

L9679E Cut-off Battery and Pyro Fuse

Introduction

This document explains the features and benefits of the L9679E device in order to be used in the Pyro Fuse application: the device activates the Pyro Fuse that disconnects a battery from an electrical system, so that the battery will not become a source of ignition.

The main features are the flexible configuration, four PSI-5 sensor interfaces, high or low level diagnostic test, arming procedure following external safing engine, deployment profile selectable, 32 bits SPI communication.

Note

The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

1 Description

The L9679E is a chip solution targeted for cut-off battery market. This device is family compatible with the L9678, L9680 and L9679P devices: it has been designed as extension chip of the others, but if configured in the right way it can be used standalone.

1.1 Main features

The main features are:

- System voltage diagnostics with integrated ADC Squib deployment drivers
 - 8 channel HSD/LSD
 - 25 V max deployment voltage
 - Various deployment profiles, 1.2 A/1.75 A, x * 0.064 ms up to 4.032 ms
 - Current monitoring
 - R_{measure}, STB, STG and Leakage diagnostics
 - High and Low Side driver FET tests
- Four-channel remote sensor interface for PSI-5 (synchronous mode)
- User customizable external safing logic
- Temperature sensor
- 32 bits SPI communications
- Operating temperature, -40 °C to 105 °C
- Packaging: 48 pins

AN5720 - Rev 3 page 2/72

1.2 Application overview

The device has been designed for Airbag Application, but if correctly configured it can be used also for Pyro Fuse Application, i.e. to cut-off the battery from an electrical system.

In fact, in case of a crash, a short circuit on the battery due to damaged cables can lead to sparks and dangerous ignition or heat and moldering fires. Thus it is important to disconnect the electrical system from the battery using pyrotechnical safety battery terminals.

Pyro Fuse application circuit

These special Pyro Fuses have electrical characteristic like those of Airbag detonators. Some Pyro Fuses can require a bigger current to be triggered. In this case some deployment channels can be shorted and connected to the same load in order to obtain a total current higher than 2 A.

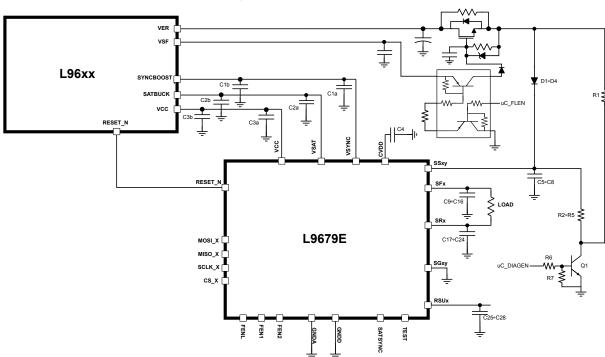


Figure 1. Application circuit

AN5720 - Rev 3 page 3/72

2 Device configuration

The user shall configure the device following the Application Note AN5023, in particular for:

- Voltage Regulators
- Safing Logic
- Deployment
- Remote Sensor Interface (PSI-5 sensors)

Furthermore, the user could use the same document to know about:

- System Voltage Diagnostic
- Temperature Sensor

In the following section a deployment example will be shown.

2.1 Unused functions

In case some functions are not used, the correspondent pins have to be managed as in the Table 1.

Table 1. Unused functions management

Pin	Action
RSU0, RSU1, RSU2, RSU3	Open (by default they are off)
SATSYNC	Connected to GND
FENL	Connected to GND

AN5720 - Rev 3 page 4/72

3 Deployment

The device main features are:

- 8 independent loops composed by 8 independent High Side and 8 independent Low Side.
- Dedicated ground connection for a couple of loops, SGxy.
- In case the Low Side SRx is shorted to ground, the deployment, if requested, is guaranteed to succeed.
- In any case, SSxy voltage has to be lower than 25 V.
- Both High Side and Low Side are equipped with a passive turn-off to guarantee that they are always in off state except when the deployment has to take place.

3.1 Deployment requirement

Deployment features are deployment current, deployment time and deployment expiration time. The deployment expiration time is the duration time in which the deploy command remains valid, once it is received, waiting for the arming signal.

These parameters are defined through the twelve registers DCR_x, with x = 0-7, configurable in DIAG, SAFING and ARMING state and shown in the Table 2:

- \$06 DCR_0 → channel 0
- \$07 DCR 1 → channel 1
- \$08 DCR 2 → channel 2
- \$09 DCR 3 → channel 3
- \$0A DCR_4 → channel 4
- \$0B DCR_5 \rightarrow channel 5
- \$0C DCR 6 → channel 6
- \$0D DCR 7 → channel 7

All deployment configuration registers are reset by SSM reset.

(1) (2) 19:16 15:12 11:6 5:4 3:2 1:0 Deploy_expire_time Deploy current 00, 500 ms \$06 DCR_0 00, 11 not used Deploy_time W **(l)** 0 Х 01, 250 ms Х \$0D DCR_7 = 0.064ms/count*depl time ≤ 4.032ms 01, 1.75 A min 10. 125 ms 10, 1.2 A min 11, 0 ms

Table 2. DCR_x register

The Deploy Time field allows the device to deploy for a maximum configurable time of 4.032 ms ($64 \mu \text{s}$ step). Differently from the L9678, there is no inhibition of the combinations current/deployment time, so it is under user's responsibility to prevent excessive thermal heating in the squib driver section by setting the deploy parameters carefully.

For this reason, it is recommended to keep the SSxy voltage in the range as specified in the Table 3:

AN5720 - Rev 3 page 5/72

^{1.} I = INIT, D = DIAG, S = SAFING, A = ARMING, - = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING

^{2.} R = READ, W = WRITE

Table 3. Relationshi	p between deploy	y current profile and SSxy	/ voltage

Deploy Current Profile	DCR_Deploy_Time	Temperature range	SSxy voltage
1.2 A/2 ms	≤ 34	-40 °C ≤ T _j ≤ 130 °C	6 V ≤ SSxy ≤ 22.75 V
1.2 A/2 IIIS	≥ 34	-40 °C ≤ T _j ≤ 150 °C	6 V ≤ SSxy ≤ 21.5 V
1.2 A/3.2 ms	≤ 54	-40 °C ≤ T _j ≤ 130 °C	6 V ≤ SSxy ≤ 20.1 V
1.2 A/3.2 IIIS	≥ 54	-40 °C ≤ T _j ≤ 150 °C	6 V ≤ SSxy ≤ 19.3 V
1.75 A/0.5 ms	≤ 10	-40 °C ≤ T _j ≤ 150 °C	9 V ≤ SSxy ≤ 25 V
1.75 A/0.7 ms	≤ 13	-40 °C ≤ T _j ≤ 130 °C	9 V ≤ SSxy ≤ 23.75 V
1.75 AVO.7 IIIS	≥ 13	-40 °C ≤ T _j ≤ 150 °C	9 V ≤ SSxy ≤ 22.5 V
1.75 A/2 ms	≤ 34	-40 °C ≤ T _j ≤ 130 °C	6 V ≤ SSxy ≤ 16.7 V
1.75 AVZ 1115	≥ 34	-40 °C ≤ T _j ≤ 150 °C	6 V ≤ SSxy ≤ 16 V
1.2 A/3.2 ms	≤ 54	-40 °C ≤ T _j ≤ 130 °C	6 V ≤ SSxy ≤ 14.7 V
1.2 7/3.2 1115	= 54	-40 °C ≤ T _j ≤ 150 °C	6 V ≤ SSxy ≤ 13.9 V

The parameters in each DCR_x register have to be confirmed at least the first time the device has to deploy, even in case they are left at their default value; the deployment does not occur otherwise.

The status of each loop is monitored in the deployment status register DSR_x, one for each channel (see the Table 4).

Table 4. DSR_x register

	(1)	(2)	19:16	15	14	13	12	11:6	5:0
\$13 DSR_0 \$1A DSR_7		R	0	CHxDSX 0 depl not succesful 1 depl succesful	CHxSTAT 0 depl not in progress 1 depl in progress	0	DCRxERR 0 depl conf accepted and stored 1 depl conf change not accepted because deploy is in progress	0	DEP_CHx_EXP_TIME 8 ms/count

- $1. \quad I = INIT, \ D = DIAG, \ S = SAFING, \ A = ARMING, \ = ALL \ STATES, \ (I) = no \ in \ INIT, \ (D) = no \ in \ DIAG, \ (S) = no \ in \ SAFING, \ (A) = no \ in \ ARMING$
- 2. R = READ, W = WRITE

Once deploy parameters have been set, it is required to assign the arming signals to deployment loops. This allows deploying different channels basing on the arming result.

The arming valid condition is assessed by using the 3 arming discrete input pins FEN1, FEN2 and FENL, that are active high.

The device allows two configurations:

- Config 1 (default): FENL is not used; FEN1 and FEN2 are enablers for any or all the loops, each input controlling both HS and LS of those loops.
- Config 2: FENL is used and enables all LSs; FEN1 and FEN2 enable for any or all the loops, controlling only HSs.

FEN1/2 input pins are assigned to the desired channels by means of the programmable loop matrix defined in the \$6E LOOP_MATR_ARM1 and \$6F LOOP_MATR_ARM2 registers (see the Table 5).

