
Introduction
This document gives an overview of the Dynamic-concurrent mode Bluetooth® Low Energy (BLE) / Zigbee® on STM32WB
Series microcontrollers.

The STM32WB Series microcontrollers support Bluetooth® 5.0 and IEEE 802.15.4 wireless standards.

Some use cases require a Dynamic-concurrent mode, with the ability to control the Zigbee® or Thread® network through a
Bluetooth® Low Energy device. The dynamic device must be able to handle both protocols at any one time, using a radio time
sharing scheme.

Getting started with Dynamic-concurrent mode BLE / Zigbee® on
STM32WB Series microcontrollers

AN5613

Application note

AN5613 - Rev 1 - June 2021
For further information contact your local STMicroelectronics sales office.

www.st.com

https://www.st.com/en/microcontrollers-microprocessors/stm32wb-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32wb-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32wb-series.html

1 General information

This document applies to the STM32WB Series dual-core Arm®-based Series microprocesor.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

1.1 Glossary

Table 1. Glossary

Acronym Defintion

API Application programming interface

APS Application support sub-layer

BDB Base device behavior

BLE Bluetooth® Low Energy

CI Connection interval

GAP Generic application profile

GATT Generic attribute profile

HAL Hardware abstraction layer

IAS Intruder alarm system

IoT Internet of things

IPCC Inter-processor communication controller

MAC Media access control

NVM Non volatile memory

PAN Personal area network

RTSM Radio Time Sharing Manager

SED Sleepy end device

ZCL Zigbee® cluster library

ZDO Zigbee® device object

AN5613
General information

AN5613 - Rev 1 page 2/45

https://www.st.com/en/microcontrollers-microprocessors/stm32wb-series.html

1.2 Reference documents

Table 2. Reference documents

Reference Document name

[1] Building Wireless Application with STM32WB microcontroller series (AN5289)

[2] Zigbee® persistent data management non-volatile memory for STM32WB Series (AN5492)

[3] Creating Manufacture Specific Zigbee® Clusters for STM32WB (AN5491)

[4] Using Zigbee® Cluster Templates for STM32WB (AN5498)

[5] ZSDK API for Zigbee® on STM32WB (AN5500)

[6] STM32WB Zigbee® Getting Started (AN5506)

[7] STM32CubeWB Nucleo demonstration firmware (UM2551)

[8] STM32WB Bluetooth® Low Energy wireless Interface (AN5270)

[9] stm32wb-ble-stack-programming-guidelines-stmicroelectronics.pdf (PM071)

AN5613
Reference documents

AN5613 - Rev 1 page 3/45

2 Dynamic mode introduction

STM32WB Series microcontrollers are dual-core, multi-protocol wireless microcontrollers based on an
Arm® Cortex®-M4 core running at 64 MHz (application processor) and an Arm® Cortex®-M0+ core at 32 MHz
(network processor),
This microcontrollers supports BLE network, multiple profiles, and has flexibility to integrate proprietary BLE
stacks.
The generic IEEE 802.15.4 MAC layer ensures that the STM32WB Series is able to run proprietary protocols or
stacks including Zigbee® and Thread® low-power mesh networking protocols, giving designers even more options
for connecting devices to the internet of things (IoT).
To support these features, in the internal architecture, each protocol (BLE or 802.15.4) shares the same radio
peripheral as illustrated in the figure below. The radio peripheral is dynamically configured in either 802.15.4
mode or BLE mode at any one time.

Figure 1. Radio peripheral

AN5613
Dynamic mode introduction

AN5613 - Rev 1 page 4/45

https://www.st.com/en/microcontrollers-microprocessors/stm32wb-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32wb-series.html

2.1 Dynamic mode use case
Some use cases require a Dynamic mode, with the ability to control their Zigbee® or Thread® network through a
BLE device and thus require a dynamic device able to handle both protocols at any one time, using a radio time
sharing scheme.

Figure 2. Dynamic mode use case

AN5613
Dynamic mode use case

AN5613 - Rev 1 page 5/45

3 RTSM architecture

3.1 RTSM block diagram
The RTSM implementation enables radio switching between BLE and 802.15.4, thus BLE and Zigbee® stacks are
able to run in parallel on the same radio. The implementation is illustrated in the diagram below.
The Zigbee® and BLE stacks are described in Section 4 .

Figure 3. RTSM block diagram

Radio LLD

RTSM
- Manage Radio

switching
- Timing constraints
- BLE and 15.4 Radio

Context backup

Event Notify
Configure

MAC

APS

NWK

ZC
L

ZD
O

Zigbee Stack

Simple MAC

BLE activity
Yes No

Event Notify

Configure

BLE Stack

SWITCH radio
BLE / 802.15.4

cmd_pipe+Store
Cmd

Replay Cmd when BLE over

802.15.4 LLD

3.2 RTSM description
The RTSM is implemented on the Cortex®-M0+ to enable radio switching between BLE and 802.15.4, thus
allowing to run the BLE and Zigbee® stacks in parallel using the same radio.
• On the Zigbee® side, the RTSM is integrated at SimpleMAC level, the layer which interfaces between MAC

layer and the 802.15.4 / radio LLD.
• On the BLE side, the RTSM is integrated between the link layer and radio LLD.

3.2.1 RTSM features
The RTSM implements the Dynamic mode key features:
• Manages radio switching between BLE and 802.15.4 modes
• Manages the tight timing constraints required by a BLE connection, specifically the connection interval, in

order to keep connection alive.
• Backs up and restores the radio context associated with BLE and 802.15.4
• Gives full priority to BLE over 802.15.4 in case BLE needs high bandwidth.

AN5613
RTSM architecture

AN5613 - Rev 1 page 6/45

3.2.2 RTSM scheduling
The RTSM behavior is scheduled by the BLE connection:
• BLE programs an RTSM interrupt at each connection interval (1 ms before)

– This interrupt is managed by a “CompC SfTimer” interrupt
– When getting this interrupt, RTSM saves the current 802.15.4 radio context and SPI registers, then

switches to a BLE radio context
– BLE is now owner of the radio

• At the end of the BLE connection event, BLE notifies to RTSM the end of connection event and programs
the time of next connection interval
– The RTSM programs accordingly the next CompC interrupt
– The RTSM switches back radio and SPI registers to 802.15.4 context
– The 802.15.4 is now owner of the radio until the next RTSM interrupt

• The RTSM also manages the “SfTimer” wraparound which occurs every 3 minutes

3.2.3 Cmd_pipe module
Together with the RTSM module, a new module called cmd_pipe (see figure below) has been implemented to
manage the MAC to radio interface depending on the radio state:

Figure 4. Cmd_pipe module

802.15.4 LLD Radio LLD

RTSM
- Manage Radio switching
- Timing constraints
- BLE and 15.4 Radio Context

backup

Event Notify

Configure

MAC

Simple MAC

BLE activity
Yes No

Event Notify

Configure

SWITCH radio
BLE / 802.15.4

cmd_pipe+
Store
Cmd

Replay Cmd when BLE over

• MAC commands are either sent directly to the 802.15.4 controller (through LLD) or sent to the radio
peripheral. "cmd_pipe" only deals with “MAC to radio” commands.

• If the 802.15.4 (Zigbee® mode) has ownership of the radio, all “MAC to radio” commands are issued directly
to the radio.

• If the BLE has ownership of the radio, all “MAC to radio” commands are temporarily stored in the cmd_pipe
buffer, waiting for the radio to be allocated once again to 802.15.4. Once the ownership of the radio is
given to the 802.15.4, the commands are safely sent to the radio. Other MAC commands which do not deal
directly with the radio function are normally executed.

• Most of these commands are configuration commands, usually used during startup of the Zigbee® stack
(SetChannel, SetPower).

AN5613
RTSM description

AN5613 - Rev 1 page 7/45

• The commands available at runtime are defined in the table below.

Table 3. Zigbee®runtime commands

Command Execution details

Transmit Executed when the radio is available to the 802.15.4

Sleep Executed when the radio is available to the 802.15.4

Wake Executed when the radio is available to the 802.15.4

Energy detection This command returns an error code if radio not available

• Some commands may return an error code, while others do not:
– Non-void commands return an ERROR code if radio is not available.
– In the specific case of transmit commands, no error is returned, Tx is executed when the radio is

available again.
• The current size of the cmd_pipe allows for 30 pending commands.

– During the debug phase, a maximum depth of eight pending commands has been seen in the cmd-
pipe , mainly during Zigbee® initialization and join procedure.

– In case of a cmd_pipe overflow, the whole cmd_pipe is flushed and restarted, and all pending
commands are lost.

3.2.4 BLE & Zigbee® stack behavior in Dynamic mode
The BLE and Zigbee® stacks are not aware of the radio switching mechanism, and behave as though the radio
was fully dedicated to their own stack.
The BLE has tighter time constraints than Zigbee®. Therefore the BLE must be given a higher priority on the radio
access than 802.15.4 based protocols.

