AHB interface, support of security state extension to the system
- Support of external implementation defined attribution unit
- Fully compatible with TrustZone system

12.3 Cortex-M33 software point of view

The Cortex-M33 includes the following features:

- Implementing Armv8-M architecture
- Implementing the latest FPU specification (based on Arm FPv5 architecture)
- Using the AHB5 specification for the system and memory interface to extend security across the whole system
- Using the latest version of the MPU specification for the setup of regions
- Extends the number of maximum interrupts to 480
- Optional execution trace using MTB or ETM
- Enhanced debug components to make simplify usage
- · Coprocessor interface supporting up to eight coprocessors units
- Hardware stack limit checking
- TrustZone security features adding efficient security features

12.4 Cortex-M33 mapping overview

The mapping on cortex-M33 is illustrated on the table below.

Table 90. Cortex-M33 overview mapping for STM32L5 and STM32U5 series

STM32L5 and STM32U5				
	Architecture	Cortex-M33		
Coro	NVIC (nested vectored interrupt controller)	109 maskable interrupt channels (not including the 16 interrupt lines of the Cortex-M33 with FPU)		
Core	EXTI (extended interrupts and events controller)	43 event/interrupt		
Mapping	System timer	0xE000 E010 to 0xE000 E0FF		
	NVIC	0xE000 E100 to 0xE000 ECFF		
	MPU	0xE000 ED90 to 0xE000 EDB8		
	FPU	0xE000 EF30 to 0xE000 EF44		

AN5371 - Rev 2 page 93/102

13 Conclusion

This application note is a complement to the STM32L5 and STM32U5 series datasheets and reference manuals. This document provides a simple guideline to migrate an existing product based on STM32L5 to the STM32U5 devices.

AN5371 - Rev 2 page 94/102

Revision history

Table 91. Document revision history

Date	Version	Changes
21-May-2021	1	Initial release
04-Apr-2023	2	 Updated: Figure 1. STM32L5 system architecture Figure 2. STM32U5 system architecture Section 1.1 Memory availability Table 2. Masters connected to AHB bus matrix of STM32L5 and STM32U5 series Table 3. Slaves connected to AHB bus matrix of STM32L5 and STM32U5 series Table 8. Bootloader interface on STM32L5 and STM32U5 series Table 9. STM32 peripheral compatibility between STM32L5 and STM32U5 series Section 4.2 Secure and nonsecure boundaries of peripheral memory mapping Table 13. PKA features for STM32L562 and STM32U545/585/5Ax/5Gx devices Table 14. AES/SAES features on STM32L562 and STM32U545/585/5Ax/5Gx devices Table 16. GTZC implementation in STM32L5 and STM32U5 devices Table 17. MPCWM resources assignments in STM32U5 and STM32U5 devices Table 18. MPCBB resources in STM32L5 and STM32U5 devices Table 20. Flash memory features in STM32L5 and STM32U5 devices Table 21. Main option bytes in STM32L5 and STM32U5 devices Table 23. SRAMs in STM32L5 and STM32U5 devices Table 24. Embedded Caches on STM32L5 and STM32U5 devices Table 25. DMA features in STM32L5 and STM32U5 series Table 34. Peripheral clock sources in STM32L5 and STM32U5 series Table 35. USB features in STM32L5 and STM32U5 devices Table 75. USB features in STM32L5 and STM32U5 devices Table 76. USB AF pins in STM32L5 and STM32U5 devices Table 77. ADC implementation in STM32L5 and STM32U5 devices Table 76. USB AF pins in STM32L5 and STM32U5 devices Table 82. Digital filter features in STM32L5 and STM32U5 devices Table 82. Digital filter features in STM32L5 and STM32U5 devices Table 82. Digital filter features in STM32L5 and STM32U5 devices

