

How to optimize the RF board layout for STM32WL5x/Ex MCUs

Introduction

STM32WL5x and STM32WLEx microcontrollers (referred to as STM32WL5x/Ex in this document) integrate an RF transceiver for LPWAN (low-power wide-area network). This is compatible with LoRa®, GFSK, DBPSK, and MSK, in the frequency range 150 to 960 MHz.

STM32WL5x/Ex devices have the following output powers:

- HP (high-power RFO_HP), optimized up to 22 dBm
- LP (low-power RFO_LP), optimized up to 15 dBm

The devices also include a differential RF input (RFI, up to 0 dBm) for the Rx low-noise amplifier (LNA).

To achieve correct performance for the RF output and RF input signals, some recommendations must be followed for the board design. Special care is required for the layout of an RF board compared to a conventional circuit.

This document describes precautions to be taken to achieve the best RF performance of the STM32WL5x/Ex on efficient applications that have a long autonomy on battery power. The description is based on the UFBGA73 (5 x 5 mm) reference 4-layer board.

1 Main rules summary

Some general guidelines when routing an RF PCB are listed below:

- RF traces must be short and straightforward.
 Make the transmission lines short and straightforward to avoid reflections, save power, and reduce high-frequency issues.
- Place and route decoupling capacitors and RF components first.
 Placing the RF part first is highly recommended. Decoupling capacitors are essential to avoid high-frequency problems and maintain power integrity. Do not hesitate to add some other decoupling capacitors if needed.
- Place and route critical signals.
- Do not route high-frequency signals on board outline.
 High-frequency signals on the board outline tend to radiate due to edge effects of high-frequency fields.
- Try to maintain the characteristic impedance (50 Ω) constant. Avoid discontinuities, such as different pad sizes on transmission lines, bends, or T-junctions, or changing the RF trace width along the line.
- Keep critical signals away from RF.
 High-frequency signals can induce some undesired effects in critical signals such as electric and/or magnetic coupling.
- For high-frequency applications, 4-layer PCBs are better than 2-layer PCBs.
- Try to avoid vias with RF signals.
 Vias in RF paths can cause reflections, radiation, and, subsequently, losses.
- RF return current paths must be free of obstacles or discontinuities.
- Avoid undesired magnetic coupling between inductors by leaving space between them, using magnetic shielding and/or placing them at perpendicular angles.
- Try to reduce undesired parasitic capacitances and inductances associated with the circuit layout as much as possible.
- For filter inductors such as SMPS chokes, use shielded inductors to minimize noise, and place them perpendicular to LNA traces and other RF traces.
- To reduce electromagnetic undesired emissions, a metal shield can be added above RF components.

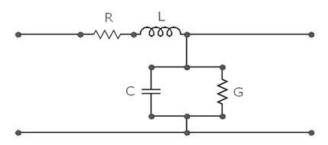
This application note applies to STM32WL5x/Ex microcontrollers based on the Arm® Cortex®-M processor.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

AN5407 - Rev 4 page 2/49

2 Characteristic and controlled impedance


All transmission lines below microwave frequencies have at least two conductors:

- In one conductor, the RF currents go towards the antenna.
- In the other, the RF currents come back to the RF source.

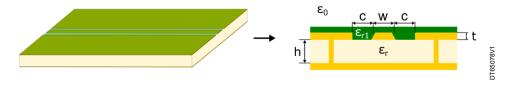
To feed an antenna, transmission lines on PCBs, designed considering their characteristic impedances, are used. The characteristic impedance of a transmission line (sometimes represented by Z_C or Z_0) is defined as the constant ratio between the voltage and current waves along the line. Z_C can be defined with R, L, G, and C parameters that represent the transmission line model of an extremely short segment, as shown in this formula:

$$Z_C = \sqrt{\frac{R + jwL}{G + jwC}} = \sqrt{\frac{Z_{series}}{Y_{shunt}}}$$

Figure 1. Equivalent circuit of transmission line

F70520V1

Where:


- R = total series resistance, per unit length of two conductors, in ohms
- L = total series inductance, per unit length of two conductors, in henrys
- G = shunt conductance between two conductors per unit length, in siemens
- C = shunt capacitance per unit length between conductors, in farads
- j = imaginary number
- ω = angular frequency, in rad/s

The impedance formed by a PCB trace and its associated reference planes constitute the characteristic impedance of the transmission line on the PCB. This characteristic impedance on PCBs is frequently called controlled impedance.

To make it simpler, the controlled impedance of a PCB is the physical dimensions that define the R, L, G, and C parameters. The characteristics of the materials, like permeability or permittivity, impact the value of the controlled impedance. Since no magnetic materials are used in PCBs, the relative permeability is considered equal to one $(\mu_r = 1)$.

In the example of a coplanar single-ended waveguide line with lower-ground plane (GCPW, for grounded coplanar waveguide), the physical dimensions like t (thickness), w (width), c (clearance), h (height), and permittivity constants of dielectric materials determinate the characteristic impedance of the transmission line on the PCB.

Figure 2. Example of a GCPW in a 2-layer PCB

Transmission lines on PCBs can also be made in other formats like microstrip or strip lines.

AN5407 - Rev 4 page 3/49



GCPW is often selected up to a few GHz to reduce radiation due to fringe fields, therefore causing less electromagnetic (EM) radiation, and thus less interference. For STM32WL5x/Ex reference boards, GCPW is used as standard transmission line structures.

GCPW is more sensitive to PCB manufacturing variations than microstrip lines. GCPW physical dimensions (such as t, w, c, and h) must be kept within low tolerances to maintain an impedance very close to 50 Ω .

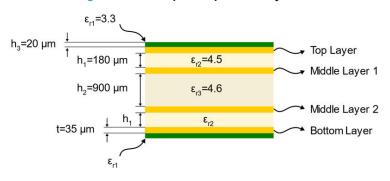

To understand how the manufacturing process can impact the characteristic impedance of a GCPW transmission line on a PCB, consider the example of a 4-layer PCB with physical dimensions varying with 20% tolerance, around a 50 Ω characteristic impedance at 1 GHz. In this case, the stack-up with nominal values is shown in the figure below.

Figure 3. Example of a transmission line type GCPW on PCB

The entire PCB stack-up for this example is depicted in the figure below.

Figure 4. Stack-up example for 4-layer PCB

Note: Due to mechanical constraints, PCBs are often made with symmetrical stack-ups.

5080V1

AN5407 - Rev 4

As the transmission width varies during the manufacturing process within a 20% tolerance, the expected result is shown in the figures below.

Figure 5. Characteristic impedance versus width variation

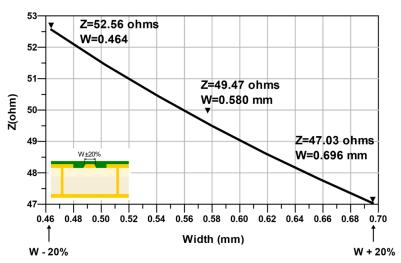
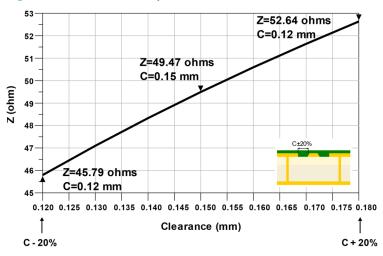



Figure 6. Characteristic impedance versus clearance variation

DT65

DT65081V1

As explained before, due to the fabrication process, PCBs can have variations in many parameters, such as dielectric constant, track width, core, and prepreg dimensions. The histogram below demonstrates a global indication of impedance variation per PCB unit in a fabrication process.