BLE stack

On the BLE side, the connection event must be precisely scheduled exactly at the expected connection interval
(CI). The RTSM takes care of this precise timing. Both the connection interval and connection event are defined in
the following list and illustrated in the figure below:

Figure 5. BLE connection events and connection intervals

• Connection interval: time between two connection events (from 7,5 ms to 4 s).
• Connection events: consecutive Rx/Tx switch between master and slave in a connection interval.
• The “Radio Idle” slots defined above is assigned by RTSM to 802.15.4, allowing Zigbee® operation.

AN5613
RTSM description

AN5613 - Rev 1 page 8/45

Zigbee® stack

On Zigbee® side, Tx and Rx occur at any time depending on the local and remote Zigbee® device needs.
• For Zigbee®/MAC Tx requests:

– If the radio is granted to the 802.15.4, it transmit as usual.
– If the radio is granted to BLE, all radio commands (including Tx) are stored in the cmd_pipe.
– When the radio is back to 802.15.4, all pending commands (including Tx) are sent.

• For Zigbee®/MAC Rx events:
– All Rx events are managed under Rx interrupt. Such an interrupt is disabled while radio is in BLE

mode. Thanks to the CSMA/CA retry mechanism (up to 3 retries), these Rx events are rescheduled
few milliseconds later.

– Internal investigations have shown that the max time without radio (assigned to BLE) must be less than
16 ms to prevent packet loss.

Figure 6. Zigbee® Rx/Tx behavior

AN5613
RTSM description

AN5613 - Rev 1 page 9/45

4 Dynamic NVM feature

4.1 Dynamic NVM overview general overview
The BLE/Zigbee® Dynamic mode also provides NVM features. This mode is able to save and restore the Zigbee®

state of a dynamic device in Flash. The NVM features support all primary Flash operations (read/write/erase)
while the BLE is running.
To maintain the integrity of the BLE behavior when a Flash operation occurs (for example when there is a write
or an erase operation), the Cortex®-M4 is able to perform two commands on the Cortex®-M0 (hosting the BLE/
Zigbee® stack & RTSM). Those commands are directly handled by the RTSM. This is due to the fact that the
Flash is blocked, and no fetch instruction is possible and is defined in the following list:
• Request the amount of time (µs) available before the next BLE event. If in BLE mode, time is returned as ‘0’.
• Being notified when the next 802.15.4 event is to take place.

4.2 BLE/Zigbee® Dynamic mode Flash operation
The following list outlines the behavior of the Flash operation:
• A Flash write lasts 5 µs
• A Flash erase operation lasts 20 ms for a whole page.

The Cortex®-M4 software organizes the Flash operation sequences based on these IPCC commands. A Dynamic
mode Flash driver is available with the BLE/Zigbee® dynamic NVM application (see Section 8.4.4).
For an illustration of the Dynamic Flash operation, see the figure below.

Figure 7. Flash operation process illustration

A
R

M
 M

4
A

R
M

 M
0+

Cortex®-M0 Firmware

Application

1.1 Cortex®-M4
get next BLE
event relative

time

IPCC

2. If not enough time, wait
until next 802.15.4 event

begins

1.2 Cortex®-M0 returns
available time or 0 (in

BLE mode)

2.1 Inform Cortex®-M0 we
want to be notified at the

next 802.15.4 event.

2.2 802.15.4 evt
notification

AN5613
Dynamic NVM feature

AN5613 - Rev 1 page 10/45

5 Zigbee® architecture

5.1 Zigbee® overview
Zigbee® is an IEEE 802.15.4 based communication protocol used to create wireless personal area networks
(WPAN). The aim is to provide a simple networking layer and standard application profiles that are used to create
interoperable solutions, with low-power and low-bandwidth constraint.
It concerns, among other things:
• Home automation
• Industrial control systems
• Building automation, HVAC control
• Medical data collection & monitoring
• Wireless sensor networks.

The throughput is 250 kbps at a frequency of 2.4 GHz with a typical range of 10-20 meters.

5.2 Zigbee® stack layers
As described above, Zigbee® is built on top of the IEEE 802.15.4 standard interface. Zigbee® provides routing
and multi-hop functions to the packet-based radio protocol. It is built on top of two layers specified by 802.15.4:
the physical (PHY) and MAC layers.
The figure below describes the main components of a Zigbee® stack (green blocks), and the way it interacts with
IEEE 802.15.4 and general application layer.

Figure 8. Zigbee® stack description

802_15_4 radio

802.15.4 MAC

802.15.4 LLD

Network layer

Application support sublayer (APS)

Base device behavior (BDB)

Application objects

Standard Zigbee cluster library (ZCL)
Zigbee
device
object
(ZDO)

PHY layer

Application layer

Application
profile

Application
framework

Network layer

MAC layer

Application

APPLI

Zigbee

802.15.4

Application layer

Zigbee protocol layer

802.15.2 driver layer

AN5613
Zigbee® architecture

AN5613 - Rev 1 page 11/45

6 BLE architecture

6.1 BLE overview
The STM32WB Series BLE architecture separates the BLE profiles and application; running the application on the
Cortex®-M4, with the BLE stack residing in the Cortex®-M0+.
The BLE stack handles the link layer, the generic attribute profile (GATT) and generic access profile (GAP) layers.
The link layer directly interfaces with the physical 2.4 GHz radio.
The theoretical BLE 5.0 mode throughput value of 1 or 2 Mbps is reached based on the chosen configuration and
a typical range of 10 meters.

6.2 BLE stack layers
The application is managed by the Cortex®-M4 core as follows:
• Collects & computes the data to be transferred over BLE.
• To transfer data, using the BLE stack services and capabilities.

The BLE stack is managed by the Cortex®-M0+ core as follows:
• The communication with the application layer takes place over the GATT profile
• Implements the LE controller & LE host through HCI protocol
• The "Link Layer" manages all radio PHY layer interaction

Figure 9. BLE stack description

A
R

M
 C

M
4

A
R

M
 C

M
0+

B
LE

 S
TA

C
K

Application
Application layer

IPCC

Profiles

GAP

Services

GATT

ACI interface

SRAM2

BLE stack

ATT SM

L2CAP

Host control interface

Link layer

Radio PHY

AN5613
BLE architecture

AN5613 - Rev 1 page 12/45

https://www.st.com/en/microcontrollers-microprocessors/stm32wb-series.html

7 BLE/ Zigbee® Dynamic mode on STM32WB Series

7.1 Architecture overview
The figure below gives an overview of the overall architecture. It shows in particular, the split between the
Cortex®-M4 and the Cortex®-M0 cores. All the code running on the Cortex®-M0 is delivered as a binary library
(refer to Section 7.2 for more details).
The customer has only access to the Cortex®-M4 core and sees the firmware running on the -Cortex®-M0 core
as a black box. All the intercommunication between the Cortex®-M4 and Cortex®-M0 is hidden by the framework.
Dedicated IPCC channels are allocated for Zigbee® and BLE.

Figure 10. BLE/Zigbee® Dynamic mode architecture

A
R

M
 M

4
A

R
M

 M
0+

GATT,GAP
SMP

HostCtl interface

Link layer

BLE LLD

BLE Stack

L2CAP

ATT

BLE / 802.15.4 RADIO

Zi
gb

ee
 S

ta
ck

M0 Firmware

ACI Interface

Profiles Services

In
fr

as
tr

uc
tu

reApplication

802.15.4 MAC

Application Support
Sublayer

Network layer

802.15.4 LLD

Zigbee device
object (ZDO)

Core ZCL

Zigbee Application Framework

Application objects

Base device behavior

Zigbee Cluster Library (ZCL)
BLE Services & Profiles

RTSM

SWITCH radio

• The Zigbee® stack runs on top of the 802.15.4 MAC layer which itself uses services provided by the
802.15.4 LLD (low level driver) in charge of controlling the radio.

• The BLE stack runs on top of the BLE LLD which controls the radio.
• The RTSM interfaces with both stacks and manages the switch between both radios.

AN5613
BLE/ Zigbee® Dynamic mode on STM32WB Series

AN5613 - Rev 1 page 13/45

7.2 Dynamic firmware supported
In Dynamic mode, both BLE and Zigbee® stacks run in parallel, enabling the simultaneous use of BLE and
Zigbee® applications.
The Dynamic mode firmware includes both BLE and Zigbee® stacks:
• The BLE stack is BLE 5.0 certified.
• Two flavors of the Zigbee® stacks are supported on the STM32WB Series device, FFD (full feature device)

and RFD (reduced feature device). These stacks are Zigbee® PRO 2017 (revision 22) certified and are
detailed in the table below.