AN5371 - Rev 2 page 95/102

Contents

1	STM32U5 series				
	1.1	Memoi	ry availability	4	
	1.2	Systen	n architecture differences between STM32L5 and STM32U5 series	4	
2	Hard	lware m	nigration	8	
3					
	3.1	Boot m	nodes selection	11	
	3.2	Embed	dded bootloader	12	
4	Perip	oheral r	nigration	13	
	4.1	STM32	2 products cross-compatibility	13	
	4.2	Secure	e and nonsecure boundaries of peripheral memory mapping	17	
5	Migr	ation of	f security peripherals	23	
	5.1	TAMP		23	
		5.1.1	Tamper pins and internal events	23	
		5.1.2	Potential tamper detection mode (STM32U5 only) series	24	
		5.1.3	Boot hardware key	25	
	5.2	HASH	(hash processor)	25	
	5.3	OTFDI	EC (on-the-fly decryption engine)	25	
	5.4	RNG (true random number generator)	25	
	5.5	PKA (p	oublic key accelerator)	26	
	5.6	AES a	nd SAES hardware accelerators	26	
	5.7	GTZC	(global TrustZone controller)	27	
		5.7.1	GTZC implementation and resource assignments	28	
		5.7.2	TrustZone security architecture	30	
		5.7.3	TrustZone peripheral classification	30	
6	Migr	ation of	f system peripherals	31	
	6.1	SYSCI	FG (system configuration controller)	31	
	6.2	Flash	memory	31	
	6.3	SRAM	s	35	
	6.4	Cache	s	37	
	6.5	DMA .		38	
	6.6	RCC (I	reset and clock control)	38	
		6.6.1	PLL		
		6.6.2	Bus frequencies versus voltage scaling		
		6.6.3	CSS (clock security system)	42	

		6.6.4	Specific ADC and DAC clocks features	42
		6.6.5	RTC and TAMP clock	42
		6.6.6	Timer and watchdog clock sources	42
		6.6.7	Peripherals clock gating and reset	43
		6.6.8	Peripheral clock source migration	43
		6.6.9	System clock after wakeup	45
		6.6.10	Autonomous mode in STM32U5 series	46
		6.6.11	Low-power modes	47
		6.6.12	RCC security and privilege functional description	48
		6.6.13	RCC privilege protection modes	48
	6.7	Power ((PWR)	49
		6.7.1	Power-supply pins	49
		6.7.2	PWR main features	50
		6.7.3	Power modes	52
		6.7.4	Autonomous peripherals and low-power background autonomous mode (LPBAM)	53
		6.7.5	PWR security and privilege	54
		6.7.6	PWR interrupts	55
	6.8	CRC		55
7	Migra	ation of	timer peripherals	56
	7.1	Advanc	ed-control timers (TIM1/8)	56
	7.2	GP time	ers with up, down, up-down auto-reload counter (TIM2/3/4/5)	58
	7.3	GP time	ers with auto-reload up-counter (TIM15/16/17)	59
	7.4	Basic ti	mers (TIM6/7)	61
	7.5		wer timers (LPTIM1/2/3/4)	
	7.6	•	ogs	
	7.7		ne clock (RTC)	
	7.8		timer	
8		-	communication peripherals	
O	8.1		• •	
	0.1	-	peripheral interface (SPI)	
		8.1.1	Mapping of SPI alternate function pins	
	0.0	8.1.2	SPI autonomous mode	
	8.2			
	8.3		RT and LPUART	
	8.4		audio interface (SAI)	
	8.5		troller area network (FDCAN)	
	8.6	SDMM	C	73
	8.7	DCMI a	and PSSI	75

	8.8	Universal serial bus interface (USB)	76
9	Migr	ration of analog peripherals	80
	9.1	Analog-to-digital converter (ADC)	80
	9.2	Digital-to-analog converter (DAC)	82
	9.3	Comparator (COMP)	82
	9.4	Voltage reference buffer (VREFBUF)	82
	9.5	Operational amplifier (OPAMP)	83
10	Migr	ration of signal/image processing accelerators	84
	10.1	MDF and ADF hardware digital filters	84
	10.2	CORDIC	85
	10.3	FMAC	86
	10.4	Touch sensing controller (TSC)	86
11	Migr	ration of external-memory interface peripherals	88
	11.1	OCTOSPI and HSPI interfaces	88
	11.2	Flexible static memory controller (FSMC)	89
12	Soft	ware migration	92
	12.1	Reference documents	92
	12.2	Cortex-M33 overview	92
	12.3	Cortex-M33 software point of view	93
	12.4	Cortex-M33 mapping overview	93
13	Cond	clusion	94
Rev	ision	history	95
List	of tak	bles	99
List	of fig	ures	