AN5407 - Rev 4 page 5/49

DT70521V1

Figure 7. Histograms from statistical analysis for \pm 10% process variation of dimensional variables (n = 1000) from ADS

This figure shows the histogram of 1000 PCB units, which is described as follows:

- 380 have an impedance between 49 and 52 Ω
- 200 have an impedance between 46 and 0 43 Ω
- 200 have an impedance between 52 and 55 Ω
- 60 have an impedance between 55 and 58 Ω
- 20 have an impedance between 58 and 61 Ω
- etc

The goal is to design transmission lines that can deliver 100% of the power inserted at the beginning of the line to the antenna. To better understand the impact of the mismatch due to a characteristic impedance other than 50 Ω , see the table below.

Table 1. Characteristic impedance and impact on RF measures (load impedance = 50 Ω)

Characteristic impedance (Ω)	Reflection coefficient	Return loss (dB)	Mismatch loss (dB)	VSWR ⁽¹⁾	Reflected power (%)	Transmitted power (%)
55	-0.048	0.010	26.444	1.100	0.23	99.77
54	-0.038	0.006	28.299	1.080	0.15	99.85
53	-0.029	0.004	30.714	1.060	0.08	99.92
52	-0.020	0.002	34.151	1.040	0.04	99.96
51	-0.010	0.000	40.086	1.020	0.01	99.99
50	0.000	0.000	-	1.000	0.00	100.00
49	0.010	0.000	39.913	1.020	0.01	99.99
48	0.020	0.002	33.804	1.042	0.04	99.96
47	0.031	0.004	30.193	1.064	0.10	99.90
46	0.042	0.008	27.604	1.087	0.17	99.83
45	0.053	0.012	25.575	1.111	0.28	99.72

^{1.} Voltage standing wave ratio.

As a good practice, always identify the controlled impedances in schematics as depicted in the figure below.

AN5407 - Rev 4 page 6/49

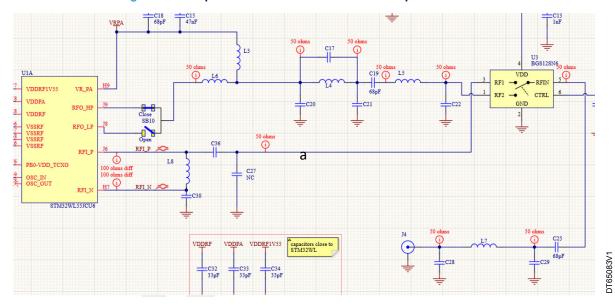


Figure 8. Example of schematic with controlled impedance identified

AN5407 - Rev 4 page 7/49

3 RF transmission line

The geometry of a transmission line is defined to minimize the tendency of the line to act as an antenna and to radiate on its own, while the geometry of an antenna is selected to maximize its tendency to radiate.

As mentioned before, the RF transmission line on a PCB is defined by its geometry and the PCB stack-up. This section includes a PCB stack-up description and some stack-ups to be copied to have the right impedances for the Tx and Rx paths.

3.1 Stack-up board

A typical 4-layer PCB with three types of vias is described in the figure below. The trace width, the distance between trace and ground reference, and the material characteristics determine the impedance of the RF trace. Microvias are often used with BGA packages due to the high-density interconnections (HDI).

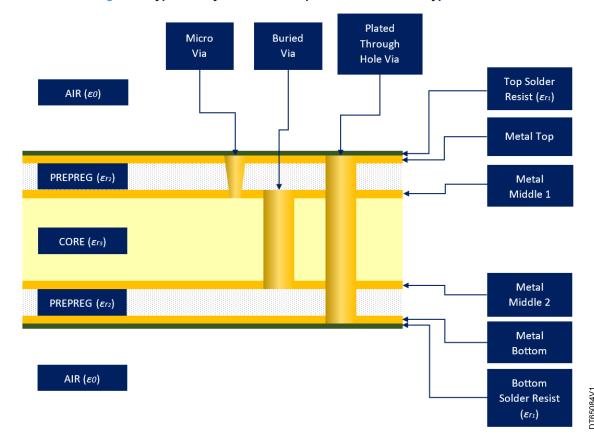


Figure 9. Typical 4-layer PCB stack-up with three different types of vias

3.2 Stack-ups for Tx 50 Ω and Rx 100 Ω

One of the most difficult tasks is to correctly determine the width and clearance for an RF track from a given stack-up. The difficulty is linked to the effective dielectric constant (ϵ_{r} eff) calculation for a given substrate.

A 2.5/3D field-solver software is often used to determine ϵ_{r_eff} . PCB manufacturers can assist greatly in this task. Whenever possible, ask to the PCB manufacturer for the design rules (dimensions) to use on the RF lines to obtain 50 Ω single-ended and 100 Ω differential. Otherwise, copy/paste a predefined board stack-up with its characteristics and use the recommended design rules to obtain the desired impedances.

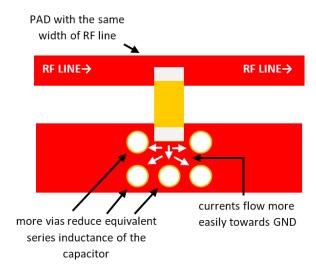
Appendix A Stack-up examples details some stack-up boards to obtain 50 Ω for Tx lines and 100 Ω for Rx lines that can be copied to the application. Contact the PCB manufacturer to verify if the values on the stack-up selected can be guaranteed.

AN5407 - Rev 4 page 8/49

4 Surface mounted components with RF signals

4.1 Capacitors

The table below gives some recommendations regarding the routing of SMD (surface-mounted components).


Table 2. Reducing parasitic inductance of routed capacitors

Performance	Capacitor pad type	Comment
Recommended		Short traces with multiple vias reducing return current impedance
Better		Short traces
Better		
Poor		Long traces between capacitors, increasing series inductance
Not good		Thinner access track increasing the equivalent series inductance of the capacitor

AN5407 - Rev 4 page 9/49

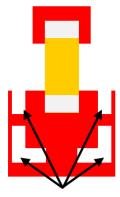


Figure 10. Example of capacitors on RF lines

Whenever possible, thermal reliefs must be avoided on RF lines as they increase the equivalent series inductance (ESL) of capacitors and then change the frequency response of the capacitors, in addition to increasing losses.

Figure 11. Thermal reliefs

Thermal relief limit current flow increasing ESL and losses in high frequencies

D165090V

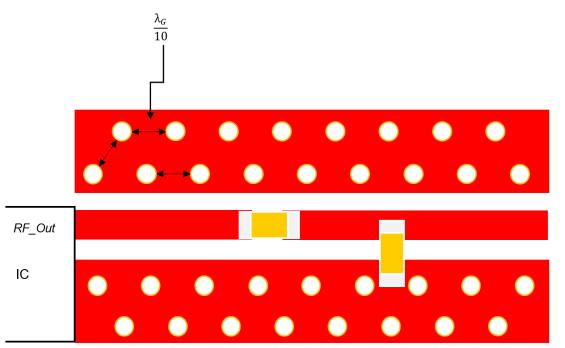
DT65

4.2 Inductors

The table below gives some recommendations regarding the inductors.

Table 3. Inductor pads with RF signals

Performance	Inductor pad type	Comment	
Recommended		Short and same pad width access traces, maintaining the original value of the inductance and Q-Factor	
Not good		Be careful with this kind of trick. This narrow trace contributes to increase the inductance, but this can decrease the equivalent Q-factor of the inductor. RF inductors are carefully made to have a high Q-factor. Do not ruin it.	


AN5407 - Rev 4 page 11/49

5 Via stitching and shielding

The recommendation is to put some vias around RF lines as shown in the figure below, to reduce high-frequency issues.