Table 4. Stack firmware association

Stacks supported Firmware associated

Zigbee® FFD + Bluetooth® Low Energy 5.0 stm32wb5x_BLE_ZigBee_FFD_dynamic_fw.bin
Zigbee® RFD + Bluetooth® Low Energy 5.0 stm32wb5x_BLE_ZigBee_RFD_dynamic_fw.bin

• An FFD is able to take any role in the network which are:
– a router
– a coordinator
– an end device.

• An RFD only supports the end device role. An RFD has a smaller footprint compared to an FFD. When
building an application acting as a ‘sleepy end device’, in order to reach optimal low power consumption, the
application must be built using the Zigbee® RFD stack.

These binaries are used for Dynamic concurrent mode applications. Examples of such applications are provided
in:
Projects\P-NUCLEO-WB55.Nucleo\Applications\BLE_ZigBee directory.

Important:
Before running any BLE/Zigbee® application on STM32WB Series, check the proper firmware is downloaded on the Cortex®-
M0. If it is not the case, use STM32CubeProgrammer (STM32CubeProg) to load the appropriate binary.

All available BLE/Zigbee® binaries are located under: /Projects/STM32WB_Copro_Wireless_Binaries/STM32WB5x.
Refer to /Projects/STM32WB_Copro_Wireless_Binaries/STM32WB5x/Release_Notes.html for the detailed
procedure on how to change the wireless coprocessor binary.

7.3 Zigbee® clusters supported
The Zigbee® ecosystem available on STM32WB Series supports Zigbee® 3.0.
Zigbee® 3.0 clusters are ZCL 7 compliant.
As a matter of fact, it includes base device behavior (BDB), Zigbee® Green Power and several specific ZCL
clusters as listed in the table below:

Table 5. Supported Zigbee® clusters

Nb Cluster ID Cluster name

1 0x0000 Basic cluster

2 0x0001 Power configuration cluster

3 0x0003 Identify cluster

4 0x0004 Groups cluster

5 0x0005 Scenes cluster

6 0x0006 On/Off cluster

7 0x0008 Level control

AN5613
Dynamic firmware supported

AN5613 - Rev 1 page 14/45

https://www.st.com/en/microcontrollers-microprocessors/stm32wb-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32wb-series.html
https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5613
https://www.st.com/en/microcontrollers-microprocessors/stm32wb-series.html

Nb Cluster ID Cluster name

8 0x000a Time cluster

9 0x0019 Over-The-Air upgrade clustere

10 0x0020 Poll control cluster

11 0x0021 Green power proxy

12 0x0102 Window Covering cluster

13 0x0202 Fan control cluster

14 0x0204 Thermostat user interface cluster

15 0x0300 Color control cluster

16 0x0301 Ballast configuration cluster

17 0x0400 Illuminance measurement cluster

18 0x0402 Temperature measurement cluster

19 0x0406 Occupancy sensing cluster

20 0x0502 IAS WD cluster

21 0x0b05 Diagnostics cluster

22 0x1000 Touchlink cluster

23 0x0002 Device temperature configuration cluster

24 0x0007 On/Off switch configuration cluster

25 0x0009 Alarms cluster

26 0x000b RSSI location cluster

27 0x0015 Commissioning cluster

28 0x001a Power profile cluster

29 0x0024 Nearest gateway cluster

30 0x0101 Door lock cluster

31 0x0200 Pump configuration and control cluster

32 0x0201 Thermostat cluster

33 0x0203 Dehumidification Control cluster

34 0x0401 Illuminance level sensing cluster

35 0x0403 Pressure measurement cluster

36 0x0405 Relative humidity measurement

37 0x0500 IAS Zone cluster

38 0x0501 IAS ACE cluster

39 0x0700 Price cluster

40 0x0701 Demand response and load control cluster

41 0x0702 Metering cluster

42 0x0703 Messaging cluster

43 0x0704 Smart energy tunneling (complex metering)

44 0x0800 Key establishment

45 0x0904 Voice over Zigbee® cluster

46 0x0b01 Meter identification cluster

47 0x0b04 Electrical measurement cluster

AN5613
Zigbee® clusters supported

AN5613 - Rev 1 page 15/45

• All these 47 clusters are available through the STM32_WPAN middleware. This middleware is common to
BLE and Thread®. For specific needs, a customer may create a ‘proprietary’ cluster if needed. Refer to [3]
for more details.

• The APIs relative to these clusters are available in the following directory:
\Middlewares\ST\STM32_WPAN\Zigbee\stack\include.

• By default, all clusters are delivered as a single library. Nevertheless, it is possible to have access to the
source code on request.

AN5613
Zigbee® clusters supported

AN5613 - Rev 1 page 16/45

8 STM32WB Series dynamic application design

8.1 BLE/Zigbee® dynamic application framework
All projects are built using the same framework. The main App features are defined under:
Projects\Board_X\Applications\BLE_ZigBee\BLE_ZigBee_Dyn\STM32_WPAN\App.

• the Zigbee® use case is defined and implemented in the app_zigbee.c file.
• the BLE use case is defined and implemented in the app_ble.c file.
• the BLE P2P sever is defined and implemented in the p2p_server_app.c file.

All the other files present in the application projects are mainly used for the global infrastructure management
(Interrupt management, IPCC wrapper, system startup and configuration, and so on)

Figure 11. BLE/Zigbee® dynamic application

Module managing the ZigBee use case.
The stack and the clusters are controlled

from this file

Entry point of the application

Contains generic infrastructure services
(startup, low power, event mgt, and so on)

Interrupt handler

Application configuration file:
UART setup, Low-power mode setup, and

so on

Readme explaining how to run the application

IAR project setup (including scatter file)

Module managing the BLE use case,
the stack and main BLE behavior

Module managing the BLE P2P server

8.2 Zigbee® application framework
For more details about the Zigbee® application framework and architecture, refer to [6].

AN5613
STM32WB Series dynamic application design

AN5613 - Rev 1 page 17/45

8.3 BLE application architecture
For more details about the BLE application architecture, refer to [1].

8.4 Dynamic applications available
The following four dynamic applications have been implemented:
• BLE/Zigbee dynamic application
• BLE/Zigbee dynamic SED application
• BLE/Zigbee dynamic BLE throughput application
• BLE/Zigbee dynamic NVM application

8.4.1 BLE/Zigbee® dynamic application
This application illustrates the simultaneous BLE and Zigbee® connections on the same device, with a BLE P2P
app execution and a Zigbee® toggle On/Off application running simultaneously on the same device.

Figure 12. BLE/Zigbee® dynamic application illustration

BLE App
Dynamic mode

ZB/BLE App ZB App

BLE P2P App ZB On/OFF
Toggle

ac b

8.4.2 BLE/Zigbee® dynamic SED application
Same as above, but optimized for SED devices (sleepy end devices) and Low-power mode.

8.4.3 BLE/Zigbee® dynamic BLE throughput application
The BLE throughput application has been ported to the dynamic environment, to check the BLE/Zigbee®

coexistence when using a high BLE bandwidth.

Figure 13. BLE/Zigbee® dynamic BLE throughput application illustration

BLE App
Dynamic mode

ZB/BLE App ZB App

BLE data
throughput

ZB On/OFF
Toggle

ac b

AN5613
BLE application architecture

AN5613 - Rev 1 page 18/45

8.4.4 BLE/Zigbee® dynamic NVM application
This application illustrates the simultaneous BLE and Zigbee® connections on the same device, with a BLE P2P
application execution and a Zigbee® toggle On/Off application running simultaneously on the same device.
Persistent data is used on Zigbee® to save/restore the Zigbee® state while BLE is running.
This is illustrated in Figure 12.

8.5 BLE/Zigbee® dynamic application

8.5.1 Firmware & software requirements
In order to run the BLE/Zigbee® dynamic application, the following binaries and/or software applications must be
installed as listed in the table below:

Table 6. Device firmware specification

Role ID Device Cortex®-M0 firmware / Cortex®-M4 application

Zigbee®

coordinator
(a) Nucleo board

Cortex®-M0 stm32wb5x_ZigBee_FFD_fw.bin
Cortex®-M4 ZigBee_OnOff_Coord.bin

Dynamic device (b) Nucleo board
Cortex®-M0 stm32wb5x_BLE_ZigBee_FFD_dynamic_fw.bin
Cortex®-M4 ble_zigbee_Dyn.bin

BLE device (c)

Smartphone
(Android™/iOS™)

"ST BLE Sensor" phone application, available on App Store and Google Play

Nucleo board
Cortex®-M0 stm32wb55xx_ble_full_host_stack_cut2.1.bin
Cortex®-M4 BLE_p2pClient.out

8.5.2 Dynamic application description
The main components of the BLE/Zigbee® dynamic application illustrated in the figure below are the following:
• A Zigbee® coordinator (a) running the On/Off cluster server.
• A BLE/Zigbee® Dynamic device (b) configured as a Zigbee® router running the On/Off cluster client, and a

BLE peripheral running a P2P server app.
• A BLE device (c) running the P2P client app 7.