List of tables

Table 1.	Memory size on STM32L5 and STM32U5 series	
Table 2.	Masters connected to AHB bus matrix of STM32L5 and STM32U5 series	. 7
Table 3.	Slaves connected to AHB bus matrix of STM32L5 and STM32U5 series	. 7
Table 4.	Packages without SMPS on STM32L5 and STM32U5 series	. 8
Table 5.	Packages with SMPS on STM32L5 and STM32U5 series	. 9
Table 6.	Boot modes when TrustZone is disabled (TZEN = 0)	11
Table 7.	Boot modes when TrustZone is enabled (TZEN = 1)	11
Table 8.	Bootloader interface on STM32L5 and STM32U5 series	12
Table 9.	STM32 peripheral compatibility between STM32L5 and STM32U5 series	13
Table 10.	STM32L5 and STM32U5 series memory mapping for secure and nonsecure boundary addresses	17
Table 11.	Tamper pins and events for STM32L5 and STM32U5 series	23
Table 12.	RNG features on STM32L5 and STM32U5 series	25
Table 13.	PKA features for STM32L562 and STM32U545/585/5Ax/5Gx devices	26
Table 14.	AES/SAES features on STM32L562 and STM32U545/585/5Ax/5Gx devices	27
Table 15.	GTZC features in STM32L5 and STM32U5 series	28
Table 16.	GTZC implementation in STM32L5 and STM32U5 devices	28
Table 17.	MPCWM resources assignments in STM32L5 and STM32U5 devices	29
Table 18.	MPCBB resources in STM32L5 and STM32U5 series	29
Table 19.	SYSCFG features in STM32L5 and STM32U5 series	31
Table 20.	Flash memory features in STM32L5 and STM32U5 devices	31
Table 21.	Main option bytes in STM32L5 and STM32U5 devices	33
Table 22.	SRAMs in STM32L5 and STM32U5 devices	35
Table 23.	SRAMs main features in STM32U5 series	37
Table 24.	Embedded Caches on STM32L5 and STM32U5 devices	37
Table 25.	DMA features in STM32L5 and STM32U5 series	38
Table 26.	RCC features in STM32L5 and STM32U5 series	39
Table 27.	RCC pin names in STM32L5 and STM32U5 series	39
Table 28.	Clock sources in STM32L5 and STM32U5 series	40
Table 29.	PLL features in STM32L5 and STM32U5 series	41
Table 30.	Bus max frequency versus voltage scaling in STM32L5 and STM32U5 series	42
Table 31.	CSS in STM32L5 and STM32U5 series	42
Table 32.	RTC and TAMP clock in STM32L5 and STM32U5 series	42
Table 33.	RCC clock and reset registers for STM32L5 and STM32U5 series	43
Table 34.	Peripheral clock sources in STM32L5 and STM32U5 series	
Table 35.	System source after wakeup in STM32L5 and STM32U5 series	45
Table 36.	STM32U5 series autonomous mode	46
Table 37.	Low-power modes in STM32L5 and STM32U5 series	47
Table 38.	Secured RCC items in STM32L5 and STM32U5 series	48
Table 39.	RCC secure-access registers in STM32L5 and STM32U5 series	48
Table 40.	Privileged and unprivileged accesses in STM32L5 and STM32U5 series	49
Table 41.	Power-supply pins in STM32L5 and STM32U5 series (packages with SPMS)	49
Table 42.	Power-supply pins in STM32L5 and STM32U5 series (packages without SPMS)	
Table 43.	STM32U5 specific power-supply pins	
Table 44.	PWR in STM32L5 and STM32U5 series	50
Table 45.	Power modes in STM32L5 and STM32U5 series	
Table 46.	STM32U5 autonomous peripherals to DMA assignment in autonomous mode	
Table 47.	Privilege modes in STM32L5 and STM32U5 series	
Table 48.	PWR interrupt sources of STM32L5 and STM32U5 series	
Table 49.	Advanced-control timers (TIM1/TIM8) in STM32L5 and STM32U5 series	
Table 50.	TIM1/8 AF pins on STM32L5 and STM32U5 series	
Table 51.	GP timers with up, down, up-down auto-reload counter in STM32L5 and STM32U5 series	
Table 52.	TIM2/3/4/5 AF pins on STM32L5 and STM32U5 series	
Table 53.	GP timer with auto-reload up-counter (TIM15) in STM32L5 and STM32U5 series	