Table 5. LOOP_MATR_ARMx registers

		19:16	15:8	7	6	5	4	3	2	1	0
MC	OSI	-	Х	FENx L7	FENx L6	FENx L5	FENx L4	EENv I 2	FENx L2	FENx L1	FENx L0
MIS	so	0	0	I LINX_L/	I LINX_LO	I LINX_L3	FEINX_L4	FENx_L3	I LINX_LZ	I LINA_LI	I LIVA_LU

Once fixed the deploy parameters, in order to satisfy a deploy request, the IC has to move in SAFING state.

AN5720 - Rev 3 page 6/72

SAFING state is driven by specific SPI command (see the Table 6).

Once sent the command to move into the SAFING state, the verification of the IC's status is readable into the \$04 SYS_STATE register.

Table 6. SPI commands to pass in SAFING state

	(1)	(2)	19:16	15:0
\$31 SAFING STATE	D	W	0	\$ACAC SAFING state command

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE

In order to be able to deploy, the arming signals have to be serviced. Their state is readable in the \$6A ARM_STATE register (see the Table 7).

Table 7. ARM_STATE register

	19:16	15:4	3	2	1	0
MOSI	-	X	Х	X	X	X
MISO	0	0	FEN2	FEN1	FENL	0

Deployment has to be enabled via SPI, writing DEPEN_WR bits in the \$25 SPIDEPEN register (see the Table 8).

Table 8. SPIDEPEN register

	(1)	(2)	19:16	15:0		
				DEPEN_WR[15:0]/DEPEN_STATE[15:0]		
\$13 SPIDEPEN	S, A	W/R	-	\$0FF0 - DEP DISABLED		
				\$F00F - DEP ENABLED		

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE

Deployment command request has to be received by the IC via the \$12 DEPCOM register (see the Table 9).

Once the deployment command has been received, the deploy time is elapsed, deploy success bit is set (CHxDSX bit) and deployment enable toggles into the DEP DISABLED.

The next deploy requires the DEPEN reconfigured again as ENABLED. This feature has to be considered in case of multiple deployment, after each of them, before the next deployment the correspondent bit DEPEN has to be set again.

AN5720 - Rev 3 page 7/72

Table 9.	DEPCOM	register
----------	--------	----------

	(1)	(2)	19:17	16	15:12	11	10	9	8	7	6	5	4	3	2	1	0
\$12 S, DEPCOM A W	-		0	x	X	X	X	CH7DEPREQ	CH6DEPREQ	CH5DEPREQ	CH4DEPREQ	CH3DEPREQ	CH2DEPREQ	CH1DEPREQ	CHODEPREQ		
						0 no change to dep ch x											
									1 if	in ARMING	or SAFING	G, clear and	d start expi	ration time	and DEPL	OY_ENAB	
\$12 DEDCOM	_	R	_		0	X	X	X	X	CH7DEP	СН6DEP	СН5DEP	CH4DEP	СНЗDEР	CH2DEP	CH1DEP	СНОБЕР
DEPCOM											1 expirati	on timer er	nabled, DEI	PCOM still	valid		
						0 expiration timer disabled, DEPCOM no more valid											
\$25	S,	W/				DEPEN_STATE[15:0]											
SPIDEPEN	Α	R		_		\$0FF0 - DEP DISABLED											

 $^{1. \}quad I = INIT, \ D = DIAG, \ S = SAFING, \ A = ARMING, \ - = ALL \ STATES, \ (I) = no \ in \ INIT, \ (D) = no \ in \ DIAG, \ (S) = no \ in \ SAFING, \ (A) = no \ in \ ARMING$

Deployment status of each channel is readable in the DSR x registers (see the Table 4).

Each High Side (SFx) has a current comparator to indicate when the current flowing through is greater than the deployment current threshold (ITHDEPL = 90% IDEPLx). For each channel there is a timer (Current_Mon_Timer) that measures, with $16~\mu s$ resolution, how long the current is at high level to let the microcontroller identifies if the deployment has been effective or not.

During a deploy event, if the current falls momentarily below the threshold, the timer stops (timer pause), and continues to count as the current turns high (see the Figure 2).

Current_Mon_Timer is refreshed upon read or when a new DEPCOM command on the channel is received. For this reason, the microcontroller reads the data in the DCMTSxy registers (see the Table 10) after the deployment event and before a new deployment command. The current measurement stops at the end of the deployment time.

AN5720 - Rev 3 page 8/72

^{2.} R = READ, W = WRITE

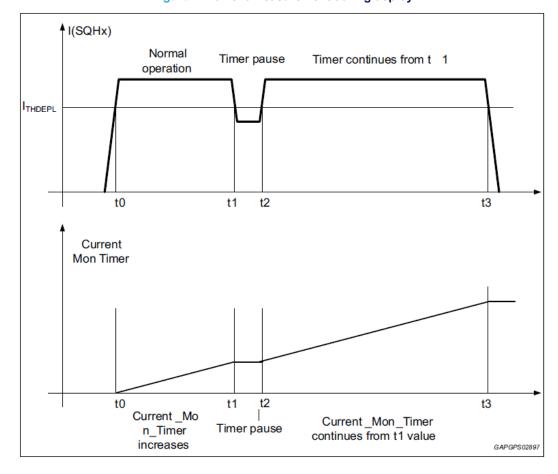


Figure 2. Current measurement during deploy

Table 10. DCMTSxy registers

	(1)	(2)	19:16	15:8	7:0		
¢1E DOMTS01	\$1F DCMTS01			CURRENT MONITOR TIME	CURRENT MONITOR TIME		
\$22 DCMTS67		R	0	CH 1, 3, 5, 7	CH 0, 2, 4, 6		
				16 μs increment while Deploy_curr > monitor threshold channel per channel			

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE

Once the deployment is started, it can be interrupted by:

- Over-current in the Low Side.
- GND loss.
- SSM reset.
- · End of deployment time.

Successful deploy event is reported in the DEPOK bit of GSW (see the Table 11 and the Table 12). Such a flag is the "OR" of the eventual deployment success of all the eight channels.

AN5720 - Rev 3 page 9/72

Table 11.	Global	Status	Word -	GSW
-----------	--------	--------	--------	------------

MISO BIT	31	30	29	28	27	26	25	24	23	22	21
MISO	SPIFLT	DEPOK	0 (unused)	0 (unused)	0 (unused)	POWERFLT	FLT	CONVRDY2	CONVRDY1	ERR_WID	ERR_RID
GSW BIT	10	9	8	7	6	5	4	3	2	1	0

Table 12. DEPOK in GSW

GSW	MISO b[30] DEPOK = GSW b[9]
	0 = all DSR_x/CHxDS bit are = 0 (no deployment success on all channel)
-	1 = at least a deployment successfull on the channels

In case the deploy success is equal to 1, this does not mean that the current is really passed through the squib for the programmed time. This bit means only that no inhibition of deployment has happened. The real evaluation about the deployment is through the channel current monitor time, i.e. DCMTS01÷DCMTS67 registers.

In case of a short to ground of the Low Side during the deployment, the current is limited by the High Side avoiding the device's damage. The same protection is available if an open load condition happens, followed by a short to ground of the Low Side.

3.2 Deployment driver protection

In order to avoid damaging the IC due to eventual free-wheeling, two protections are implemented:

- After a deployment, once the High Side is switched off, the Low Side is kept on for t_{DEL_SD_LS} (50 μs min.) in order to allow fly-back.
- Once Low Side is switched off, a protection against the overvoltage through a clamp structure is implemented.

On the Low Side there is a current limitation and overcurrent protection circuit that attends limiting the current at I_{LIM_SR} (2.2 A ÷ 4 A) and I_{OC_SR} (2.2 A ÷ 4 A) respectively, avoiding, in case of pin short to battery, any damage. If the malfunction lasts over $t_{FLT_ILIM_LS}$ (100 μ s typ), the whole channel (High and Low Side) is switched off until a new deployment command (via SPI_DEPEN register) occurs.

The squib driver can stand the short to ground of the pins during the deployment, because the High Side current is limited by the High Side itself.

It can also manage the case of SRx short to ground after an open circuit, because it is able to detect the open circuit condition and then limiting the current overshoot as the open circuit disappears.

In case of squib's intermittence during deployment phase, current limitation is ensured by the Low Side current limitation, I_{LIM_SR} . If the condition lasts longer than $t_{FLT_OS_LS}$ (20 μs max), the High Side is switched off for $t_{OFF_OS_HS}$ (4 μs ÷ 12 μs) and then on again.

This allows distinguish Open Load and Low Side short to battery cases and then properly manage them.

3.3 Deployment driver example

Since the FENL pin is used (FENL_ACT = 1 in SYS_CFG register), it is connected to 5 V (high level). Since all the deployment loops will be associated to FEN1, the FEN1 pin is pulled high.

The L9679E is the extension chip of the L96xx family, so the external Safing FET is driven by the main chip. In low cost application, where the L9679E is used standalone, it could be removed. In this case the application has a lower Safety level. To be sure not to damage the High Side MOSFETs it is suggested to set the SSxy source below 25 V.

The Table 13 reports a simple example showing the minimum SPI frames needed to configure the device and enable the deployment on all the channels.