AN5613
BLE/Zigbee® dynamic application

AN5613 - Rev 1 page 19/45

Figure 14. Dynamic application overview

GATT server
(P2P_STM)

GATT client
(P2P_STM)

On / off cluster
server

On / off cluster
client

Zigbee CoordinatorZigbee
routerBLE Central BLE Peripheral

BLE / Zigbee Dynamic device

ST BLE sensor
application Zigbee_OnOff_Server_CoordBLE_ZigBee_Dyn

(a)(b)(c)

8.5.3 Running dynamic application
This Demo illustrates the simultaneous BLE and Zigbee connections, with the red led toggling on Dynamic device
(b), reflecting BLE activity, and the RED LED toggling on the Zigbee® coordinator (a), reflecting Zigbee® activity.
The Dynamic device (b) starts with both BLE and Zigbee® modes activated.
The BLE example implements point-to-point communication using P2P component.

Figure 15. Dynamic application behavior

(c) (b) (a)

1. The blue LED indicates that the network is formed (Zigbee® coordinator (a)) and that the network is joined
(Dynamic device (b)).

2. The On/Off cluster client (Dynamic device (b)) sends the toggle command to the On/Off cluster server
(Zigbee® coordinator (a)) once every sec, the red LED toggles on Zigbee® coordinator (a).

3. Then connect the Dynamic device (b) to the BLE via the "ST BLE Sensor" app (c) and sends a BLE toggle
commands through the app, reflected by the red LED state on Dynamic device (b) at the same time.

Dynamic application detailed behavior

1. The Dynamic device (b) (P2P server) starts BLE advertising (green LED toggling) and simultaneously starts
to join the Zigbee® network.

AN5613
BLE/Zigbee® dynamic application

AN5613 - Rev 1 page 20/45

2. The node then attaches the existing Zigbee® network (Zigbee® coordinator (a) running
ZigBee_OnOff_Coord.bin application).The Dynamic device (b) blue LED turns on when the Zigbee®

join is successful.
3. When the Zigbee® connection is established, the Zigbee® router (b) sends a Zigbee® ON_OFF toggle every

second to the Zigbee® coordinator (a).The red LED toggles on the Zigbee® coordinator (a).
4. The BLE connection starts as follows depending on the device that is connecting. In this case, the BLE

device is either a smartphone or a third Nucleo board:
a. In the case of a smartphone, the "ST BLE Sensor" (smartphone application) scans and connects to the

P2P server by selecting the "P2PZBSRV1" entry. The process is as follows:
i. Once connected, the application starts to search the P2P services and characteristics.
ii. LED button service, LED characteristic and button characteristic are discovered at this stage (this

service is specific to the STMicroelectronics application).
iii. Pressing the LED button on the application turns the red LED of the Dynamic device (b) on or off .

b. When using a third Nucleo board, run the BLE_p2pClient.out application, and start the scan by
pressing the SW1 button:
◦ The blue LED lights up on the BLE device (c).
◦ After the scan is complete, the BLE device (c) connects to the P2P server on Dynamic device (b)

dynamic node and sends a BLE toggle when pressing SW1.
◦ As a result, the red LED toggles on the Dynamic device (b), at each SW1 button press on the BLE

device (c).
On BLE disconnection, the Dynamic device (b) restarts advertising by displaying a flashing green LED.

8.5.4 Dynamic Zigbee® routing issue and workaround
During the testing phase, it has been seen that in some cases, the Zigbee® side of the dynamic device may be
stalled for some time (1 to 5 minutes), then recovers normal execution.
This section presents an analysis of the issue and describes a workaround.

Description of the Zigbee® routing issue

It has been seen that in some cases, the Zigbee® side of the dynamic device may stalled, and the Zigbee® stops
toggling for a period (1 to 5 minutes), then recovers normal execution again.
This issue occurs at any time depending on Zigbee® and BLE timings.

Analysis of Zigbee® routing issue

The issue is due to a timing alignment between the Zigbee® and BLE. and occurs when the Zigbee® link status,
sent every 15 s, is received during BLE time. The following figures show what happens during a successful and a
failed use case.
• Successful use case:

In this case the link status occurs during Zigbee time and everything works fine. This is illustrated in
Figure 16.

Figure 16. Zigbee® successful dynamic routing

AN5613
BLE/Zigbee® dynamic application

AN5613 - Rev 1 page 21/45

• Failure use case:
In this case the link status occurs during BLE time and is not seen by the router in Dynamic mode. As there
is no retry on the “link status” message, it is definitely lost. This is illustrated in Figure 17.

Figure 17. Zigbee® dynamic routing failure

The Zigbee® link status is sent by the Zigbee® coordinator every 15 seconds, to notify of the Zigbee® link is
correct (15 seconds is the default duration defined by Zigbee® spec).
It may happen that in some cases this notification is not seen by the BLE/Zigbee® dynamic device because
it is in BLE mode, and is unable to see any 802.15.4 traffic.
As this period (15 s) is an exact multiple of the BLE connection interval (75 ms), and there is no retry on the
“link status” message, it is lost. After 4 Link status losses in a row, the Zigbee® connection is seen as invalid,
and enters in a lock state.
The Zigbee® lock state may remain for 3 or 5 minutes because the Zigbee® and BLE timings remain
aligned, this is the time required for both clocks to slowly drift, and finally allow the Zigbee® link status to be
visible in the Zigbee® window. This allows the Zigbee® to recover.
Such an issue may occur more frequently when using BLE applications requiring high bandwidths. In this
case, the BLE window is increased while the Zigbee® bandwidth is reduced.

When developing dynamic BLE/Zigbee® applications, special care must be taken in selecting and adjusting BLE
parameters (connection interval and CEmax) allowing a good performance for both Zigbee® and BLE applications.

Workaround for Zigbee® routing issue

A workaround is implemented, in which the dynamic BLE/Zigbee® device requests a change of its connection
interval and is outlined below:
• The dynamic device monitors the AGE of the Zigbee® connection every 15s.
• If AGE equals 4 (meaning 4 link status are lost in a row), the BLE/Zigbee® device requests an update of the

BLE connection interval (CI).
• The remote BLE device (master) accepts and updates the connection interval.
• The new CI causes the clocks to drift slowly, and finally reach a point where the “Link status” is received in

the Zigbee® window.
• Zigbee® link then recovers normal execution.

As the dynamic BLE/Zigbee® device is a slave BLE device, it is up to the BLE master to accept or reject this
change. Testing done with Android™ and iPhone® devices show that both devices accept the request for a
connection update:
• Android™ devices usually accept the exact connection update value requested.
• iPhone® devices usually accept the connection update after adjusting the requested value.

After implementation of this workaround, the side effects of this issue are greatly reduced, the Zigbee® connection
is no longer blocked for any length of time, and usually recovers within 15 seconds, when receiving the next “Link
status”.

AN5613
BLE/Zigbee® dynamic application

AN5613 - Rev 1 page 22/45

8.6 BLE/Zigbee® dynamic SED Application

8.6.1 Firmware & software requirements
To run the BLE/Zigbee® dynamic SED application, the following binaries and/or apps must to be installed :

Table 7. BLE/Zigbee® dynamic SED application

Role Id Device M0 Firmware / M4 Application

Zigbee®

coordinator
(a) Nucleo board

Cortex®-M0 stm32wb5x_ZigBee_FFD_fw.bin
Cortex®-M4 ZigBee_OnOff_Coord.bin

Dynamic device (b) Nucleo board
Cortex®-M0 stm32wb5x_BLE_ZigBee_RFD_dynamic_fw.bin
Cortex®-M4 ble_zigbee_SED_Dyn.bin

BLE device (c)

Smartphone
(Android™/iOS™)

"ST BLE Sensor" Phone Application, available on App Store and Google Play

Nucleo board
Cortex®-M0 stm32wb55xx_ble_full_host_stack_cut2.1.bin
Cortex®-M4 BLE_p2pClient.out

8.6.2 Dynamic SED application description
The behavior of the BLE/Zigbee® dynamic SED application is basically the same as the BLE/Zigbee® dynamic
application described in Section 8.5.2 .
The main components of the BLE/Zigbee® dynamic SED application are the following:
• A Zigbee® coordinator (a) runs the On/Off cluster server.
• A BLE/Zigbee® Dynamic device (b) configured as a Zigbee® router runs the On/Off cluster client, and a BLE

peripheral running a P2P server app.
• A BLE device (c) runs the P2P client app.

The Firmware differences are listed below (only for dynamic device):
• Cortex®-M0 Firmware built in RFD (reduced function device) instead of FFD.
• Cortex®-M4 Firmware built in SED configuration (sleepy end device).

The functional differences are listed below:
• Low- power mode activated
• LEDs and push buttons are disabled
• Debugging mode and debug traces are disabled.