AN5371 - Rev 2 page 99/102

Table 54.	GP timers with auto-reload up-counter (TIM16/17) in STM32L5 and STM32U5 series	60
Table 55.	TIM15/16/17 AF pins on STM32L5 and STM32U5 series	
Table 56.	Basic timers (TIM6/TIM7) in STM32L5 and STM32U5 series	61
Table 57.	LPTIMx in STM32L5 and STM32U5 series	
Table 58.	LPTIMx feature implementation in STM32L5 and STM32U5 series	62
Table 59.	LPTIMx AF pins on STM32L5 and STM32U5 series	62
Table 60.	IWDG features in STM32L5 and STM32U5 series	63
Table 61.	RTC AF pins in STM32L5 and STM32U5 series	64
Table 62.	SPI features in STM32L5 and STM32U5 series	65
Table 63.	SPIx_RDY AF pins in STM32L5 and STM32U5 series	67
Table 64.	I2C features in STM32L5 and STM32U5 series	68
Table 65.	I2C AF pins in STM32L5 and STM32U5 series	68
Table 66.	U(S)ART/LPUART features in STM32L5 and STM32U5 series	69
Table 67.	U(S)ART/LPUART AF pins in STM32L5 and STM32U5 series	70
Table 68.	SAI features in STM32L5 and STM32U5 series	71
Table 69.	SAI AF pins in STM32L5 and STM32U5 series	71
Table 70.	FDCAN features in STM32L5 and STM32U5 series	72
Table 71.	FDCAN AF pins in STM32L5 and STM32U5 series	73
Table 72.	SDMMC features in STM32L5 and STM32U5 series	73
Table 73.	SDMMC AF pins in STM32L5 and STM32U5 series	75
Table 74.	DCMI and PSSI AF pins in STM32U5 series	76
Table 75.	USB features in STM32L5 and STM32U5 devices	77
Table 76.	USB AF pins in STM32L5 and STM32U5 devices	
Table 77.	ADC implementation in STM32L5 and STM32U5 devices	80
Table 78.	ADC features in STM32L5 and STM32U5 series	80
Table 79.	DAC features in STM32L5 and STM32U5 series	82
Table 80.	COMP AF pins in STM32L5 and STM32U5 series	82
Table 81.	VREFBUF features in STM32L5 and STM32U5 series	83
Table 82.	Digital filter features in STM32L5 and STM32U5 devices	84
Table 83.	MDF/DFSDM AF pins in STM32L5 and STM32U5 series	85
Table 84.	ADF AF pins in STM32U5 series	
Table 85.	TSC AF pins in STM32L5 and STM32U5 series	86
Table 86.	OCTOSPI and HSPI features in STM32L5 and STM32U5 series	88
Table 87.	OCTOSPIM AF pins in STM32L5 and STM32U575/585/59x/5Ax/5Fx/5Gx devices	88
Table 88.	FSMC features in STM32L5 and STM32U575/585/59x/5Ax/5Fx/5Gx devices	89
Table 89.	FSMC AF pins in STM32L5 and STM32U575/585/59x/5Ax/5Fx/5Gx devices	90
Table 90.	Cortex-M33 overview mapping for STM32L5 and STM32U5 series	93
Table 91.	Document revision history	95

AN5371 - Rev 2 page 100/102

List of figures

Figure 1.	STM32L5 system architecture	E
Figure 2.	STM32U5 system architecture	6
Figure 3.	STM32 Cortex-M33 implementation	2

AN5371 - Rev 2 page 101/102

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

AN5371 - Rev 2 page 102/102