AN5720 - Rev 3 page 10/72

Table 13. Deployment SPI sequence

Bit 15: 0 = Auto switch off disabled Bit 14-11: X = Don't care Bit 10: 0 = Short time Bit 9: 0 = Long sync pulses shift duration Bit 8: 0 = Long sync pulses shift duration Bit 9: 0 = Long sync pulses shift duration Bit 8: 0 = Long sync pulses shift duration Bit 9: 0 = Long sync pulses shift duration Bit 9: 0 = Long sync pulses shift duration Bit 14: 0 = Long sync pulses shift duration Bit 14: 0 = Long sync pulses shift duration Bit 14: 0 = Long sync pulses shift duration Bit 14: 0 = Long sync pulses shift duration Bit 14: 0 = Long sync pulses shift duration Bit 14: 0 = Long sync pulses shift duration Bit 14: 0 = Long sync pulses shift duration Bit 14: 0 = Long sync pulses shift duration Bit 14: 0 = Long sync pulses shift duration Bit 14: 0 = Long sync pulses shift duration Bit 14: 0 = Long sync pulses shift duration Bit 14: 0 = Long sync pulses shift duration Bit 14: 0 = Long sync pulses shift duration Bit 14: 0 = Long sync pulses shift duration Bit	Register	State	R/W	Data	Notes
Bit 10: 0 = Short time Bit 9: 0 = Long sync pulses shift duration Bit 9: 0 = Long sync pulses shift duration Bit 9: 0 = Long sync pulses shift duration Bit 9: 0 = Long sync pulses shift duration Bit 8: 4: X = Don't care Bit 4: X = Don't care Bit 4: X = Don't care Bit 2: 0 X = Don't care Bit 2: 0 X = Don't care Bit 10: 0 = Short limit W 0x3CC3 Frame to pass from Init to Diag Part 10: 1 = The Point Part 10: 1 =					Bit 15: 0 = Auto switch off disabled
S01 SYS_CFG					Bit 14-11: X = Don't care
\$01 SYS_CFG					Bit 10: 0 = Short time
Bits 6-5: 00 = 4 sample other measure Bit 4: X = Don't care Bit 3: 1 = FENL enabled Bit 2-0: X = Don't care Bit 3: 1 = FENL enabled Bit 2-0: X = Don't care Bit 3: 1 = FENL enabled Bit 2-0: X = Don't care Bit 3: 1 = FENL enabled Bit 2-0: X = Don't care Bit 3: 1 = FENL enabled Bit 2-0: X = Don't care Bit 10-8: 001 = DIAG					Bit 9: 0 = Long sync pulses shift duration
Bit 4: X = Don't care	\$01 SYS_CFG	Init	W	0x0008	Bits 8-7: 00 = 8 sample DC-squib-temp measure
Bit 3: 1 = FENL enabled Bit 2-0: X = Don't care					Bits 6-5: 00 = 4 sample other measure
Bit 2-0: X = Don't care					Bit 4: X = Don't care
\$04 SYS_STATE					Bit 3: 1 = FENL enabled
\$35 DIAG_STATE					Bit 2-0: X = Don't care
\$04 SYS_STATE	\$04 SYS_STATE	Init	R	-	Bits 10÷8: 000 = INIT
Bit 15: X = Don't care Bit 14: 0 = 1 mA squib pull down current, 450 μA VRCM leakage to GND threshold Bit 13: X = Don't care Bit 14: 0 = 1 mA squib pull down current, 450 μA VRCM leakage to GND threshold Bit 13: X = Don't care Bit 12: 0 = VSAT th set to 6.5 V Bit 11+0: X = Don't care Bit 15: 0 = VSAT > VSAT_OK	\$35 DIAG_STATE	Init	W	0x3CC3	Frame to pass from Init to Diag
Sit 14: 0 = 1 mA squib pull down current, 450 μA VRCM leakage to GND threshold	\$04 SYS_STATE	Diag	R	-	Bits 10÷8: 001 = DIAG
\$02 SYS_CTL Diag W 0x0000 Bit 13: X = Don't care Bit 12: 0 = VSAT th set to 6.5 V Bit 11+0: X = Don't care Bit 12: 0 = VSAT_OK Bit 11+0: X = Don't care Bit 15: 0 = VSAT_OK Bit 14: 0 = VSYNC > VSYNC_OK Bit 13-0: X = Don't care \$00 FLTSR Diag R Verify there are not faults Bits 15+8: X = Don't care Bits 15+12: X =					Bit 15: X = Don't care
Bit 12: 0 = VSAT th set to 6.5 V					
Bit 11+0: X = Don't care	\$02 SYS_CTL	Diag	W	0x0000	Bit 13: X = Don't care
\$05 POWER STATE Diag R Bit 15: 0 = VSAT > VSAT_OK Bit 14: 0 = VSYNC > VSYNC_OK Bit 13-0: X = Don't care \$00 FLTSR Diag Diag Vox0FF Bits 15+8: X = Don't care Bits 15+8: X = Don't care Bits 7+0: 1 = FEN1 assigned to 0+7 loops Bits 15+12: X = Don't care Bits 15+12: Don't care Bits 15+12: Don't care Bits 15+12: Don't care B					Bit 12: 0 = VSAT th set to 6.5 V
\$05 POWER STATE Diag R Bit 14: 0 = VSYNC > VSYNC_OK Bit 13-0: X = Don't care \$00 FLTSR Diag R Verify there are not faults Bits 15+8: X = Don't care Bits 7+0: 1 = FEN1 assigned to 0+7 loops Bits 15+12: X = Don't care Bits 15+12: X = Don't care Bits 15+12: X = Don't care Bits 11+6: 0x1001 = 576 µs (9*64 µs step) Bits 15+2: 00 = 500 ms deploy expiration time Bits 1+0: X = Don't care Bits 15+0: X = Don't care Bits 15+0: X = Don't care Bits 15+0: 00 = 500 ms deploy expiration time Bits 1+0: 00 = 500 ms deploy expiration time Bits 1+0: 00 = 600 print to the print					Bit 11÷0: X = Don't care
Bit 13-0: X = Don't care \$00 FLTSR Diag R - Verify there are not faults \$6E LOOP_MATRIX_ARM1 Diag W 0x00FF Bits 15+8: X = Don't care Bits 7+0: 1 = FEN1 assigned to 0+7 loops Bits 15+12: X = Don't care Bits 15+12: X = Don't care Bits 15+12: X = Don't care Bits 11+6: 0x1001 = 576 µs (9*64 µs step) Bits 3+2: 00 = 500 ms deploy current Bits 3+2: 00 = 500 ms deploy expiration time Bits 1+0: X = Don't care Bit 15: 0 = deployment not successful Bit 14: 0 = deployment not in progress Bit 12: 0 = deployment configuration accepted Bits 5+0: deployment expiration timer value \$31 SAFING_STATE Diag V 0xACAC Frame to pass from Diag to Safing \$04 SYS_STATE S R Bits 10+8: 010 = SAFING \$25 SPIDEPEN S, A W 0x00FF Unlock Code \$12 DEPCOM S, A W 0x00FF Bits 7+0: 0xFF = deploy requests for all channels \$25 SPIDEPEN S, A W 0x0FFO Lock Code					Bit 15: 0 = VSAT > VSAT_OK
\$00 FLTSR Diag R - Verify there are not faults \$6E LOOP_MATRIX_ARM1 Diag W 0x00FF Bits 15+8: X = Don't care Bits 7+0: 1 = FEN1 assigned to 0+7 loops Bits 15+12: X = Don't care Bits 11+6: 0x1001 = 576 µs (9*64 µs step) Bits 3+2: 00 = 500 ms deploy expiration time Bits 1+0: X = Don't care Bits 15+0: X = Don't care Bits 1+0: X = Don't care Bits 1+0: X = Don't care Bit 15: 0 = deployment not successful Bit 14: 0 = deployment not in progress Bit 12: 0 = deployment configuration accepted Bit 2: 0 = deployment expiration timer value \$31 SAFING_STATE Diag W 0xACAC Frame to pass from Diag to Safing \$04 SYS_STATE S R - Bits 10+8: 010 = SAFING \$25 SPIDEPEN S, A W 0x0FF0 Lock Code \$12 DEPCOM S, A W 0x00FF Bits 7+0: 0xFF = deploy requests for all channels \$25 SPIDEPEN S, A W 0x0FF0 Lock Code	\$05 POWER STATE	Diag	R	-	Bit 14: 0 = VSYNC > VSYNC_OK
\$6E LOOP_MATRIX_ARM1 Diag W 0x00FF Bits 15+8: X = Don't care Bits 7+0: 1 = FEN1 assigned to 0+7 loops Bits 15+12: X = Don't care Bits 11+6: 0x1001 = 576 µs (9*64 µs step) \$06 DCR_0 + \$0D DCR_7 Diag W 0x0250 Bits 5+4: 01 = 1.75 A deploy current Bits 3+2: 00 = 500 ms deploy expiration time Bits 1+0: X = Don't care Bit 15: 0 = deployment not successful Bit 14: 0 = deployment not in progress Bit 12: 0 = deployment configuration accepted Bits 5+0: deployment expiration timer value \$31 SAFING_STATE Diag W 0xACAC Frame to pass from Diag to Safing \$04 SYS_STATE S R - Bits 10+8: 010 = SAFING \$25 SPIDEPEN S, A W 0x0FF0 Lock Code \$12 DEPCOM S, A W 0x0FF0 Lock Code \$25 SPIDEPEN S, A W 0x0FF0 Lock Code \$25 SPIDEPEN S, A W 0x0FF0 Lock Code					Bit 13-0: X = Don't care
\$6E LOOP_MATRIX_ARM1 Diag W 0x00FF Bits 7+0: 1 = FEN1 assigned to 0+7 loops Bits 15+12: X = Don't care Bits 11+6: 0x1001 = 576 µs (9*64 µs step) \$06 DCR_0 + \$0D DCR_7 Diag W 0x0250 Bits 5+4: 01 = 1.75 A deploy current Bits 3+2: 00 = 500 ms deploy expiration time Bits 1+0: X = Don't care Bit 15: 0 = deployment not successful Bit 14: 0 = deployment configuration accepted Bits 5+0: deployment expiration timer value \$31 SAFING_STATE Diag W 0xACAC Frame to pass from Diag to Safing \$04 SYS_STATE S R - Bits 10+8: 010 = SAFING \$25 SPIDEPEN S, A W 0x0FF0 Lock Code \$12 DEPCOM S, A W 0x0FF0 Bits 7+0: 0xFF = deploy requests for all channels \$25 SPIDEPEN S, A W 0x0FF0 Lock Code	\$00 FLTSR	Diag	R	-	Verify there are not faults
Bits 15+12: X = Don't care Bits 11+6: 0x1001 = 576 μs (9*64 μs step) \$06 DCR_0 ÷ \$0D DCR_7 Diag W 0x0250 Bits 5+4: 01 = 1.75 A deploy current Bits 3+2: 00 = 500 ms deploy expiration time Bits 1+0: X = Don't care Bit 15: 0 = deployment not successful Bit 14: 0 = deployment not in progress Bit 12: 0 = deployment configuration accepted Bits 5+0: deployment expiration timer value \$31 SAFING_STATE Diag W 0xACAC Frame to pass from Diag to Safing \$04 SYS_STATE S R - Bits 10+8: 010 = SAFING \$25 SPIDEPEN S, A W 0x0FF0 Lock Code \$12 DEPCOM S, A W 0x0FF Bits 7+0: 0xFF = deploy requests for all channels \$25 SPIDEPEN S, A W 0x0FF0 Lock Code	\$6E LOOP_MATRIX_ARM1	Diag	W	0x00FF	
Substraction Sub					· ·
\$06 DCR_0 ÷ \$0D DCR_7 Diag W 0x0250 Bits 5÷4: 01 = 1.75 A deploy current Bits 3÷2: 00 = 500 ms deploy expiration time Bits 1+0: X = Don't care Bit 15: 0 = deployment not successful Bit 14: 0 = deployment configuration accepted Bits 5÷0: deployment expiration timer value \$31 SAFING_STATE Diag W 0xACAC Frame to pass from Diag to Safing \$04 SYS_STATE S R Bits 10+8: 010 = SAFING \$25 SPIDEPEN S, A W 0xOFF0 Unlock Code \$12 DEPCOM S, A W 0x0FF0 Lock Code \$25 SPIDEPEN S, A W 0x0FF0 Lock Code \$12 DEPCOM S, A W 0x0FF0 Lock Code					
Bits 3+2: 00 = 500 ms deploy expiration time Bits 1+0: X = Don't care Bit 15: 0 = deployment not successful Bit 14: 0 = deployment not in progress Bit 12: 0 = deployment configuration accepted Bits 5+0: deployment expiration timer value \$31 SAFING_STATE Diag W 0xACAC Frame to pass from Diag to Safing \$04 SYS_STATE S R - Bits 10+8: 010 = SAFING \$25 SPIDEPEN S, A W 0xFF0 Lock Code \$25 SPIDEPEN S, A W 0xF0F Unlock Code \$12 DEPCOM S, A W 0x0FF0 Lock Code \$25 SPIDEPEN S, A W 0x0FF0 Lock Code	#00 DOD 0 : #0D DOD 7	D:	10/	00050	
Bits 1÷0: X = Don't care Bit 15: 0 = deployment not successful Bit 14: 0 = deployment not in progress Bit 12: 0 = deployment configuration accepted Bits 5÷0: deployment expiration timer value \$31 SAFING_STATE Diag W 0xACAC Frame to pass from Diag to Safing \$04 SYS_STATE S R - Bits 10+8: 010 = SAFING \$25 SPIDEPEN S, A W 0x0FF0 Lock Code \$12 DEPCOM S, A W 0x0FF Bits 7÷0: 0xFF = deploy requests for all channels \$25 SPIDEPEN S, A W 0x0FF0 Lock Code	\$06 DCR_0 ÷ \$0D DCR_7	Diag	VV	0x0250	
Bit 15: 0 = deployment not successful Bit 14: 0 = deployment not in progress Bit 12: 0 = deployment configuration accepted Bits 5÷0: deployment expiration timer value \$31 SAFING_STATE Diag W 0xACAC Frame to pass from Diag to Safing \$04 SYS_STATE S R - Bits 10÷8: 010 = SAFING \$25 SPIDEPEN S, A W 0x0FF0 Lock Code \$25 SPIDEPEN S, A W 0xF00F Unlock Code \$12 DEPCOM S, A W 0x0FF0 Lock Code \$25 SPIDEPEN S, A W 0x0FF0 Lock Code					
Bit 14: 0 = deployment not in progress Bit 12: 0 = deployment configuration accepted Bits 5+0: deployment expiration timer value \$31 SAFING_STATE					
Bit 12: 0 = deployment configuration accepted Bits 5÷0: deployment expiration timer value \$31 SAFING_STATE Diag W 0xACAC Frame to pass from Diag to Safing \$04 SYS_STATE S R Bits 10÷8: 010 = SAFING \$25 SPIDEPEN S, A W 0x0FF0 Unlock Code \$12 DEPCOM S, A W 0x0FF0 Lock Code \$25 SPIDEPEN S, A W 0x0FF0 Lock Code Lock Code \$25 SPIDEPEN S, A W 0x0FF0 Lock Code Lock Code Lock Code S25 SPIDEPEN S, A W 0x0FF0 Lock Code Lock Code					
Bits 5÷0: deployment expiration timer value \$31 SAFING_STATE Diag W 0xACAC Frame to pass from Diag to Safing \$04 SYS_STATE S R - Bits 10÷8: 010 = SAFING \$25 SPIDEPEN S, A W 0x0FF0 Lock Code \$25 SPIDEPEN S, A W 0xF00F Unlock Code \$12 DEPCOM S, A W 0x00FF Bits 7÷0: 0xFF = deploy requests for all channels \$25 SPIDEPEN S, A W 0x0FF0 Lock Code	13 DSR_0 ÷ \$1A DSR_7	Diag	R	-	
\$31 SAFING_STATE Diag W 0xACAC Frame to pass from Diag to Safing \$04 SYS_STATE S R - Bits 10÷8: 010 = SAFING \$25 SPIDEPEN S, A W 0x0FF0 Lock Code \$25 SPIDEPEN S, A W 0xF00F Unlock Code \$12 DEPCOM S, A W 0x00FF Bits 7÷0: 0xFF = deploy requests for all channels \$25 SPIDEPEN S, A W 0x0FF0 Lock Code					
\$04 SYS_STATE	\$31 SAFING STATE	Diag	W	0xACAC	
\$25 SPIDEPEN	_	_		-	
\$25 SPIDEPEN S, A W 0xF00F Unlock Code \$12 DEPCOM S, A W 0x00FF Bits 7÷0: 0xFF = deploy requests for all channels \$25 SPIDEPEN S, A W 0x0FF0 Lock Code	_			0x0FF0	
\$12 DEPCOM S, A W 0x00FF Bits 7+0: 0xFF = deploy requests for all channels \$25 SPIDEPEN S, A W 0x0FF0 Lock Code					
\$25 SPIDEPEN S, A W 0x0FF0 Lock Code					
	\$13 DSR_0 ÷ \$1A DSR_7	S, A	R	_	Bit 15: 1 = deployment successful