To have the lowest possible power consumption on the SED side, this application is by default compiled with the
flag CFG_FULL_LOW_POWER set to 1 (in app_conf.h file). In this configuration, LEDs and buttons are no longer
available, and debug access to the Cortex®-M4 core is also disabled.
In this configuration and using the power shield, it is possible to check that when there is no BLE, nor Zigbee®

activity, the SED is able to reach STOP2 Low-power mode with the power consumption dropping as low as 3 µA.

AN5613
BLE/Zigbee® dynamic SED Application

AN5613 - Rev 1 page 23/45

Figure 18. Dynamic SED application low power

1sec
[Amp]

[Time]

Low power mode
(STOP2 : < 3uA)

O
nO

ffT
og

gl
eR

eq
ue

st

O
nO

ffT
og

gl
eR

eq
ue

st

O
nO

ffT
og

gl
eR

eq
ue

st

B
LE

 C
on

ne
ct

io
n

E
ve

nt

B
LE

 C
on

ne
ct

io
n

E
ve

nt

B
LE

 C
on

ne
ct

io
n

E
ve

nt

B
LE

 C
on

ne
ct

io
n

E
ve

nt

B
LE

 C
on

ne
ct

io
n

E
ve

nt

B
LE

 C
on

ne
ct

io
n

E
ve

nt

B
LE

 C
on

ne
ct

io
n

E
ve

nt

B
LE

 C
on

ne
ct

io
n

E
ve

nt

8.6.3 Dynamic SED power figures

Overall power profile

Figure 19 shows the overall power profile during the different phases from startup to BLE connected state.

Figure 19. Dynamic SED overall power profile

ZigBee join LP ADV 1.7 s BLE Conn CI 45 ms BLE Conn CI 120 ms

Max current 8.5 mA

Start low-power

Start ZigBee
toggle

1. Immediately after startup, the dynamic device starts the "ZB JOIN" process.
2. Simultaneously, the dynamic device starts BLE advertising every 1.7 second.
3. Once Zigbee® join is done, the dynamic device starts sending ZB Toggle OnOff every sec.
4. At this time, the Low-power mode is enabled (around timestamp 5 s).
5. After around 17 secs, the BLE connection is established (connection interval 50 ms).
6. Nine seconds later, a BLE connection update sets the new connection interval to 120 ms.
7. As illustrated Figure 19, the maximum current is 8.5 mA with SMPS enabled.
8. As illustrated in Figure 20 below the low-power edge is at exactly 2,5 µA with SMPS enabled.

AN5613
BLE/Zigbee® dynamic SED Application

AN5613 - Rev 1 page 24/45

Figure 20. Low-power edge current with SMPS enabled

BLE advertising power profile

Figure 21 shows the power profile during the BLE advertising phase. The average power consumption is 460 µA
without SMPS, 230 µA with SMPS enabled.

Figure 21. BLE advertising power profile

BLE advertising every 1.7s

ZigBee toggle responseZigBee toggles every second

BLE connected power profile

Figure 22 shows the power profile during the BLE connected state.

AN5613
BLE/Zigbee® dynamic SED Application

AN5613 - Rev 1 page 25/45

Figure 22. BLE connected power profile

ZigBee toggle response 500 ms later

ZigBee toggles every second

When BLE is connected with connection intervals of 120 ms, the average power consumption is 660 µA without
SMPS, 280 µA with SMPS enabled.
Looking in more detail, the Zigbee® toggle events and the BLE connection events are clearly visible in Figure 23
and Figure 24, with CI to set 120 ms and 45 ms.

Figure 23. Zigbee® toggle & BLE connection events (CI = 120)

ZigBee toggles every second

ZigBee toggle response 500 ms later

BLE connection event every 120 ms

AN5613
BLE/Zigbee® dynamic SED Application

AN5613 - Rev 1 page 26/45

Figure 24. Zigbee® toggle & BLE connection events (CI = 45)

ZigBee toggles every second ZigBee toggle response 500 ms later

BLE connection events every 45 ms

Dynamic SED power measurements summary

Table 8 gives a summary of the power consumption in different BLE states, with three different SMPS
configurations (SMPS disabled, SMPS enabled – 1V4, SMPS enabled – 1V7).
The Zigbee® activity is always the same, sending a Zigbee® toggle every second, and receiving the toggle
response 500 ms later.
This demonstrates that enabling the SMPS gives approximately 50% energy saving.

Table 8. Dynamic SED power measurement

State SMPS disabled SMPS enabled – 1V4 SMPS enabled – 1V7

Advertising 1.7 s 460 µA 230 µA 273 µA

Connected CI=120 660 µA 280 µA 321 µA

Connected CI=45 1.14 mA 579 µA 703 µA

Connected CI=15 NA 1.54 mA 1.72 mA

Max power 15 mA 8.5 mA 10.2 mA

Min power 3 µA 2.5 µA 2.5 µA

BLE/Zigbee® power profile details

Figure 25 shows the details of a BLE connection event and a Zigbee® toggle response.

AN5613
BLE/Zigbee® dynamic SED Application

AN5613 - Rev 1 page 27/45

Figure 25. BLE connection events & Zigbee® toggle details

BLE conn event ZigBee toggle response

Data
request

APS ack
ZCL def

response APS ack

And below is the corresponding Zigbee® trace showing the different steps of the ZB toggle response together with
the toggle trace in Figure 26:
• Data request
• APS Ack
• ZCL default response
• APS Ack.

Figure 26. Zigbee® toggle trace

AN5613
BLE/Zigbee® dynamic SED Application

AN5613 - Rev 1 page 28/45

8.7 BLE/Zigbee® dynamic BLE throughput application
The BLE throughput application has been ported to the dynamic environment, to check the BLE/Zigbee®

coexistence when using a high BLE bandwidth.

8.7.1 Firmware & software requirements
To run the BLE/Zigbee® dynamic data throughput application, the following binaries and/or software apps must be
installed as described in the table below:

Table 9. Firmware & software requirements

Role Id Device Cortex®-M0 Firmware / Cortex®-M4 Application

Zigbee®

coordinator
(a) Nucleo board

Cortex®-M0 stm32wb5x_ZigBee_FFD_fw.bin
Cortex®-M4 ZigBee_OnOff_Coord.bin

Dynamic device (b) Nucleo board
Cortex®-M0 stm32wb5x_BLE_ZigBee_FFD_dynamic_fw.bin
Cortex®-M4 BLE_DataThroughput.out

BLE device (c)

Smartphone
(Android™/iOS™)

"STM32WB Toolbox" phone application, using the data throughput test, available on
App Store and Google Play

Nucleo board
Cortex®-M0 stm32wb55xx_ble_full_host_stack_cut2.1.bin
Cortex®-M4 BLE_DataThroughput.out

8.7.2 Dynamic BLE throughput application overview
The BLE throughput application has been ported to the dynamic environment, in two different configurations:
• Configuration 1: two Nucleo boards and the BLE throughput app on mobile phone

– Zigbee® coordinator (a) and Dynamic device (b) on the Nucleo boards
– BLE device (c) on smartphone

• Configuration 2: three Nucleo boards with the BLE throughput app on one of the Nucleo boards as illustrated
in Figure 12
– Zigbee® coordinator (a) on board (a)
– Dynamic device (b) on board (b)
– BLE device (c) on board (c).

AN5613
BLE/Zigbee® dynamic BLE throughput application

AN5613 - Rev 1 page 29/45

8.7.3 Dynamic BLE throughput application description
The main components of the dynamic BLE throughput application are the following:
• A Dynamic device (b) running both a Zigbee® router with the On/Off cluster client, and a BLE peripheral

running the BLE throughput application.
• A BLE device (c) running the BLE throughput application (smartphone or Nucleo board).
• A Zigbee® coordinator (a) running the On/Off cluster.

Figure 27. Dynamic BLE throughput application with BLE smartphone

DT serverDT central
On / off

cluster client
On / off

cluster client

Zigbee coordinatorZigbee routerBLE central BLE peripheral

BLE / ZigBee dynamic throughput app

STM32
toolbox

STM32WB toolbox application Zigbee_OnOff_Server_CoordBLE data throughput

(c) (b) (a)

The BLE device (c) can alternatively be a smartphone illustrated in Figure 27 or a Nucleo board illustrated
in Figure 28 running BLE throughput application. This last configuration gives more flexibility to tune the BLE
connection parameters.

AN5613
BLE/Zigbee® dynamic BLE throughput application

AN5613 - Rev 1 page 30/45

Figure 28. Dynamic BLE throughput application with BLE on Nucleo board

DT serverDT central
On / off

cluster client
On / off

cluster client

Zigbee coordinatorZigbee router
BLE central
Break page BLE peripheral

BLE / ZigBee dynamic throughput app

Zigbee_OnOff_Server_CoordBLE data throughput

(c)

(b)

(a)

BLE throuput application

8.7.4 Running dynamic BLE throughput application
The dynamic BLE throughput application enables BLE throughput to be measured while running a Zigbee® router
with the Zigbee® coordinator client, to check the BLE/Zigbee® coexistence when using a high BLE bandwidth.
The application is illustrated in Figure 29.