Figure 12. Spacing between vias around GCPW

The following formula is used to determine the D value:

$$\frac{\lambda_G}{20} \leq D \leq \frac{\lambda_G}{10}$$

With $\lambda_{\text{G}},$ as guided wavelength, defined by this formula:

$$\lambda_G = \frac{3 \times 10^8}{f \times \sqrt{\epsilon_{r_eff}}}$$

Where:

- f = highest frequency of the RF circuit operation
- ϵ_{r_eff} = effective dielectric constant of the PCB

AN5407 - Rev 4 page 12/49

RF return current path

The RF currents that go to the antenna must come back to their source inside the chip to complete a closed loop: this is done via a return path. Thus, a return path for the delivery medium back to the energy source must be provided. A return path is defined as the conductive path taken by the current returning to the source from the load. Generally, this return path is done on a grounded plane.

Recommended

No vias in RF return path

Make clean current return paths
beneath RF Lines

Vias creating a larger RF return path, increasing losses and discontinuities

It is a puzzle for currents that search their return paths

Table 4. Return paths

Slots on the return path increase impedance and losses, and can act as antennas. Slots are not allowed on the return path:

AN5407 - Rev 4 page 13/49

Figure 13. Slots on return path

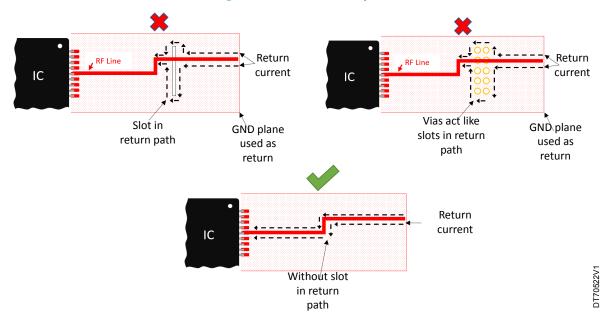
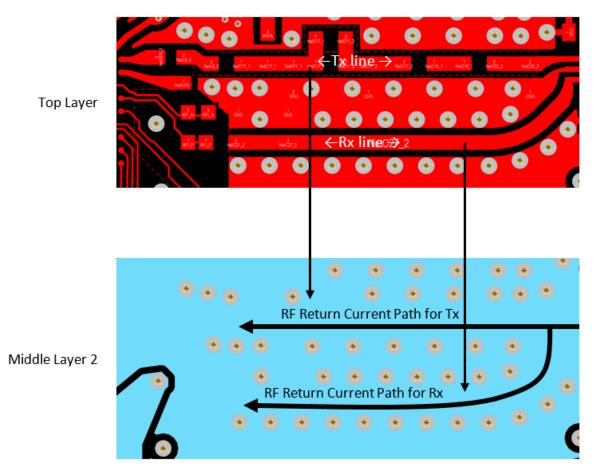



Figure 14. Clean return path example for RF currents

AN5407 - Rev 4 page 14/49

JT65608V

7 Cutout

A metal cutout is sometimes needed to have 50 Ω impedance in RF lines. If needed, make a cut in the GND of 3 W (W equals to the RF track width) in the internal layers.

Depending on the design, the cutout could be needed in one or more layers. Speak with the PCB supplier or use RF simulation software to know if a cutout is necessary.

Top layer Internal layer 1
Internal layer 2
Bottom layer

Figure 15. PCB cutout for 50 Ω impedance

D170523V

AN5407 - Rev 4 page 15/49

Slots and high-frequency currents

Due to the time-varying characteristics of RF currents, slots can act like antennas:

High-frequency current flow

Due to slot, a ΔV is produced

Ground plane eq. HF circuit elements

This circuit will resonate with a frequency proportional to the aperture of the slot

due to slot

Figure 16. Slots and high-frequency currents

Here are some tips to avoid slots in your design:

Try to avoid slots. If this is impossible, connect vias with a trace to minimize the slot.

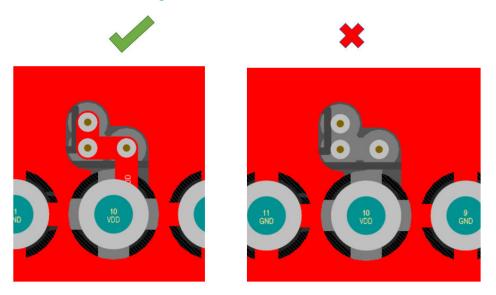


Figure 17. Slot reduction with track

AN5407 - Rev 4 page 16/49

Try to group vias to avoid creating gaps.

Figure 18. Slot reduction through spacing vias

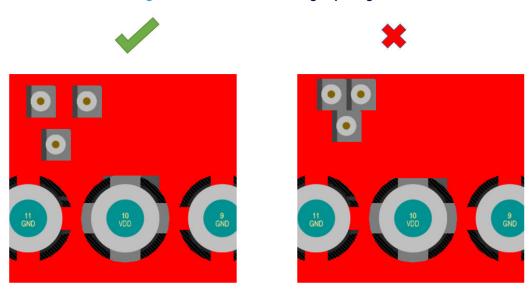
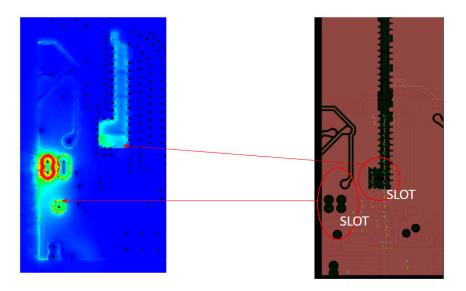
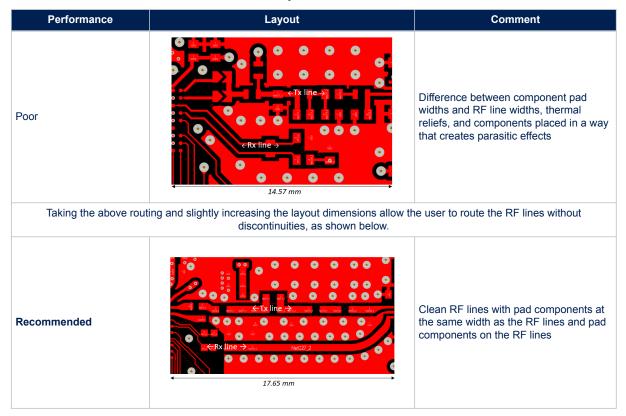



Figure 19. Effect of slots in PCB through electromagnetic simulation


.0527V1

9 Discontinuities to avoid in transmission lines

When designing transmission lines on a PCB with a controlled impedance (50 Ω), the objective is to maintain the same impedance in the whole system to transfer as much energy as possible to the antenna and to minimize the unintentional loss of energy in the transmission line.

Table 5. Layout discontinuities

AN5407 - Rev 4 page 18/49

Table 6. Track transitions

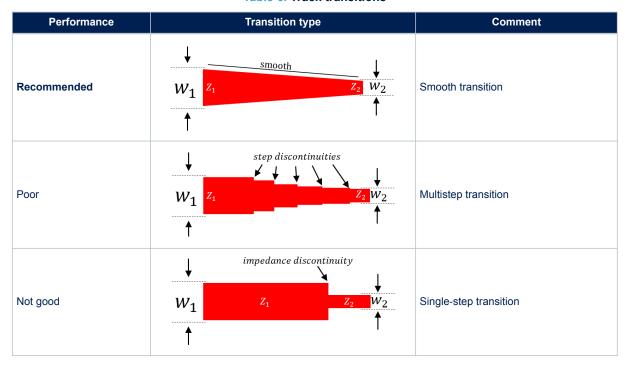


Table 7. Test points

Performance	Test point type	Comment
Recommended	Test point inside the RF line (avoiding stubs) RFO STM32WL	Test point with no stub
Not good	Test point acting as a stub RFO RF LINE STM32WL	Test point as stub

AN5407 - Rev 4 page 19/49

Whenever possible, align the width between the RF lines and pads (no transition needed). Do not hesitate to reduce pad components to maintain a constant width of RF traces.