AN5720 - Rev 3 page 11/72

3.3.1 Deployment waveforms

The Figure 3 and Figure 4 report some examples where a high current Pyro Fuse has been used and four channels have been put in parallel in order to achieve target current values for deployment to occur.

Referring to the Figure 1, the system has been setup with two different scenarios:

- With Safing FET, VER set to 33 V and VSF set to 25 V on main chip L96xx.
- Without Safing FET and VER set to 24 V on main chip L96xx.

The signals are the following:

- Blue = SRx
- Light blue = SFx
- Magenta = VER
- Green = Load current

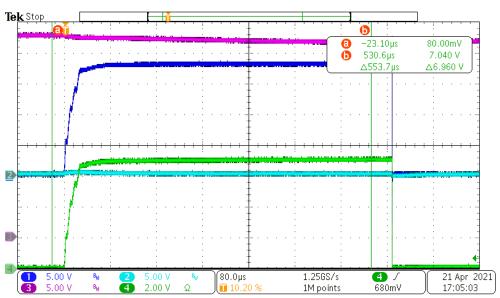
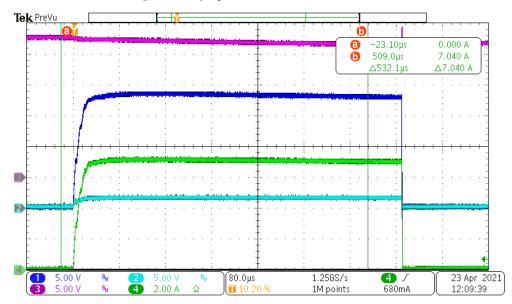



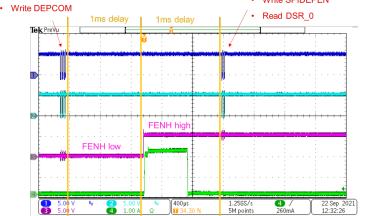
Figure 4. Deployment waveforms, VER = 24 V

AN5720 - Rev 3 page 12/72

3.4 Arming command after deployment command

It is also possible to have a deployment event in a different way, i.e., first sending the SPI deploy command, then asserting the arming signal.