Figure 29. Dynamic BLE throughput application behavior

STM32
toolbox

(c) (b) (a)

Zigbee coordinatorZigbee routerBLE central BLE peripheral

BLE / ZigBee dynamic throughput app

The Dynamic device (b) starts with both BLE and Zigbee® modes activated. The app implements both the BLE
throughput app, and the Zigbee® toggle Zigbee® coordinator.
Blue LED indicates that the network is setup on Zigbee® coordinator (a), and that the network is joined on the
dynamic Zigbee® router (b).
On/Off cluster (Dynamic device (b)) sends a toggle command to the On/Off cluster server (Zigbee® coordinator
(a)) every 500 ms, a red LED toggles on the Zigbee® coordinator (a).
The Dynamic device (b) advertises as "DT_SERVER" (green LED blinks)

AN5613
BLE/Zigbee® dynamic BLE throughput application

AN5613 - Rev 1 page 31/45

To get BLE throughput measurements using a Smartphone (c), connect it via STM32WB Toolbox App (c).
If using a Nucleo board (c) running a BLE throughput application (DT central), it starts a scan and connect to the
"DT_SERVER" Dynamic device (b).
The BLE throughput measurements are done using the 1M or 2M PHY. This setting is selected from the SW2 on
the Dynamic device (b).

BLE throughput application detailed behavior

1. The Dynamic device (b) (DT server) starts the BLE advertising (green LED toggling) and simultaneously
starts to join the Zigbee® network.

2. The node attaches to the existing Zigbee® network (Zigbee® coordinator (a) running
ZigBee_OnOff_Coord.bin application).

The Dynamic device (b) blue LED turns on when the Zigbee® join is successful.
3. When the Zigbee® connection is established, the Zigbee® router (b) sends a ZB ON_OFF toggle to the

Zigbee® coordinator (a) every 500 ms.
The red LED toggles on the Zigbee® coordinator (a).

4. The BLE connection starts as follows, and depends on whether the BLE device is a smartphone or a third
Nucleo board:
– With a smartphone, use the STM32WB toolbox app (select “Data throughput” in the list) to scan and

connect to the DT server by selecting "DT_SERVER" entry:
a. On the next screen, select the “Downlink” or “Uplink” test.
b. To run the “Downlink” test, connect, and start the transfers by pressing the SW1 button on the

Dynamic device (b). The results are displayed on the smartphone. The physical link is set by
default to 1M:
• The test is stopped by pressing again the SW1 button.
• To change PHY to 2M, press the SW2 button. Restart and stop the test with 2M using SW1

button again.
c. To run the “Uplink” test, connect, and start the transfers by pressing the SW1 button on the

smartphone app. The transfer results are displayed on the smartphone. The physical link is set by
default to 1M.
• The test is stopped by pressing the SW1 button on the app.
• To change PHY to 2M, press the SW2 button on the BLE/Zigbee® device (b). Restart and

stop the test with 2M using the SW1 button again.
– With a Nucleo board (running a BLE throughput application) (c) , the BLE scan starts automatically,

then connects to the "DT_SERVER" Dynamic device (b).
◦ To start the “Downlink” test, press the SW1 button on the Dynamic device (b), the results are

displayed on the BLE device (c) serial console. The physical link is set by default to 1M.
◦ The test is stopped by pressing on the SW1 button again.
◦ To change the PHY to 2M, press the SW2 button. Restart and stop the test with 2M using the

SW1 button again.
◦ Pressing SW3 button on Dynamic device (b) changes the connection interval on the BLE device

(c) with some predefined values (currently 23, 43, 63, 83, 105, 124, 153, 209, 305, 405 ms) and
restart the Throughput test.

5. The red LED keeps toggling on the Zigbee® coordinator (a) during and after the transfer.
On BLE disconnection, the Dynamic device (b) restarts advertising (green LED flashing).

AN5613
BLE/Zigbee® dynamic BLE throughput application

AN5613 - Rev 1 page 32/45

8.7.5 Test results

Test Config 1 with Samsung Galaxy S10e

Table 10 gives the results in the above configuration.

Table 10. Samsung Galaxy S10e test results

Config Download 1M Download 2M Upload 1M Upload 2M

Connection interval 48.75 ms 11.25 ms

BLE only 90.8 kB/s 161 kB/s 42.5 kB/s 75.6 kB/s

Dynamic mode 87.7 kB/s 150.2 kB/s(1) 41.7 kB/s 75.6 kB/s(1)

ZB Toggle Yes, ZB toggle works, but pretty unstable and slow, with Fails

1. A Zigbee® fatal error is sometimes observed during BLE 2M transfer after a period of time, and BLE keeps working.

The download results are 3 to 10% lower than in a BLE configuration only. The upload results are similar, but
the Zigbee® activity is slow and unstable during the tests, with toggle errors because BLE takes up most of the
bandwidth, and BLE parameters cannot be tuned.
The Zigbee® activity recovers after the test ends.

Test configuration 2 with BLE app on Nucleo board

The BLE parameters are all configurable on the Nucleo board. The tests are run with different connection
configurations and CEmax parameters.

The results in Table 11 and Figure 30 are obtained with a Zigbee® toggle frequency of 500 ms.

Table 11. Dynamic BLE throughput results

Cfg Conn
Interval CEmax

Dnl 1M
kB/s Toggle ZB Fail ZB Fail % Dnl 2M

kB/s Toggle ZB Fail ZB Fail %

Default 400 625 78.1 unstable and
very slow 13/159 8.2% 123.8 Unstable and

slow 15/242 6.2%

2 405 385 77.4 Very stable 5/410 1.2% 116.3 stable 19/363 5.4%

3 305 285 77.5 stable 21/385 5.5% 119.6 stable 11/448 2.5%

4 207 188 74.4 stable 27/401 6.7% 118.7 stable 41/360 11.3%

5 151 132 72.5 stable 17/396 4.3% 114.9 stable 11/498 2.2%

6 122 103 69.4 stable 14/444 3.1% 116.2 stable 21/374 5.6%

7 105 85 68.6 stable 26/400 6.5% 113.8 stable 20/452 4.4%

8 81 62 64.8 stable 30/411 7.3% 106.9 stable 17/445 3.8%

9 61 42 57.4 stable 22/448 4.9% 96.6 stable 31/405 7.6%

10 41 22 39.4 stable 20/508 4.9% 66.1 Very stable 10/525 1.9%

11 21 12 33.3 stable 23/420 5.5% 54.6 Pretty stable 25/371 6.7%

AN5613
BLE/Zigbee® dynamic BLE throughput application

AN5613 - Rev 1 page 33/45

Figure 30. Dynamic BLE throughput graph

8.7.6 Notes and comments
The maximum CE value is set at 20 ms below connection interval value to allow Zigbee® to have at least 20 ms
available during each connection interval.
For instance, with a connection interval of 105 ms, the CEmax value is set to 85 ms, which gives 85 ms for BLE
and 20 ms for Zigbee®.
Due to a specific route management issues with the Zigbee® protocol (described in Section 8.5.4), the
connection interval values which are a direct sub-multiple of 15 ms must be avoided to prevent a deadlock in
Zigbee® mechanism.
Therefore, the following values are used: 21, 41, 61, 81, and so on instead of 20, 40, 60, 80, and so on as
connection intervals, the latter prevented a stable Zigbee® behavior.
Connection interval values have been empirically adjusted to the provide the best value for a stable Zigbee®

behavior, for example 122, 151, 207 and so on.
When requesting a new connection interval from the dynamic device, it is up to the BLE master to accept it, so the
final value of CI may not be exactly the one requested:
• The list of possible values requested are: 23, 43, 63, 83, 105, 124, 153, 209, 305, 405 ms, and the real

valued obtained are: 21, 41, 61, 81, 105, 122, 151, 207, 305, 405 ms.
• These final values are always a multiple of 1.25 ms (e.g. 81.25 instead of 81).

The Zigbee® fail rate is always under 12%. However, some packets are lost, the Zigbee® toggle is sometimes
stalled for 2 to 5 seconds, then recovers normal execution toggling every 500 ms.