Comment Performance Pad component type Same width for RF line and pads RFO Recommended No transition needed STM32WL Tapered transition RFO Better Smooth transition STM32WL Pad components Abrupt transition with different width RFC Not good Single-step transition STM32WL

Table 8. Pad component width

Table 9. RF switch transitions

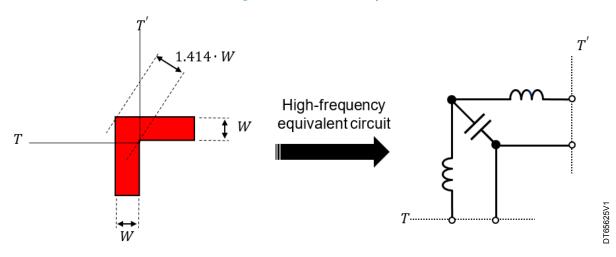
Performance	RF switch transition type	Comment
Recommended	RF switch	Smooth transition
Better	RF switch	Tapered transition
Not good	RF switch	Single-step transition

AN5407 - Rev 4 page 20/49

Table 10. Package pad to RF line transitions

Performance	Pad to RF line transition type	Comment
Recommended		Smooth transition with polygons
Not good	Thin traces causing losses in high frequencies	Thin trace with single-step transition
	Single-step transition	Single-step transition

AN5407 - Rev 4 page 21/49



10 Bends with RF lines

A bend is needed when there is a direction change for an RF line. Bends with RF lines can cause reflections and power loss. Some guidelines are detailed in this section to avoid issues with bends in high-frequency transmission lines. The main idea when designing bends is to keep the same trace width in the corner.

Consider the worst case, which is the 90° bend shown in the figure below.

Figure 20. 90° bend example

The ideal case is a straight line with a constant width as shown below.

Figure 21. Ideal case: straight line

65626V1

AN5407 - Rev 4 page 22/49

Table 11. Guidelines for bends in RF lines

Performance	Bend type
Recommended	With continuous width
Better	
Better	
Not good	

AN5407 - Rev 4 page 23/49

11 Minimize unintentional radiation

11.1 RFO harmonics

The typical RFO application circuit for STM32WL5x/Ex is shown in the figure below.

H9 VDDRF1V55 H8 VIDDPA C23 RFO_HP E8 VDDRE CTRL RFO_LP GND F6 PB0-VDD TCXC L8 -C31 DT65631V1 STM32WL55JCI

Figure 22. Typical circuit for RFO harmonics

STM32WL5x/Ex devices feature a linear, high-efficiency RF power amplifier (PA), connected to the RFO pin (PA output). Due to the high-frequency harmonic components generated at RFO (above GHz for an operating frequency starting at 500 MHz), the RF tracks before the filtering stages (before L5, C21, C24, C22, L6, and C25 in the schematic) may radiate unintentional electromagnetic (EM) energy. Any piece of metal that makes λ /4 under certain conditions can act as an antenna radiating EM energy.

Note:

Remember that the power radiated by a linear antenna of length L, is proportional to $P = (L/\lambda)^2$. This means that the bigger the unintentional antenna, the greater the amount of energy it radiates.

The following formula can be used to determine the longest length of a track to not radiate EM energy on a PCB:

$$L < \frac{3 \times 10^8}{4 \times h \times f \times \sqrt{\epsilon_{r_eff}}}$$

Where:

- h is the harmonic for which the user must determine the maximum track length to avoid.
- f is the operating frequency of the RF signal.
- ϵ_{r_eff} is the effective dielectric constant of the PCB stack-up layers.

Example

For an operating frequency at 915 MHz, the ninth harmonic (h9) is equal to 8.235 GHz (9 x 915 MHz). For a PCB with ϵ_{r} eff = 3, the maximum track length is:

$$L < \frac{3 \times 10^8}{4 \times 9 \times 9.15 \times 10^6 \times \sqrt{3}}$$

The maximum track length to avoid an unintentional harmonic radiation with an operating frequency at 915 MHz and taking the ninth harmonic is 5.258 mm.

AN5407 - Rev 4 page 24/49

11.2 High-frequency signals on board outline

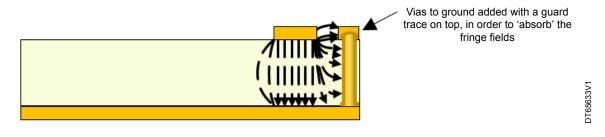

Routing high-frequency signals at the board outline may cause unintentional electromagnetic (EM) radiation.

Figure 23. EM radiation generated by HF signals

One solution to mitigate the problem of tracks that radiate EM is to place them between grounded planes (below and above).

Figure 24. How to mitigate unintentional EM radiation

11.3 Ground flooding

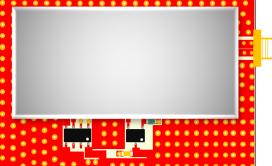
Flooding unused PCB areas with GND and with multiple vias, can be used to keep the GND impedance low and reduce EMC issues.

Figure 25. PCB example with or without ground flooding

Without ground flooding

With ground flooding

AN5407 - Rev 4 page 25/49



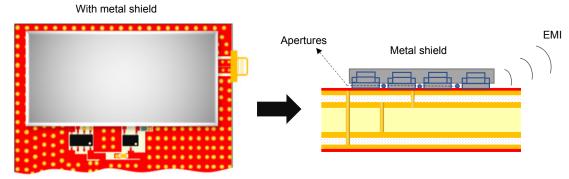
11.4 Metal shield

To prevent issues due to unintentional radiation of harmonic contents, it is highly recommended to add a metal shield to cover the RF part on the board.

Figure 26. PCB example with or without metal shield

Without metal shield

With metal shield


High harmonics may cause EMC issues.

The metal shield prevents harmonic components from causing interference with other circuits.

11.5 Shield apertures

When using a metal shield, be careful with the type of shield you are using. Some shields have apertures in the connection part, and these can result in radiation leakage, or worse, act as antennas.

Figure 27. Aperture shield effect for electromagnetic emissions

The metal shield prevents harmonic components from causing interference with other circuits.

70529V1

AN5407 - Rev 4 page 26/49

11.6 Power planes and routing

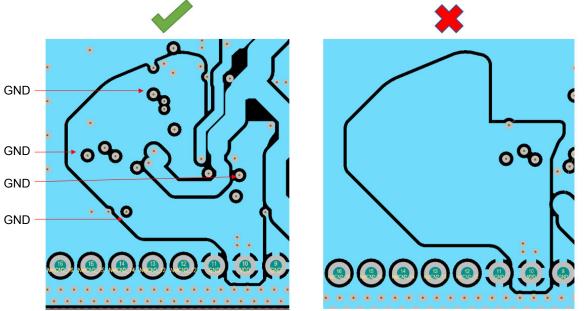

To prevent unintentional electromagnetic (EM) radiation between GND planes and power planes, the power planes must not be routed at the edge of the board. Otherwise, these power planes may radiate unintentional EM due to fringe fields. GND planes must be put in all layers around the board and must be connected.

Figure 28. GND and power planes

If you have a power plane in the internal layers of your design, put some vias on it to avoid floating GND above and below the ground planes. These vias should be distributed in the power plane.