An example (watchdog disabled, deployment on Channel 0) is shown in the Table 14 and the Figure 5.


Table 14. Deploy event with Arming command after SPI deployment command

Register read	Register written	SPI frame (hex)
	Configuration	
SYS_STATE	SYS_CFG	0x04020008
SYS_CFG	1	0x01000000
SYS_STATE	1	0x0400000
SYS_STATE	DIAG_STATE	0x046A3CC3
SYS_STATE	1	0x0400000
POWER_STATE	SYS_CTL	0x05040000
FLTSR	1	0x00010000
LOOP_MATRIX_ARM1	LOOP_MATRIX_ARM1	0x6EDC0001
DCR_0	DCR_0	0x060C0250
SYS_STATE	SAFING_STATE	0x0463ACAC
SYS_STATE	1	0x0400000
	Deployment commands	
SPIDEPEN	SPIDEPEN	0x254B0FF0
SPIDEPEN	SPIDEPEN	0x254BF00F
DEPCOM	DEPCOM	0x12240001
1	ms delay - FENH high - 1 ms delay	
SPIDEPEN	SPIDEPEN	0x254B0FF0
DSR_0	1	0x13000000

Figure 5. Deploy event with Arming command after SPI deployment command

• Write SPIDEPEN

Write SPIDEPEN

Write SPIDEPEN

Blue = SPI_CLK Light blue = SPI_MOSI Magenta = FENH Green = Load current

NN5720 - Rev 3 page 13/72

4 Diagnostic

For all the channels the following diagnostics are implemented:

- High voltage leak test, for SFx and SRx oxide isolation
- VRCM test
- Leakage to battery/ground for SFx and SRx with/ without squib
- Loop to loop short diagnostic
- Squib resistance measurement leakage cancellation
- High squib resistance, 500 Ω ÷ 2000 Ω
- SSxy, SFx,and VER voltage monitor
- Low Side FET diagnostic
- High Side FET diagnostic
- · Loss of ground
- · High Side Safing FET diagnostic
- Deployment timer diagnostic

In application cases where some channels are shorted and connected to the same load, the *Loop to loop short diagnostic* does not work.

These diagnostics data are elaborated by a 10 bits ADC converter.

Diagnostic can be performed in two ways:

- High level: the set-up for each requested measurement is managed by the device itself.
- Low level: the set-up for each requested measurement is managed by an external logic, step by step.

The choice of high or low level diagnostic is set via SPI (see the Table 15).

Table 15. High or Low level diagnostic

\$38 LPDIAGREQ	Config. in DIAG, SAFING, ARMING state
DIAG LEVEL, bit 15	0 = low level
DIAG_LEVEL, bit 15	1 = high level

The relevant blocks used for the diagnostic are reported in the Figure 6.

In particular there are a Voltage Regulator Current Monitor (VRCM) and three current generators that withstand diagnostic operations, ISRC (40 mA), ISINK (limit 70 mA) and Ipulldown (1 mA).

AN5720 - Rev 3 page 14/72

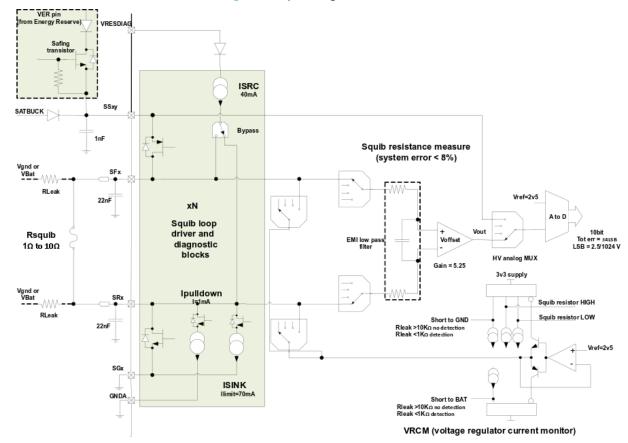


Figure 6. Squib diagnostic blocks

AN5720 - Rev 3 page 15/72

4.1 Low level diagnostic

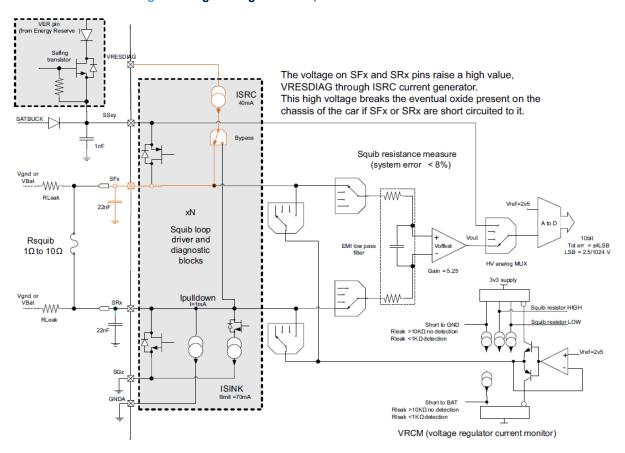
For a low level diagnostic, these steps shall be followed (see the Table 16):

- 1. If present, ER charge has to be previously turned on by the main chip; otherwise a max 25 V should be supplied.
- 2. Verify that the IC is in DIAG state reading register \$04.
- 3. Decide, writing the appropriate bit in reg. \$38, which diagnostic mode is used.

Table 16. Low level diagnostic

	(1)	(2)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
																			14: PD&VRCM_SEL
																			0 = 1 mA pull down current and 450 μA VRCM leakage to GND threshold
\$02 SYS_CTL	-	w	х	0/1	х	0/1	х	х	x	x	х	x	х	Х	x	x	X	х	1 = 5 mA pull down current and 2 mA VRCM leakage to GND threshold
																			12: VIN_TH_SEL depends on application
																			0 = VSAT_OK = 6.5 V
																			1 = VSAT_OK = 8.1 V
#04 CVC CTATE		_								4							4		10, 9, 8: 001 = DIAG
\$04 SYS_STATE		R						0	0	1						0		0	2, 1, 0: 010 = RUN
\$38 LPDIAGREQ	(l)	W	0			14:0	defin	e th	e te	est,	see	ne	xt c	hap	pte	s			15:0 = low level diag
\$37 LPDIAGSTAT																			
(3) 19 18 17 16		R	0		•	14:0	detin	ie th	e te	est,	see	e ne	xt c	hap	pte	°S			15:0 = low level diag
\$3X DIAGCTRL_X				.,															
X = A, B, C, D		W		Х	Х	Х	Х	Х	X	X	X	'	6:0	AD	C a	ıddı	ress	SSS	
(3) 19 18 17 16				10.40		0		_				2.0	A D (~		14			40.4
1				16:10	AD	C add	ares	S			٤	9:0	AD(J r€	esu	Ι	19:1 = conversion finished		

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.


In low level mode, the IC performs the measurement, following the external requests. Each test set-up is driven, step by step, by the microcontroller, as the timing for the measurement.

AN5720 - Rev 3 page 16/72

4.1.1 High voltage leak test, oxide isolation IC-car chassis

Figure 7. High voltage leak test, oxide isolation IC-car chassis

This test is mandatory and verifies that no leakages are present on the SFx or SRx pins when high voltage is applied. ISRC current generator is ON and addressed on SFx (see the Table 17).

If there is no leakage, SFx raises up to VSYNC and, being the impedance between SFx and SRx very low (squib connected), SRx follows SFx (see the Figure 7).

Confirmation of this is done through an ADC measurement request of the SFx voltage value.

Table 17. High voltage leak test, oxide isolation IC-car chassis - LPDIAGREQ register

	(1)	(2)	15	14	13	12:11	10	9:8	7:4	3:0	
						12.11		0.0	RES_MEAS_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2	LEAK_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2	15: 0 = low level diag 14: 0 = ISRC = 40 mA 13: 1 = pull-down curr. OFF for all channels
\$38 LPDIAGREQ	(1)	W	0	0	1	01	0	00	0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7 1000 = ch8	0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7 1000 = ch8	12, 11: 01 = ISCR for RES_MEAS_CHSEL, OFF for the others 10: 0 = ISINK all OFF 9, 8: 00 = VRCM not connected

1. I = INIT, D = DIAG, S = SAFING, A = ARMING, - = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING

AN5720 - Rev 3 page 17/72

^{2.} R = READ, W = WRITE

SFx voltages and VSYNC are readable by the microcontroller through the ADC converter in the registers \$3X DIAGCTRL X, with X = A, B, C, D (see the Table 18).