AN5613
BLE/Zigbee® dynamic BLE throughput application

AN5613 - Rev 1 page 34/45

8.8 BLE/Zigbee® dynamic NVM application

8.8.1 Firmware and software requirements
To run the BLE/Zigbee® dynamic NVM application, the following binaries and/or software apps must be installed:

Table 12. Zigbee® dynamic NVM application firmware

Role ID Device M0 firmware / M4 application

Zigbee®

coordinator
(a) Nucleo board

Cortex®-M0 stm32wb5x_ZigBee_FFD_fw.bin
Cortex®-M4 ZigBee_OnOff_Coord.bin

Dynamic device (b) Nucleo board Cortex®-M0 stm32wb5x_BLE_ZigBee_FFD_dynamic_fw.binM4
ble_zigbee_Dyn_NVM.bin

BLE device (c)

Smartphone
(Android™/iOS™)

"ST BLE Sensor" phone application, available on App Store and Google Play

Nucleo board
Cortex®-M0 stm32wb55xx_ble_full_host_stack_cut2.1.bin
Cortex®-M4 BLE_p2pClient.out

8.8.2 Dynamic NVM application description
The main components of the BLE/Zigbee® dynamic NVM application are the following:
• A Zigbee® coordinator (a) running the On/Off cluster server.
• A Dynamic device (b) configured as a Zigbee® router running the On/Off cluster client, and a BLE peripheral

running a P2P server app.
• A BLE device (c) running the P2P client app.

This is illustrated in Figure 14.

8.8.3 Running dynamic NVM application
This demonstration illustrates the simultaneous BLE and Zigbee® connections, with the red LED toggling on the
Dynamic device (b), reflecting BLE activity, and the red LED toggling on the Zigbee® coordinator (a), reflecting
Zigbee® activity. NVM persistent data is used to save/restore the Zigbee® device state.
The Dynamic device (b) starts with both BLE and Zigbee® modes activated.
The BLE example implements point-to-point communication using the P2P component.
This is illustrated in Figure 15.
The blue LED on the Zigbee® coordinator indicates the network is formed and the network is joined with the
Dynamic device (b).
The On/Off cluster client (Dynamic device (b)) sends a toggle command to the On/off cluster server (Dynamic
device (a)) every 1 sec, the red LED toggles on Zigbee(R) coordinator (a).
Then connect Dynamic device (b) to the BLE via "ST BLE Sensor" app (c) and send the BLE toggle commands
through the app, shown by the red LED state on Dynamic device (b) at the same time.

8.9 Dynamic NVM application detailed behavior
1. The Dynamic device (b) (P2P server) starts nLE advertising (green LED toggling) and simultaneously starts

to join the Zigbee® Network.
2. With the Zigbee® NVM feature, the Dynamic device (b) tries to start from persistence data, which enables a

restart from the previous configuration. This leads to two choices:
– For persistent data read from NVM are valid: the router takes back is role in the network. See point 4.
– For non persistent data found or corrupted data, a fresh start is performed.

See point 3. below.

AN5613
BLE/Zigbee® dynamic NVM application

AN5613 - Rev 1 page 35/45

3. The node attaches to the existing Zigbee® network (Zigbee® coordinator (a) running
ZigBee_OnOff_Server_Coord application).

a. When the Zigbee® successfully joins the network, the Dynamic device (b) blue LED turns ON Zigbee®

is successfully joined.
4. When the Zigbee® connection is established, the Dynamic device (b) sends a ZB ON_OFF toggle every

second to the Zigbee® coordinator (a):
a. The red LED toggles on the Zigbee® coordinator (a).

5. The BLE connection initiation depends on the BLE device that is used, smartphone or a third Nucleo board:
a. Using a smartphone, then the "ST BLE Sensor" app (smart Phone application) scans and connects to

the P2P Server by selecting the "P2PZBSRV1" entry.
i. Once connected, the application starts to search the P2P services and characteristics.
ii. LED button service, LED characteristic and button characteristics are discovered at this stage

(this service is STMicroelectronics specific).
iii. Pressing the LED button on the app turns the red LED on or off on the Dynamic device (b).

b. Using a Nucleo board (running a BLE_p2pClient application (c)), pressing the SW1 button starts the
scanning process:
i. The blue LED lights up on the Bluetooth® Low Energy device (c).
ii. After the scan is complete, the Bluetooth® Low Energy device (c) connects to the P2P server on

Dynamic device (b) dynamic node, and sends a BLE toggle when pressing SW1.
iii. As a result, the red LED toggles on the Dynamic device (b), at each SW1 button press on BLE

device (c).
6. Zigbee® persistence data is automatically updated in NVM when needed.
7. When the user power cycle of the Dynamic device (b), the persistent data is read back and the stack

configuration is restored.
8. Push button SW2 is used to delete Zigbee® NVM (fresh start is done on next start up).
On BLE disconnection, the Dynamic device (b) restarts advertising with the green LED flashing.

AN5613
Dynamic NVM application detailed behavior

AN5613 - Rev 1 page 36/45

9 BLE/Zigbee® static concurrent mode

9.1 Static mode overview
An example of static concurrent mode (BLE/Zigbee®) is provided in the STM32WB firmware package. This
application is located under:
Projects\P-NUCLEO-WB55.Nucleo\Applications\BLE_ZigBee directory.

The static mode is a subset of the dynamic mode allowing it to switch from BLE to Zigbee® and vice-versae, upon
user request. This device connects through BLE to a smartphone running the "ST BLE Sensor" application and
once the BLE activity is stopped, it joins a Zigbee® network. Then, once the Zigbee® application is completely
stopped, it is possible to connect to BLE again. This is illustrated in the figure below.

Figure 31. Static concurrent mode on STM32WB Series

A
R

M
 M

4
A

R
M

 M
0+

802_15_4 peripheral

IPCC wrapper

In
fr

as
tr

uc
tu

re

Application

802.15.4 MAC

Zigbee stack

STM32 WPAN middleware

Zigbee Clusters

In
fr

as
tr

uc
tu

re

802.15.4 LLD

IPCC wrapper

BLE peripheral

BLE profiles

ACI BDB

BLE stack

BT MAC

BLE driver

Radio

AN5613
BLE/Zigbee® static concurrent mode

AN5613 - Rev 1 page 37/45

9.2 Supported static firmware

Static mode

The Static mode is a subset of the Dynamic mode which allows the switch from BLE to Zigbee® and vice-verse,
upon user request. When the BLE protocol is running, the Zigbee® stack is not running. When the BLE is stopped,
the system switches back to Zigbee®. In this case, the Zigbee® stack is fully re-initialized.
The static mode firmware includes both BLE and Zigbee® stacks:
• The BLE stack is Bluetooth® Low Energy 5.0 certified.
• Two flavors of the Zigbee® stack are supported on the STM32WB Series device, FFD (full feature device)

and RFD (reduced feature device). These stacks are Zigbee® PRO 2017 (revision 22) certified.

Table 13. static stacks

Stacks supported Firmware associated

Zigbee® FFD + Bluetooth® Low Energy 5.0 stm32wb5x_BLE_ZigBee_FFD_static_fw.bin
Zigbee® RFD + Bluetooth® Low Energy 5.0 stm32wb5x_BLE_ZigBee_RFD_static_fw.bin

• An FFD accepts any role in the network which is either:
– a router
– a coordinator
– an end device.

• An RFD only supports the end device role. An RFD has a smaller footprint compared to an FFD. When
building an application acting as a ‘sleepy end device’, in order to reach optimal low power consumption, it is
mandatory to build this application using the Zigbee® RFD stack.

These binaries are used for static concurrent mode applications. Example of such applications are provided as
follows:
Projects\P-NUCLEO-WB55.Nucleo\Applications\BLE_ZigBee directory.

Important:
Before running any BLE/Zigbee® application on the STM32WB Series, ensure the proper firmware is downloaded on the
Cortex®-M0. If it is not the case, use the STM32CubeProgrammer to load the appropriate binary.

All available BLE/Zigbee® binaries are located under:

 /Projects/STM32WB_Copro_Wireless_Binaries/STM32WB5x

Refer to:

/Projects/STM32WB_Copro_Wireless_Binaries/STM32WB5x/Release_Notes.html for the detailed
procedure on how to change the wireless coprocessor binary

AN5613
Supported static firmware

AN5613 - Rev 1 page 38/45

https://www.st.com/en/microcontrollers-microprocessors/stm32wb-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32wb-series.html

9.3 Static mode vs Dynamic mode
In this section, the difference between Static and Dynamic modes is discussed in the following points:
• Dynamic mode offers a greater number of functions over the Static mode.
• Static mode offers a more optimized memory usage and more effective memory management. For example,

when Zigbee® is stopped the Cortex®-M0 memory (but allocated on Cortex®-M4 side) is completely freed
when we switch back to BLE. This does not apply to the Cortex®-M4 memory.

• In Static mode, there is a gain of 7 kbytes versus Dynamic mode.
• Throughput in Static mode is improved by around 5 to 10 % over the Dynamic mode.
• The overall system robustness is improved due to the fact that the communication protocols are only used

once at a time with less potential conflicts.
• Static mode implementation may be a specific customer requirement. The product may be dedicated to only

one protocol and may not need the other at all.
• In stress tests which is represented by sending Zigbee® toggles at max rate, the static mode performance

is slightly better using than the Dynamic mode. It provides an improvement of around 5% since more
bandwidth allocated to 802.15.4 radio. But for the standard "use" case, this may have no impact.