Figure 29. GND vias on power plane to avoid floating GND

When routing power traces, try to separate the main domains in a star configuration. This is useful to avoid noise coupling and to measure the correct current in a domain.

AN5407 - Rev 4 page 27/49

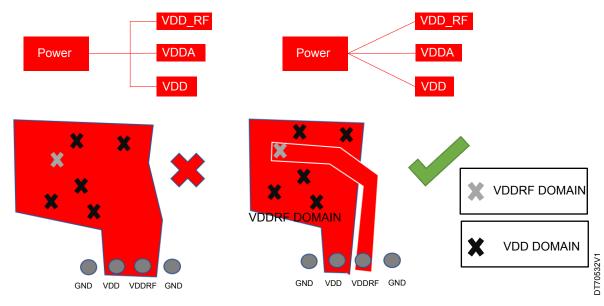
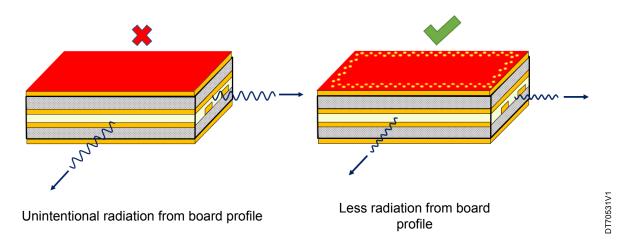



Figure 30. Routing different power domains to avoid noise problems

11.7 Via fencing

One of the main sources of EMI in PCBs are the edges, because in these parts there is a discontinuity. The electromagnetic waves that propagate between the copper and the substrate of the PCB can escape from the board here. To minimize EMI, put stitching vias in the edge. A distance of λ G/10 or less between the vias should be used. See the reference layout for a real case application in Section 14.

Figure 31. Effect of stitching vias in PCB edge to reduce emission

AN5407 - Rev 4 page 28/49

12 Decoupling capacitors

Capacitors with lower values must be placed closer to the chip than higher-value ones, as shown in the figure below.

100 pF 10 nF 0.1 μF 0.2 μF STM32WL

Figure 32. Placement example of decoupling capacitors

When routing the decoupling capacitors, the smallest possible current loop must be maintained. Large current loops are translated into inductive behavior. Refer to AN5457 for more details on decoupling capacitors.

 Performance
 Current loop of decoupling capacitors
 Comment

 Recommended
 Reduced current loop

 Poor
 Large current loop

Table 12. Return currents for decoupling capacitors

The equivalent series inductance (ESL, see the figure below) of a capacitor is impacted by the current loop.

Figure 33. High-frequency equivalent model of a capacitor

JT65640V1

DT65637V1

AN5407 - Rev 4 page 29/49

When using VDDSMPS in STM32WL5x/Ex, it is not recommended to use large decoupling capacitors on VDDPA. This is to avoid any voltage peak during SMPS operations. To address this issue, disconnect the 4.7 μ F capacitor, as shown in the figure below:

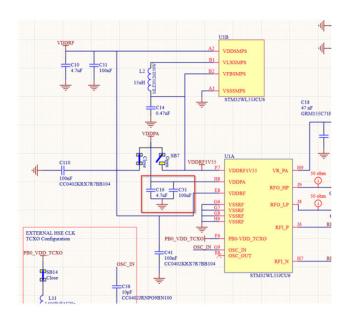


Figure 34. Decoupling capacitors in VDDPA

DT70547V1

AN5407 - Rev 4 page 30/49

TCXO and XO considerations for PCB implementation with STM32WL5x/Ex

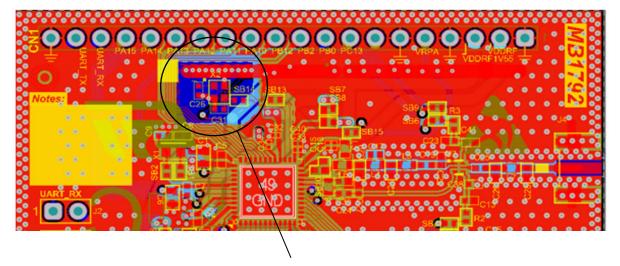
Depending on the RF output power, special care must be taken with the choice of crystals.

For STM32WL5x/Ex, three output powers are available:

- 22 dBm
- 17 dBm
- 14 dBm

Temperature-compensated oscillators (TCXO) and XO crystal are used as the HSE (high-speed external) clock. They are essential for the good functioning of the RF circuit.

When the circuit is turned on, the RF output power generates heat that propagates to the PCB, affecting the accuracy of the crystal. This generates a frequency drift in the RF signal during a specific time. To avoid this effect, it is recommended to use TCXO crystal.


For designs with 22 dBm, the output power TCXO is needed.

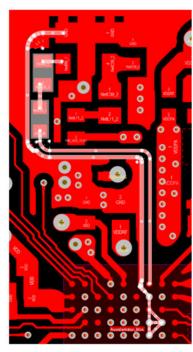
For designs with 17 dBm and 14 dBm output powers, the TCXO is recommended. If it is not possible, the layout must include a thermal barrier to minimize the frequency drift.

Warning: Make sure that the slots do not work as antennas.

See the example below:

Figure 35. Example of a thermal barrier

Thermal barrier cutout


When routing the crystal part, it is recommended to have a close loop and place the crystal as close as possible to the STM32WL5x/Ex device, for a good performance.

See the example below:

AN5407 - Rev 4 page 31/49

AN5407 - Rev 4 page 32/49

14 STM32WL5x/Ex reference layout

The reference PCB 4-layer layout for the BGA package is detailed in the figures below.

Figure 37. All layers of the STM32WL5x/Ex reference layout for BGA

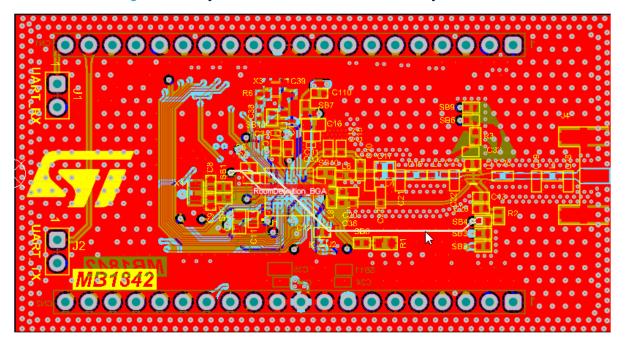
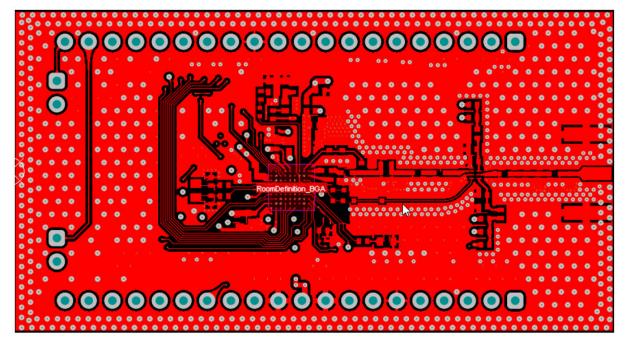