Table 18. High voltage leak test, oxide isolation IC-car chassis - DIAGCTRL_X registers

					(1)	(2)	15	14	13	12	11	10	9	8	7	6:0					
																ADCREQ_X					
																\$25 = VSYNC					
																\$46 = SF0					
																\$47 = SF1					
	\$	3X E	OIAG	CTRL_X	_	W	x	Х	Х	Х	Х	Х	Х	Х	Х	\$48 = SF2					
		X =	А, В	, C, D	-	VV	^	^	^	^	^	^	^	^	^	\$49 = SF3					
																\$4A = SF4					
																\$4B = SF5					
																\$4C = SF6					
																\$4D = SF7					
(3)	19	18	17	16													19: 1 = conversion finished				
							ADCREQ_X														
								\$2	25 = \	/SYN	IC										
								,	\$46 =	SFC)										
								,	\$47 =	SF1											
	1	0		ADCREO V	_	R		,	\$48 =	SF2	2		ļ ,	DCI	DEO	_X 10 bit ADC result					
	1 0 0 ADCREQ_X					K		,	\$49 =	SF3	3		′	NDCI	\⊏Q _.	_X TO bit ADC result					
								5	\$4A =	= SF4	ŀ										
								5	\$4B =	= SF5	5										
								5	\$4C =	= SF6	6										
								5	\$4D =	= SF7	7										

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

Once read the ADC measurement, to obtain the voltage value it is necessary to consider the divider ratio of the ADC. In case of SFx it is 15:1, in case of VSYNC it is 10:1.

As an example, consider the case where the VSYNC conversion has been requested and the readout of the ADC register is done. The voltage measured on VSYNC pin is 12 V.

ADC = 0b0111101100 = 0x1EC = 492

In order to obtain the result in Volt, being the ADC characteristic linear:

$$2.5 V: 1024 = x: ADC \rightarrow x = \frac{492 * 2.5 V}{1024} = 1.2 V$$
 (1)

Considering the divider ratio (DR), the result is:

$$VRESDIAG = x * DR = 1.2 V * 10 = 12 V$$
 (2)

Test result

In case of leakage on High Side (SFx) or Low Side (SRx), SFx voltage is not able to reach VSYNC and the microcontroller can detect the leakage problem, both on the High Side or on the Low Side, with no possibility, at this stage, to distinguish which of them is involved in the problem.

AN5720 - Rev 3 page 18/72

4.1.2 VRCM test validation

Before using VRCM block, used in many IC diagnostics, it is necessary a test for its validation. The test is done through short to battery and short to ground flag verification. Measurement set-up is composed by 2 steps, with VSYNC supplied.

4.1.2.1 VRCM test - First step

VER p HS FET diagnostic: check VRCM functionality First we use ISRC current generator to check VRCM block ISRC Squib resistance measure (system error < 8%) Vgnd or VBat -WW Squib loop Rsquib driver and diagnostic 1Ω to 10Ω HV analog MUX Gain = 5.25 lpulldown -WW Short to GND Rleak >10KΩ no detection Rleak <1KΩdetection Squib resistor LOW 111 ISINK

Figure 8. VRCM test validation - First step

The first step (see the Figure 8) is verified through the LPDIAGREQ register (see the Table 19).

(1) | (2) | 15 | 14 | 13 | 12:11 | 10 | 9:8 7:4 3:0 RES_MEAS_CHSEL LEAK_CHSEL 0000 = ch00000 = ch015: 0 = low level diag 0001 = ch10001 = ch114: 0 = ISRC = 40 mA 0010 = ch20010 = ch213: 1 = pull-down curr. OFF all ch 0011 = ch30011 = ch312, 11: 01 = ISCR for RES_MEAS_CHSEL, \$38 LPDIAGREQ (I) W 0 0 01 0 01 0100 = ch40100 = ch4OFF for the others 0101 = ch50101 = ch510: 0 = ISINK all OFF 0110 = ch60110 = ch69, 8: 01 = VRCM connected to SFx (LEAK_CHSEL) 0111 = ch70111 = ch71000 = ch81000 = ch8

Table 19. VRCM test validation (first step) - LPDIAGREQ register

AN5720 - Rev 3 page 19/72

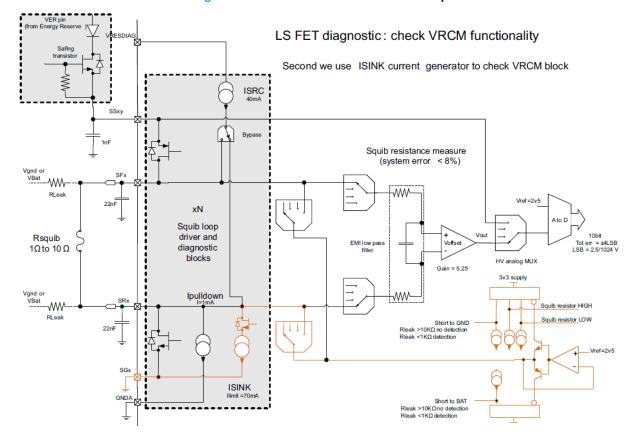
 $^{1. \}quad I = INIT, \ D = DIAG, \ S = SAFING, \ A = ARMING, \ - = ALL \ STATES, \ (I) = no \ in \ INIT, \ (D) = no \ in \ DIAG, \ (S) = no \ in \ SAFING, \ (A) = no \ in \ ARMING$

^{2.} R = READ, W = WRITE

RES_MEAS_CHSEL, bit[7:4] and LEAK_CHSEL, bit[3:0] must refer to the same channel.

Test 1 result

Being ISRC and VRCM connected to SFx, if VRCM works correctly, short to battery, readable in the LPDIAGSTAT register, is asserted for the channel selected (see the Table 20).


Table 20. VRCM test validation (first step) - LPDIAGSTAT register

					(1)	(2)	15:12	11:8	7	6	5	4	3:0	
(3)	19 0	18 0	GSTA 17	16 0	(1)	R R	15:12 X	11:8 RES_MEAS_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7	0	0	1	1	3:0 LEAK_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7	19: 0 = low level diag 7: 0 = no short between loops 6: 0 = STG not detected 5: 1 = STB detected 4: 1 = test on SFx
								1000 = ch8					1000 = ch8	

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

4.1.2.2 VRCM test - Second step

Figure 9. VRCM test validation - Second step

AN5720 - Rev 3 page 20/72

Once the first step of VRCM test is passed, it is possible to proceed with the second step (see the Figure 9), always through the LPDIAGREQ register (see the Table 21).

Table 21. VRCM test validation (second step) - LPDIAGREQ register

	(1)	(2)	15	14	13	12:11	10	9:8	7:4	3:0	
									RES_MEAS_CHSEL	LEAK_CHSEL	
									0000 = ch0	0000 = ch0	15: 0 = low level diag
									0001 = ch1	0001 = ch1	14: 0 = ISRC = 40 mA
									0010 = ch2	0010 = ch2	13: 1 = pull-down curr. OFF for all channels
\$38 LPDIAGREQ	(I)	w	0	0	1	00	1	10	0011 = ch3	0011 = ch3	12, 11: 00 = ISRC OFF for all channels
\$55 E. S (5.1.E.)	(.,				·				0100 = ch4	0100 = ch4	10: 1 = ISINK ON (RES_MES_CHSEL), OFF
									0101 = ch5	0101 = ch5	for the others
									0110 = ch6	0110 = ch6	9, 8: 10 = VRCM connected to SRx
									0111 = ch7	0111 = ch7	(LEAK_CHSEL)
									1000 = ch8	1000 = ch8	

 $^{1. \}quad I = INIT, \ D = DIAG, \ S = SAFING, \ A = ARMING, \ - = ALL \ STATES, \ (I) = no \ in \ INIT, \ (D) = no \ in \ DIAG, \ (S) = no \ in \ SAFING, \ (A) = no \ in \ ARMING$

RES MEAS CHSEL, bit[7:4] and LEAK CHSEL, bit[3:0] must refer to the same channel.

Test 2 result

Being ISNK and VRCM connected to SRx, if VRCM works correctly, short to ground, readable in the LPDIAGSTAT register, is asserted for the channel selected (see the Table 22).

Table 22. VRCM test validation (second step) - LPDIAGSTAT register

					(1)	(2)	15:12	11:8	7	6	5	4	3:0	
(3)	\$37 LI	PDIA 18	17 0	16 0		R	×	RES_MEAS_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7 1000 = ch8	0	1	0	0	LEAK_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7 1000 = ch8	19: 0 = low level diag 7: 0 = no short between loops 6: 1 = STG detected 5: 0 = STB not detected 4: 0 = test on SRx

 $^{1. \}quad I = INIT, \ D = DIAG, \ S = SAFING, \ A = ARMING, \ - = ALL \ STATES, \ (I) = no \ in \ INIT, \ (D) = no \ in \ DIAG, \ (S) = no \ in \ SAFING, \ (A) = no \ in \ ARMING$

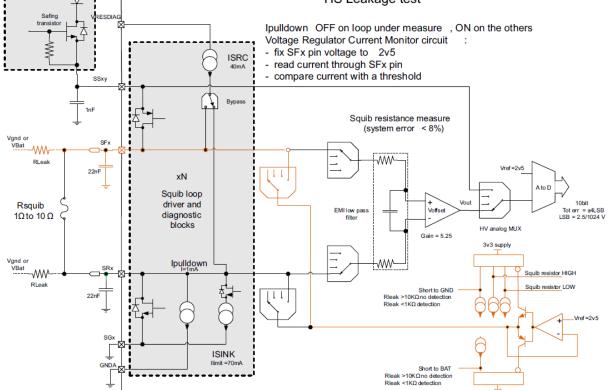
Final result

If the second step of the VRCM test is passed too, the VRCM test is validated.