The design of the system depends greatly on the product specification and the required mode.

AN5613
Static mode vs Dynamic mode

AN5613 - Rev 1 page 39/45

Revision history

Table 14. Document revision history

Date Version Changes

22-Jun-2021 1 Initial release.

AN5613

AN5613 - Rev 1 page 40/45

Contents

1 General information .2

1.1 Glossary . 2

1.2 Reference documents. 3

2 Dynamic mode introduction .4

2.1 Dynamic mode use case . 5

3 RTSM architecture .6

3.1 RTSM block diagram . 6

3.2 RTSM description . 6

3.2.1 RTSM features . 6

3.2.2 RTSM scheduling . 7

3.2.3 Cmd_pipe module. 7

3.2.4 BLE & Zigbee® stack behavior in Dynamic mode . 8

4 Dynamic NVM feature. .10

4.1 Dynamic NVM overview general overview. 10

4.2 BLE/Zigbee® Dynamic mode Flash operation . 10

5 Zigbee® architecture. .11

5.1 Zigbee® overview . 11

5.2 Zigbee® stack layers. 11

6 BLE architecture. .12

6.1 BLE overview. 12

6.2 BLE stack layers . 12

7 BLE/ Zigbee® Dynamic mode on STM32WB Series .13

7.1 Architecture overview . 13

7.2 Dynamic firmware supported . 14

7.3 Zigbee® clusters supported . 14

8 STM32WB Series dynamic application design .17

8.1 BLE/Zigbee® dynamic application framework . 17

8.2 Zigbee® application framework . 17

8.3 BLE application architecture . 18

AN5613
Contents

AN5613 - Rev 1 page 41/45

8.4 Dynamic applications available . 18

8.4.1 BLE/Zigbee® dynamic application . 18

8.4.2 BLE/Zigbee® dynamic SED application. 18

8.4.3 BLE/Zigbee® dynamic BLE throughput application . 18

8.4.4 BLE/Zigbee® dynamic NVM application . 19

8.5 BLE/Zigbee® dynamic application. 19

8.5.1 Firmware & software requirements . 19

8.5.2 Dynamic application description . 19

8.5.3 Running dynamic application . 20

8.5.4 Dynamic Zigbee® routing issue and workaround. 21

8.6 BLE/Zigbee® dynamic SED Application . 23

8.6.1 Firmware & software requirements . 23

8.6.2 Dynamic SED application description . 23

8.6.3 Dynamic SED power figures . 24

8.7 BLE/Zigbee® dynamic BLE throughput application. 29

8.7.1 Firmware & software requirements . 29

8.7.2 Dynamic BLE throughput application overview . 29

8.7.3 Dynamic BLE throughput application description . 30

8.7.4 Running dynamic BLE throughput application . 31

8.7.5 Test results . 33

8.7.6 Notes and comments . 34

8.8 BLE/Zigbee® dynamic NVM application . 35

8.8.1 Firmware and software requirements . 35

8.8.2 Dynamic NVM application description . 35

8.8.3 Running dynamic NVM application . 35

8.9 Dynamic NVM application detailed behavior . 35

9 BLE/Zigbee® static concurrent mode. .37

9.1 Static mode overview . 37

9.2 Supported static firmware. 38

9.3 Static mode vs Dynamic mode . 39

Revision history .40

AN5613
Contents

AN5613 - Rev 1 page 42/45

List of figures
Figure 1. Radio peripheral . 4
Figure 2. Dynamic mode use case . 5
Figure 3. RTSM block diagram. 6
Figure 4. Cmd_pipe module. 7
Figure 5. BLE connection events and connection intervals . 8
Figure 6. Zigbee® Rx/Tx behavior . 9
Figure 7. Flash operation process illustration . 10
Figure 8. Zigbee® stack description . 11
Figure 9. BLE stack description . 12
Figure 10. BLE/Zigbee® Dynamic mode architecture. 13
Figure 11. BLE/Zigbee® dynamic application . 17
Figure 12. BLE/Zigbee® dynamic application illustration . 18
Figure 13. BLE/Zigbee® dynamic BLE throughput application illustration . 18
Figure 14. Dynamic application overview. 20
Figure 15. Dynamic application behavior . 20
Figure 16. Zigbee® successful dynamic routing . 21
Figure 17. Zigbee® dynamic routing failure . 22
Figure 18. Dynamic SED application low power . 24
Figure 19. Dynamic SED overall power profile . 24
Figure 20. Low-power edge current with SMPS enabled . 25
Figure 21. BLE advertising power profile . 25
Figure 22. BLE connected power profile . 26
Figure 23. Zigbee® toggle & BLE connection events (CI = 120) . 26
Figure 24. Zigbee® toggle & BLE connection events (CI = 45) . 27
Figure 25. BLE connection events & Zigbee® toggle details . 28
Figure 26. Zigbee® toggle trace . 28
Figure 27. Dynamic BLE throughput application with BLE smartphone . 30
Figure 28. Dynamic BLE throughput application with BLE on Nucleo board . 31
Figure 29. Dynamic BLE throughput application behavior . 31
Figure 30. Dynamic BLE throughput graph . 34
Figure 31. Static concurrent mode on STM32WB Series . 37

AN5613
List of figures

AN5613 - Rev 1 page 43/45

List of tables
Table 1. Glossary . 2
Table 2. Reference documents . 3
Table 3. Zigbee®runtime commands . 8
Table 4. Stack firmware association . 14
Table 5. Supported Zigbee® clusters. 14
Table 6. Device firmware specification . 19
Table 7. BLE/Zigbee® dynamic SED application. 23
Table 8. Dynamic SED power measurement . 27
Table 9. Firmware & software requirements . 29
Table 10. Samsung Galaxy S10e test results. 33
Table 11. Dynamic BLE throughput results . 33
Table 12. Zigbee® dynamic NVM application firmware . 35
Table 13. static stacks . 38
Table 14. Document revision history . 40

AN5613
List of tables

AN5613 - Rev 1 page 44/45

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics – All rights reserved

AN5613

AN5613 - Rev 1 page 45/45

http://www.st.com/trademarks

	Introduction
	1 General information
	1.1 Glossary
	1.2 Reference documents

	2 Dynamic mode introduction
	2.1 Dynamic mode use case

	3 RTSM architecture
	3.1 RTSM block diagram
	3.2 RTSM description
	3.2.1 RTSM features
	3.2.2 RTSM scheduling
	3.2.3 Cmd_pipe module
	3.2.4 BLE & Zigbee(R) stack behavior in Dynamic mode

	4 Dynamic NVM feature
	4.1 Dynamic NVM overview general overview
	4.2 BLE/Zigbee(R) Dynamic mode Flash operation

	5 Zigbee(R) architecture
	5.1 Zigbee(R) overview
	5.2 Zigbee(R) stack layers

	6 BLE architecture
	6.1 BLE overview
	6.2 BLE stack layers

	7 BLE/ Zigbee(R) Dynamic mode on STM32WB Series
	7.1 Architecture overview
	7.2 Dynamic firmware supported
	7.3 Zigbee(R) clusters supported

	8 STM32WB Series dynamic application design
	8.1 BLE/Zigbee(R) dynamic application framework
	8.2 Zigbee(R) application framework
	8.3 BLE application architecture
	8.4 Dynamic applications available
	8.4.1 BLE/Zigbee(R) dynamic application
	8.4.2 BLE/Zigbee(R) dynamic SED application
	8.4.3 BLE/Zigbee(R) dynamic BLE throughput application
	8.4.4 BLE/Zigbee(R) dynamic NVM application

	8.5 BLE/Zigbee(R) dynamic application
	8.5.1 Firmware & software requirements
	8.5.2 Dynamic application description
	8.5.3 Running dynamic application
	8.5.4 Dynamic Zigbee(R) routing issue and workaround

	8.6 BLE/Zigbee(R) dynamic SED Application
	8.6.1 Firmware & software requirements
	8.6.2 Dynamic SED application description
	8.6.3 Dynamic SED power figures

	8.7 BLE/Zigbee(R) dynamic BLE throughput application
	8.7.1 Firmware & software requirements
	8.7.2 Dynamic BLE throughput application overview
	8.7.3 Dynamic BLE throughput application description
	8.7.4 Running dynamic BLE throughput application
	8.7.5 Test results
	8.7.6 Notes and comments

	8.8 BLE/Zigbee(R) dynamic NVM application
	8.8.1 Firmware and software requirements
	8.8.2 Dynamic NVM application description
	8.8.3 Running dynamic NVM application

	8.9 Dynamic NVM application detailed behavior

	9 BLE/Zigbee(R) static concurrent mode
	9.1 Static mode overview
	9.2 Supported static firmware
	9.3 Static mode vs Dynamic mode

	Revision history