Figure 38. Top layer of the STM32WL5x/Ex reference layout for BGA

AN5407 - Rev 4 page 33/49

Figure 39. Middle layer 1 of the STM32WL5x/Ex reference layout for BGA

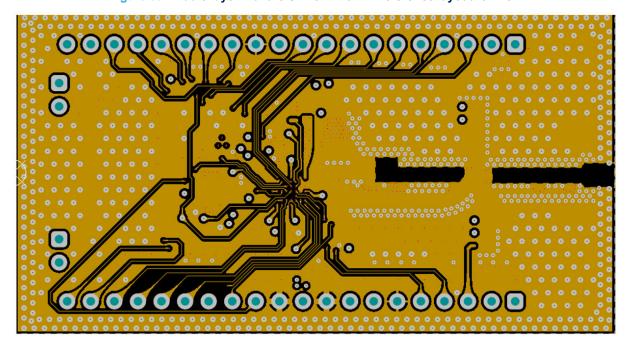
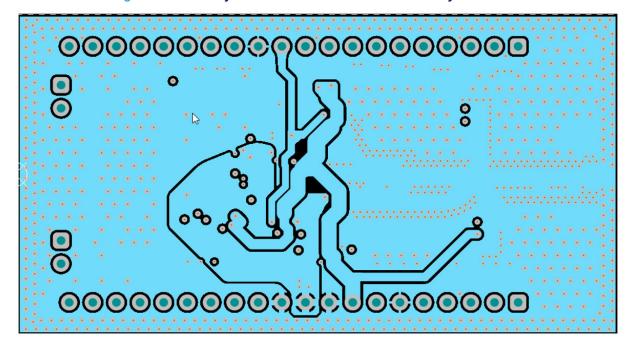



Figure 40. Middle layer 2 of the STM32WL5x/Ex reference layout for BGA

AN5407 - Rev 4 page 34/49

Figure 41. Bottom layer of the STM32WL5x/Ex reference layout for BGA

The reference PCB 4-layer layout for the QFN package is detailed in the figures below.

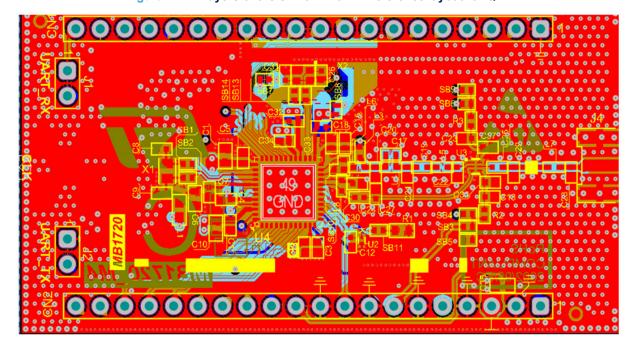


Figure 42. All layers of the STM32WL5x/Ex reference layout for QFN

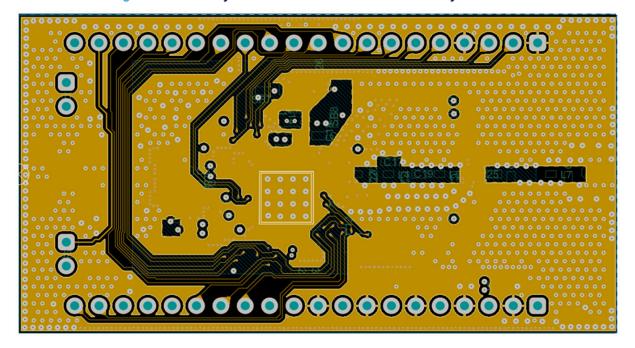
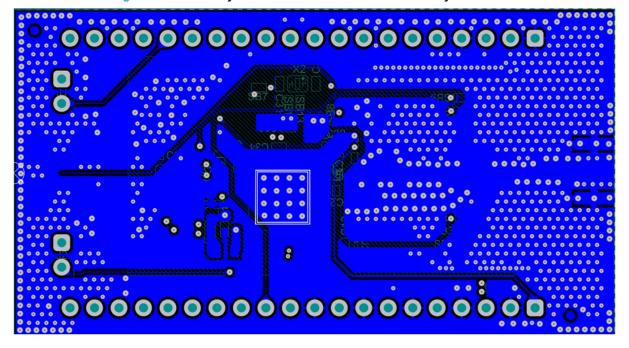

AN5407 - Rev 4 page 35/49

Figure 43. Top layer of the STM32WL5x/Ex reference layout for QFN

Figure 44. Middle layer 1 of the STM32WL5x/Ex reference layout for QFN

0000000000000



AN5407 - Rev 4 page 36/49

Figure 45. Middle layer 2 of the STM32WL5x/Ex reference layout for QFN

Figure 46. Bottom layer of the STM32WL5x/Ex reference layout for QFN

AN5407 - Rev 4 page 37/49

15 Documentation references

- Carr, Joseph J., and George Hippisley. Practical antenna handbook. New York, NY: McGraw-Hill/TAB Electronics, 2012. Print.
- Thierauf, Stephen C. High-speed circuit board signal integrity. Norwood, MA: Artech House, 2017.
- Hart, Bryan. Digital Signal Transmission: Line Circuit Technology. Boston, MA: Springer US, 1987.
- Parise, Brendon. A Practical Guide to RF and Mixed Technology Printed Circuit Board. Pleasanton, CA (USA). Optimum Design Associates, 2017, pp. 181-182.
- Li, Richard C. RF circuit design. Hoboken, New Jersey: John Wiley & Sons, Inc, 2012, pp. 328.
- Thierauf, Stephen C. High-speed circuit board signal integrity. Boston: Artech House, 2004.
- R.N. Simons: Coplanar Waveguide Circuits, Components, and Systems, Wiley-IEEE Press, 2001.
- Li Zhi, Wang Qiang and Shi Changsheng, "Application of guard traces with vias in the RF PCB layout,"
 2002 3rd International Symposium on Electromagnetic Compatibility, Beijing, China, 2002, pp. 771-774.
- Montrose, Mark I. Printed circuit board design techniques for EMC compliance: a handbook for designers. New York: IEEE Press, 2000.
- A. A. Oliner, "Equivalent Circuits for Discontinuities in Balanced Strip Transmission Line," in IRE Transactions on Microwave Theory and Techniques, vol. 3, no. 2, pp. 134-143, March 1955.
- R. Mehran, "Calculation of Microstrip Bends and Y-Junctions with Arbitrary Angle," in IEEE Transactions on Microwave Theory and Techniques, vol. 26, no. 6, pp. 400-405, Jun. 1978.
- I. Wolff, G. Kompa and R. Mehran, "Calculation method for microstrip discontinuities and T junctions," in Electronics Letters, vol. 8, no. 7, pp. 177-179, 6 April 1972.
- R. J. P. Douville and D. S. James, "Experimental study of symmetric microstrip bends and their compensation," IEEE Trans. Microwave Theory Tech., vol. MTT-26. pp. 175-182, Mar. 1978.
- R. Horton, "The Electrical Characterization of a Right-Angled Bend in Microstrip Line (Short Papers)," in IEEE Transactions on Microwave Theory and Techniques, vol. 21, no. 6, pp. 427-429, Jun. 1973.
- B. Easter, A. Gopinath and I. M. Stephenson, "Theoretical and experimental methods for evaluating discontinuities in microstrip," in Radio and Electronic Engineer, vol. 48, no. 1.2, pp. 73-84, January-February 1978.
- Shinichi Ikami and Akihisa Sakurai, "Practical analysis on 20H rule for PCB," 2008 Asia-Pacific Symposium on Electromagnetic Compatibility and 19th International Zurich Symposium on Electromagnetic Compatibility, Singapore, 2008, pp. 180-183.
- Xiaoning Ye et al., "EMI mitigation with multilayer power-bus stacks and via stitching of reference planes," in IEEE Transactions on Electromagnetic Compatibility, vol. 43, no. 4, pp. 538-548, Nov. 2001.
- M. I. Montrose, "Radiated emission far-field propagation with multiple ground stitch locations within a printed circuit board," 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, Beijing, 2010, pp. 297-300.
- A. Jaze, B. Archambeault and S. Connor, "EMI noise reduction between planes due to a signal via with a ground via at various distances," 2011 IEEE International Symposium on Electromagnetic Compatibility, Long Beach, CA, USA, 2011, pp. 167-172.
- C. L. Holloway and E. F. Kuester, "Closed-form expressions for the current density on the ground plane of a microstrip line, with application to ground plane loss," in IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 5, pp. 1204-1207, May 1995.
- Jun So Pak, Hyungsoo Kim, Joungho Kim and Heejae Lee, "PCB power/ground plane edge radiation excited by high-frequency clock," 2004 International Symposium on Electromagnetic Compatibility (IEEE Cat. No.04CH37559), Silicon Valley, CA, USA, 2004, pp. 197-202 vol.1.
- F. Gisin and Z. Pantic-Tanner, "Radiation from printed circuit board edge structures," 2001 IEEE EMC International Symposium. Symposium Record. International Symposium on Electromagnetic Compatibility (Cat. No.01CH37161), Montreal, Que., Canada, 2001, pp. 881-883 vol.2.
- Joungho Kim, Junso Pak, Jongbae Park and Hyungsoo Kim, "Noise generation, coupling, isolation, and EM radiation in high-speed package and PCB," 2005 IEEE International Symposium on Circuits and Systems, Kobe, 2005, pp. 5766-5769 Vol. 6.
- Mariscotti, Andrea. RF and Microwave Measurements: Device Characterization, Signal Integrity and Spectrum Analysis. Chiasso (Switzerland: ASTM Analysis, Simulation, Test and Measurement Sagl, 2015, pp. 299-392. Print.
- Advanced Design System 2020, Keysight Technologies.