AN5720 - Rev 3 page 21/72

^{2.} R = READ, W = WRITE

^{2.} R = READ, W = WRITE


^{3.} Further bit over the 16 standard.

4.1.3 Leakage test - High Side

HS Leakage test Voltage Regulator Current Monitor circuit

Figure 10. Leakage test - High Side

ISRC and ISINK are kept off and VRCM is connected to SFx (see the Figure 10), chosen through the LEAK_CHSEL bits in the LPDIAGREQ register (see the Table 23).

(1) (2) 15 14 13 12:11 10 9:8 7:4 3:0 RES MEAS CHSEL LEAK CHSEL 0000 = ch00000 = ch015: 0 = low level diag 0001 = ch10001 = ch114: 0 = ISRC = 40 mA 0010 = ch20010 = ch213: 0 = pull-down curr. OFF for VRCM ch; ON 0011 = ch30011 = ch3for the others \$38 LPDIAGREQ (I) W 0 0 01 0 0 00 0100 = ch40100 = ch412, 11: 00 = ISCR OFF for all channels 0101 = ch50101 = ch510: 0 = ISINK all OFF 0110 = ch60110 = ch69, 8: 01 = VRCM to SFx (LEAK_CHSEL) 0111 = ch70111 = ch71000 = ch81000 = ch8

Table 23. Leakage test, High Side - LPDIAGREQ register

Test result

If there is no leakage on the High Side, SFx voltage is equal to VREF = 2.5 V and no current is detected by VRCM itself. SFx voltage is readable addressing the ADC read out on it. The registers involved in this operation are the four DIAGCTRL X (see the Table 24).

AN5720 - Rev 3 page 22/72

^{1.} I = INIT, D = DIAG, S = SAFING, A = ARMING, - = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING

^{2.} R = READ, W = WRITE

					(1)	(2)	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	1	0	
	\$			CTRL_X , C, D	_	w	X	X	×	x	×	x	X	X	X			\$4 \$4 \$4 \$4 \$4 \$4	CRI 6 = 17 = 18 = 19 = 18 = 18 = 18 = 18 = 18 = 18	SFO SFO SFO SFO SFO SFO) 1 2 3 4 5			
(3)	19	18	17	16																				19: 1 = conversion finished
	1	0	0	ADCREQ_X	-	R		; ; ;	\$46 = \$47 = \$48 = \$49 = \$4A = \$4B =	EQ_: = SF0 = SF1 = SF2 = SF3 = SF4 = SF5 = SF6			,	ADC	CRE	Q_X	10) bi	t AE	OC r	esı	ult		

Table 24. Leakage test, High Side - DIAGCTRL_X register

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

Once read the ADC measurement, to obtain the voltage value it is necessary to consider the divider ratio of the ADC, that is 15:1 in case of SFx.

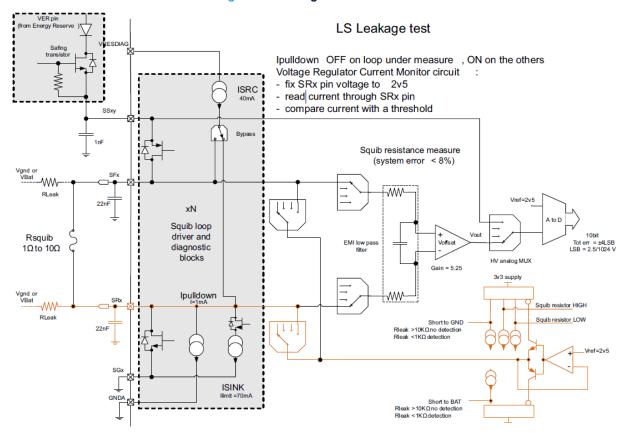
In case of a leakage (to ground or to battery), VRCM will sink or source a current to maintain SFx at VREF. Therefore, STG or STB is set in the LPDIAGSTAT register (see the Table 25).

					(1)	(2)	15:12	11:8	7	6	5	4	3:0	
(3)	19 0	PDIA 18	GST/ 17	AT 16	(1)	R R	15:12 X	11:8 RES_MEAS_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5	0	0/1	0/1	1	3:0 LEAK_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5	19: 0 = low level diag 7: 0 = no short between loops 6: 1 = STG if leak vs GND 5: 1 = STB if leak vs BATT
								0110 = ch6 0111 = ch7 1000 = ch8					0110 = ch6 0111 = ch7 1000 = ch8	4: 1 = test on SFx

Table 25. Leakage test, High Side - LPDIAGSTAT register

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

AN5720 - Rev 3 page 23/72


Pull-down current (1 mA) is active on all the channels except the one under analysis. So, the STG requires further investigation to understand if it comes from a real short to ground of the channel itself or it comes from a short between the channel itself and another one.

Note:

In Pyro Fuse Application with channels shorted together, a leakage on a channel causes a fault on all the channels.

4.1.4 Leakage test - Low Side

Figure 11. Leakage test - Low Side

ISRC and ISINK are kept off and VRCM is connected to SRx (see the Figure 11), chosen through the LEAK_CHSEL bits in the LPDIAGREQ register (see the Table 26).

Table 26. Leakage test, Low Side - LPDIAGREQ register

	(1)	(2)	15	14	13	12:11	10	9:8	7:4	3:0	
									RES_MEAS_CHSEL	LEAK_CHSEL	
									0000 = ch0	0000 = ch0	
									0001 = ch1	0001 = ch1	15: 0 = low level diag
									0010 = ch2	0010 = ch2	14: 0 = ISRC = 40 mA
\$38 LPDIAGREQ	(I)	w	0	0	0	00	0	10	0011 = ch3	0011 = ch3	13: 0 = pull-down curr. OFF for VRCM ch; ON for the others
\$50 II 3 II 15 II 12	(.,								0100 = ch4	0100 = ch4	12, 11: 00 = ISCR OFF for all channels
									0101 = ch5	0101 = ch5	10: 0 = ISINK all OFF
									0110 = ch6	0110 = ch6	9, 8: 10 = VRCM to SRx
									0111 = ch7	0111 = ch7	
									1000 = ch8	1000 = ch8	

^{1.} I = INIT, D = DIAG, S = SAFING, A = ARMING, - = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING

AN5720 - Rev 3 page 24/72

2. R = READ, W = WRITE

Test result

If there is no leakage on the High Side, SRx voltage is equal to VREF = 2.5 V and no current is detected by VRCM itself.

Only if the squib is connected, SFx and SRx pins are at the same voltage, so SRx voltage is readable indirectly through SFx voltage, as done in case of High Side leakage test.

SFx voltage is readable addressing the ADC read out on it. The registers involved in this operation are the four DIAGCTRL X (see the Table 27).

(1) (2) 15 8 7 6 5 4 3 2 1 0 ADCREQ X \$46 = SF0 \$47 = SF1 \$48 = SF2 \$3X DIAGCTRL_X $X \mid X \mid X$ W Χ Χ Χ Χ Χ \$49 = SF3 Х X = A, B, C, D\$4A = SF4 \$4B = SF5 \$4C = SF6 \$4D = SF7 19 18 17 16 19: 1 = conversion finished ADCREQ_X \$46 = SF0 \$47 = SF1 \$48 = SF2 R 0 ADCREQ_X \$49 = SF3 ADCREQ_X 10 bit ADC result \$4A = SF4 \$4B = SF5 \$4C = SF6 \$4D = SF7

Table 27. Leakage test, Low Side - DIAGCTRL_X register

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

Once read the ADC measurement, to obtain the voltage value it is necessary to consider the divider ratio of the ADC, that is 15:1 in case of SFx.

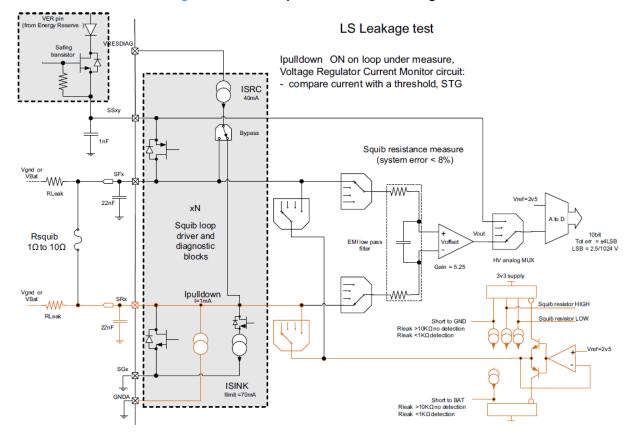
If the squib between SFx and SRx pins is not connected, SRx voltage read out is not possible, as it is not mapped into the ADC request command.

In case of a leakage (to ground or to battery), VRCM will sink or source a current to maintain SFx at VREF. Therefore, STG or STB is set in the LPDIAGSTAT register (see the Table 28).