AN5407 - Rev 4 page 38/49

16 Conclusion

Some care must be taken when designing an RF board. This application note presents guidelines for decoupling capacitors, general RF rules, EMC issue reduction, and controlled impedances with predefined PCB stack-up layers. The user must adapt these guidelines to the application.

Those guidelines must be followed to ensure the correct behavior of the application, with high performance for the RF part of the STM32WL5x/Ex board.

AN5407 - Rev 4 page 39/49

Appendix A Stack-up examples

Some stack-up examples to obtain 50 Ω for Tx lines and 100 Ω for Rx lines from a typical stack-up for the BGA package, as shown in the figure below.

Solder mask $h_3

\downarrow h_1

\downarrow h_2

CORE

Middle Layer 1

PREPREG 1

Middle Layer 2

Bottom Layer$

Figure 47. Typical stack-up for BGA package

AN5407 - Rev 4 page 40/49

Case 1: typical stack-up for BGA package with PCB total thickness = 1.04 mm
 Consider the configuration detailed in the table below.

Table 13. Case 1: PCB total thickness = 1.04 mm

Dielectric materials Metal layers

Dielectric materials				Metal layers		
Element	Material	Nominal thickness h _x (µm)	ε _r	Layer	Nominal thickness t (μm)	
Solder mask (h ₃)	Solder resist	20	3.7	Тор	35	
Prepreg 1 (h ₁)	1 x 2116	70	3.5	Middle 1 and middle 2	35	
Core (h ₂)	FR4	710	5.0	Bottom	35	

The Tx and Rx lines detailed in the figures below can then be built from this configuration.

Figure 48. Tx 50 ohms RF tracks (case 1, PCB total = 1.04 mm)

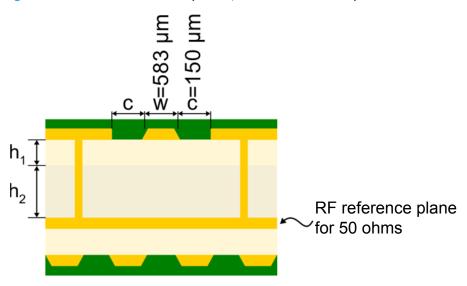
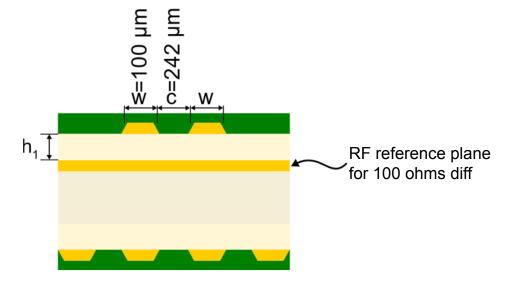



Figure 49. Rx 100 ohms differential pair (case 1, PCB total = 1.04 mm)

AN5407 - Rev 4 page 41/49

Case 2: typical stack-up for BGA package with PCB total thickness = 1.10 mm
 Consider the configuration detailed in the table below.

Table 14. Case 2: PCB total thickness = 1.10 mm

Dielectric materials			Metal layers		
Element	Material	Nominal thickness h _x (μm)	ε _r	Layer	Nominal thickness t (μm)
Solder mask (h ₃)	solder resist	20	3.3	Тор	35
Prepreg 1 (h ₁)	1 x 2116	108	3.8	Middle 1 and middle 2	35
Core (h ₂)	FR4	710	5.0	Bottom	35

The Tx and Rx lines detailed in the figures below can then be built from this configuration.

Figure 50. Tx 50 Ω RF tracks (case 2, PCB total = 1.10 mm)

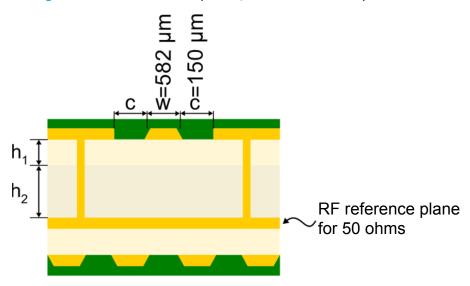
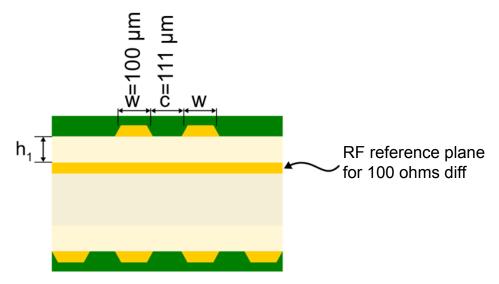



Figure 51. Rx 100 Ω differential pair (case 2, PCB total = 1.10 mm)

AN5407 - Rev 4 page 42/49

Case 3: typical stack-up for BGA package with PCB total thickness = 1.60 mm
 Consider the configuration detailed in the table below.

Table 15. Case 3: PCB total thickness = 1.60 mm

Dielectric materials			Metal layers		
Element	Material	Nominal thickness h _x (μm)	ε _r	Layer	Nominal thickness t (µm)
Solder mask (h ₃)	solder resist	20	3.5	Тор	35
Prepreg 1 (h ₁)	1 x 1080	76	4.18	Middle 1 and 2	35
Core (h ₂)	7 x 7628	1268	4.74	Bottom	35

The Tx and Rx lines details in the figures below can then be built from this configuration.

Figure 52. Tx 50 Ω RF tracks (case 3, PCB total = 1.60 mm)

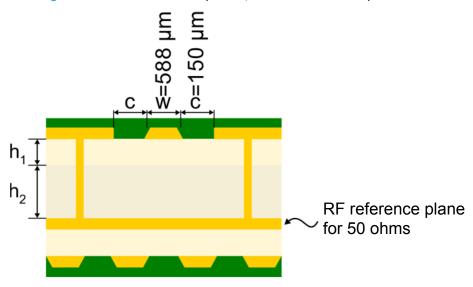
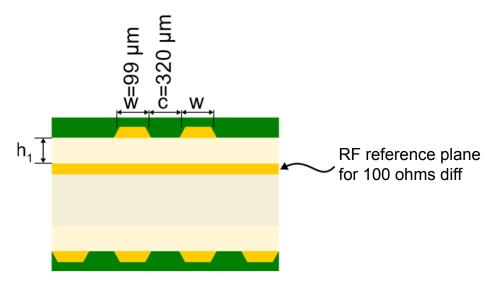



Figure 53. Rx 100 Ω differential pair (case 3, PCB total = 1.60 mm)

AN5407 - Rev 4 page 43/49

Important:

The longer the distance between the source and the antenna, the greater the potential for loss of energy in the RF transmission line. As a design rule, RF transmission lines must be as short as possible and without discontinuities.

AN5407 - Rev 4 page 44/49

Revision history

Table 16. Document revision history

Date	Version	Changes
6-Mar-2020	1	Initial release.
10-Jul-2020	2	Removed section 3.3 Metal cutout for impedance control.
15-Apr-2022	3	Updated: Section 2 Characteristic and controlled impedance Section 4.1 Capacitors Section 5 Via stitching and shielding Section 6 RF return current path Section 12 Decoupling capacitors Section 14 STM32WL5x/Ex reference layout Added: Section 7 Cutout Section 8 Slots and high-frequency currents Section 11.5 Shield apertures Section 11.7 Via fencing Section 13 TCXO and XO considerations for PCB implementation with STM32WL5x/Ex
29-Aug-2023	4	Replaced STM32WL Series with STM32WL5x/Ex in the following sections: Section Introduction Section 1 Main rules summary Section 2 Characteristic and controlled impedance Section 11.1 RFO harmonics Section 12 Decoupling capacitors Section 13 TCXO and XO considerations for PCB implementation with STM32WL5x/Ex Section 14 STM32WL5x/Ex reference layout Section 16 Conclusion Title updated.

AN5407 - Rev 4 page 45/49

Contents

1	Main rules summary	2
2	Characteristic and controlled impedance	3
3	RF transmission line	8
	3.1 Stack-up board	
	3.2 Stack-ups for Tx 50 Ω and Rx 100 Ω	8
4	Surface mounted components with RF signals	9
	4.1 Capacitors	9
	4.2 Inductors	
5	Via stitching and shielding	12
6	RF return current path	13
7	Cutout	15
8	Slots and high-frequency currents	
9	Discontinuities to avoid in transmission lines	18
10	Bends with RF lines	22
11	Minimize unintentional radiation	24
	11.1 RFO harmonics	
	11.2 High-frequency signals on board outline	25
	11.3 Ground flooding	25
	11.4 Metal shield	26
	11.5 Shield apertures	26
	11.6 Power planes and routing	27
	11.7 Via fencing	28
12	Decoupling capacitors	29
13	TCXO and XO considerations for PCB implementation with STM32V	VL5x/Ex31
14	STM32WL5x/Ex reference layout	33
15	Documentation references	38
16	6 Conclusion	39
App	ppendix A Stack-up examples	
	evision history	
	st of tables	
	st of figures	

List of tables

Table 1.	Characteristic impedance and impact on RF measures (load impedance = 50Ω)	. 6
Table 2.	Reducing parasitic inductance of routed capacitors	. 9
Table 3.	Inductor pads with RF signals	11
Table 4.	Return paths	13
Table 5.	Layout discontinuities	18
Table 6.	Track transitions	19
Table 7.	Test points	19
Table 8.	Pad component width	20
Table 9.	RF switch transitions	20
Table 10.	Package pad to RF line transitions	21
Table 11.	Guidelines for bends in RF lines	23
Table 12.	Return currents for decoupling capacitors	29
Table 13.	Case 1: PCB total thickness = 1.04 mm	41
Table 14.	Case 2: PCB total thickness = 1.10 mm	42
Table 15.	Case 3: PCB total thickness = 1.60 mm	43
Table 16.	Document revision history	45

List of figures

Figure 1.	Equivalent circuit of transmission line	
Figure 2.	Example of a GCPW in a 2-layer PCB	
Figure 3.	Example of a transmission line type GCPW on PCB	
Figure 4.	Stack-up example for 4-layer PCB	
Figure 5.	Characteristic impedance versus width variation	
Figure 6.	Characteristic impedance versus clearance variation	
Figure 7.	Histograms from statistical analysis for \pm 10% process variation of dimensional variables (n = 1000) from ADS.	. 6
Figure 8.	Example of schematic with controlled impedance identified	
Figure 9.	Typical 4-layer PCB stack-up with three different types of vias	. 8
Figure 10.	Example of capacitors on RF lines	10
Figure 11.	Thermal reliefs	10
Figure 12.	Spacing between vias around GCPW	12
Figure 13.	Slots on return path	
Figure 14.	Clean return path example for RF currents	14
Figure 15.	PCB cutout for 50 Ω impedance	15
Figure 16.	Slots and high-frequency currents	16
Figure 17.	Slot reduction with track	16
Figure 18.	Slot reduction through spacing vias	17
Figure 19.	Effect of slots in PCB through electromagnetic simulation	17
Figure 20.	90° bend example	22
Figure 21.	Ideal case: straight line	22
Figure 22.	Typical circuit for RFO harmonics	24
Figure 23.	EM radiation generated by HF signals	25
Figure 24.	How to mitigate unintentional EM radiation	
Figure 25.	PCB example with or without ground flooding	25
Figure 26.	PCB example with or without metal shield	
Figure 27.	Aperture shield effect for electromagnetic emissions	26
Figure 28.	GND and power planes	27
Figure 29.	GND vias on power plane to avoid floating GND	
Figure 30.	Routing different power domains to avoid noise problems	28
Figure 31.	Effect of stitching vias in PCB edge to reduce emission	
Figure 32.	Placement example of decoupling capacitors	29
Figure 33.	High-frequency equivalent model of a capacitor	29
Figure 34.	Decoupling capacitors in VDDPA	30
Figure 35.	Example of a thermal barrier	31
Figure 36.	Example of routing a crystal	32
Figure 37.	All layers of the STM32WL5x/Ex reference layout for BGA	33
Figure 38.	Top layer of the STM32WL5x/Ex reference layout for BGA	33
Figure 39.	Middle layer 1 of the STM32WL5x/Ex reference layout for BGA	34
Figure 40.	Middle layer 2 of theSTM32WL5x/Ex reference layout for BGA	34
Figure 41.	Bottom layer of the STM32WL5x/Ex reference layout for BGA	35
Figure 42.	All layers of the STM32WL5x/Ex reference layout for QFN	35
Figure 43.	Top layer of the STM32WL5x/Ex reference layout for QFN	36
Figure 44.	Middle layer 1 of the STM32WL5x/Ex reference layout for QFN	
Figure 45.	Middle layer 2 of the STM32WL5x/Ex reference layout for QFN	37
Figure 46.	Bottom layer of the STM32WL5x/Ex reference layout for QFN	
Figure 47.	Typical stack-up for BGA package	
Figure 48.	Tx 50 ohms RF tracks (case 1, PCB total = 1.04 mm)	
Figure 49.	Rx 100 ohms differential pair (case 1, PCB total = 1.04 mm)	
Figure 50.	Tx 50 Ω RF tracks (case 2, PCB total = 1.10 mm)	
Figure 51.	Rx 100 Ω differential pair (case 2, PCB total = 1.10 mm)	
Figure 52.	Tx 50 Ω RF tracks (case 3, PCB total = 1.60 mm)	
Figure 53.	Rx 100 Ω differential pair (case 3, PCB total = 1.60 mm)	

AN5407 - Rev 4 page 48/49

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

AN5407 - Rev 4 page 49/49