AN5720 - Rev 3 page 25/72

					(1)	(2)	15:12	11:8	7	6	5	4	3:0	
\$	37 LF	PDIAGSTAT				R		RES_MEAS_CHSEL					LEAK_CHSEL	
(3)	19	18	17	16		R		0000 = ch0					0000 = ch0	
							0001 = ch1					0001 = ch1	19: 0 = low level diag	
							0010 = ch2					0010 = ch2	7: 0 = no short between loops	
				0			Х	0011 = ch3	0	0/1	0/1	0	0011 = ch3	6: 1 = STB if leak vs GND
	0	0	0					0100 = ch4					0100 = ch4	5: 1 = STB if leak vs BATT
	0	U	U					0101 = ch5					0101 = ch5	4: 0 = test on SRx
							0110 = ch6					0110 = ch6		
							0111 = ch7					0111 = ch7		
							1000 = ch8					1000 = ch8		

Table 28. Leakage test, Low Side - LPDIAGSTAT register


- $1. \quad I = INIT, \ D = DIAG, \ S = SAFING, \ A = ARMING, \ = ALL \ STATES, \ (I) = no \ in \ INIT, \ (D) = no \ in \ DIAG, \ (S) = no \ in \ SAFING, \ (A) = no \ in \ ARMING$
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

Pull-down current (1 mA) is active on all the channels except the one under analysis. So, for the case of STG detection, further investigation is necessary to understand if it comes from a real short to ground of the channel or from a short of the channel with another one.

Note: In Pyro Fuse Application with channels shorted together, a leakage on a channel causes a fault on all the channels.

4.1.5 Leakage test - Low Side pulldown current

Figure 12. Low Side pulldown current - Leakage test

AN5720 - Rev 3 page 26/72

After having verified that no HS/LS leakage is present, it is possible to verify if IPD is correctly working. VRCM is connected to SRx (see the Figure 12), chosen through the LEAK_CHSEL. IPD is switched on for that channel (see the Table 29).

Table 29. Leakage test, Low Side pulldown current - LPDIAGREQ register

	(1)	(2)	15	14	13	12:11	10	9:8	7:4	3:0	
									RES_MEAS_CHSEL	LEAK_CHSEL	
									0000 = ch0	0000 = ch0	15: 0 = low level diag
									0001 = ch1	0001 = ch1	14: 0 = ISRC = 40 mA
									0010 = ch2	0010 = ch2	13: 0 = pull-down curr. OFF for VRCM ch; ON
\$38 LPDIAGREQ	(1)	۱۸/	0	0	0	00	0	11	0011 = ch3	0011 = ch3	for the others
\$30 LF DIAGNEQ	(1)	VV		0	U	00	U	11	0100 = ch4	0100 = ch4	12, 11: 00 = ISCR OFF on all channels
									0101 = ch5	0101 = ch5	10: 0 = ISINK all OFF
									0110 = ch6	0110 = ch6	9, 8: 11 = VRCM to SRx and IPD of SRx
									0111 = ch7	0111 = ch7	enabled
									1000 = ch8	1000 = ch8	

^{1.} I = INIT, D = DIAG, S = SAFING, A = ARMING, - = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING

Test result

If IPD is working, SRx voltage is equal to VOUT_VRCM and VRCM shows STG (see the Table 30). If, in this condition, STG is not set, it means that there is something not correctly working in IPD.

Table 30. Leakage test, Low Side pulldown current - LPDIAGSTAT register

					(1)	(2)	15:12	11:8	7	6	5	4	3:0	
(3)	19	PDIA	GSTA 17	16		R R		RES_MEAS_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2	•				LEAK_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2	19: 0 = low level diag
	0	0	0	0			X	0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7 1000 = ch8	0	1	0	0	0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7 1000 = ch8	7: 0 = no short between loops 6: 1 = STG detected 5: 0 = STB not detected 4: 0 = test on SRx

^{1.} I = INIT, D = DIAG, S = SAFING, A = ARMING, - = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING

Note:

In Pyro Fuse Application with channels shorted together, a leakage on a channel causes a fault on all the channels.

AN5720 - Rev 3 page 27/72

^{2.} R = READ, W = WRITE

^{2.} R = READ, W = WRITE

^{3.} Further bit over the 16 standard.

4.1.6 Short between loops

Supposing the external load is connected, a short to ground flag of SRx or SFx can be read as:

- Short of the pin with SR or SF of another channel, both SR and SF
- Real short of the pin SRx or SFx to GND

Note:

In Pyro Fuse Application with channels shorted together, the short to ground should be a real short of SRx or SFx pin to GND. Moreover, a short to ground on a channel will be present on all the others.

In this test the pulldown current generators are switched off for all channels. If the STG is still present, it means a real STG of the channel under test.

The correspondent set up is done by setting the \$38 LPDIAGREQ properly (see the Table 31):

Table 31. Short between loops - LPDIAGREQ register

	(1)	(2)	15	14	13	12:11	10	9:8	7:4	3:0	
\$38 LPDIAGREQ				0	13	00	0	9:8	7:4 RES_MEAS_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7	3:0 LEAK_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7	15: 0 = low level diag 14: 0 = ISCR = 40 mA 13: 1 = pull-down curr. OFF for all channels 12, 11: 00 = ISCR OFF for all channels 10: 0 = ISINK all OFF 9, 8: 01 = VRCM to SFx 10 = VRCM to SRx
									1000 = ch8	1000 = ch8	

^{1.} I = INIT, D = DIAG, S = SAFING, A = ARMING, - = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING

AN5720 - Rev 3 page 28/72

^{2.} R = READ, W = WRITE

4.1.6.1 High Side short to ground

Short between loop
SFi really STG

Short between loop
SFi really STG

Squib resistance measure
(system error < 8%)

Requib
10 10 10 0

Requib
10 10 10 0

Residence of the control of the

Figure 13. High Side short to ground

Ipulldown is OFF for all channels.

The VRCM circuit (see the Figure 13):

- Fixes SFx pin to 2.5 V.
- Reads the current through the SFx pin.
- Compares the current with a threshold.

The result is a STG on SFx.

AN5720 - Rev 3 page 29/72

4.1.6.2 Low Side short to ground

Short between loop
SRi really STG

Safing
Personal South Series South
Series South
Safing
Personal South Series South
Safing
Personal South Series South
Safing
South Series South
South Se

Figure 14. Low Side short to ground

Ipulldown is OFF for all channels.

The VRCM circuit (see the Figure 14):

- Fixes SRx pin to 2.5 V.
- Reads the current through the SRx pin.
- Compares the current with a threshold.

The result is a STG on SRx.

4.1.7 Squib resistance measurements

The IC allows measuring the squib resistance value in the range of 1 Ω ÷ 10 Ω with overall 8% precision.

This is a two-step process.

Note: In Pyro Fuse Application with channels shorted together, the squib resistance measurement should be the same on all the channels.

AN5720 - Rev 3 page 30/72

4.1.7.1 Squib resistance measurements - First step

1°step squib resistance measure: ISRC = 40mA ISRC SSxy Squib resistance measure (system error < 8%) Vref=2v5 22nl χN A to D Squib loop Rsquib driver and 1Ω to 10Ω diagnostic blocks Gain = 5.25 lpulldown ₩ Squib resistor LOW Short to GND ISINK Short to BAT

Figure 15. Squib resistance measurements - First step

Through this set-up (see the Figure 15):

- The ISRC is connected to the SFx.
- The squib is correctly connected between SFx and SRx.
- SRx is internally connected to ISINK that is able to sink the current.

The correspondent set up is done by setting the \$38 LPDIAGREQ properly (see the Table 32):

(1) (2) 15 14 13 12:11 10 9:8 7:4 3:0 RES_MEAS_CHSEL LEAK_CHSEL 0000 = ch00000 = ch015: 0 = low level diag 0001 = ch10001 = ch114: 0 = ISRC = 40 mA 0010 = ch20010 = ch213: 1 = pull-down curr. OFF all ch 0011 = ch30011 = ch312, 11: 01 = ISCR (RES_MEAS_CH) ON, OFF \$38 LPDIAGREQ (I) W 0 00 0 1 01 1 0100 = ch40100 = ch4the others 0101 = ch50101 = ch510: 1 = ISINK (RES_MEAS_CH) ON, OFF the 0110 = ch60110 = ch69, 8: 00 = VRCM not connected 0111 = ch70111 = ch71000 = ch81000 = ch8

Table 32. Squib resistance measurements (first step) - LPDIAGREQ register

2. R = READ, W = WRITE

AN5720 - Rev 3 page 31/72

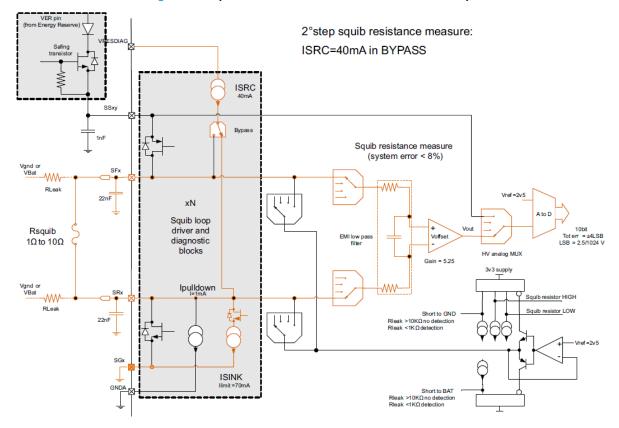
 $^{1. \}quad I = INIT, \ D = DIAG, \ S = SAFING, \ A = ARMING, \ - = ALL \ STATES, \ (I) = no \ in \ INIT, \ (D) = no \ in \ DIAG, \ (S) = no \ in \ SAFING, \ (A) = no \ in \ ARMING$

The first step of the measurement is the read out of the voltage between SFx and SRx that is named resistance into ADC addressing.

This parameter is readable by the microcontroller, via 10bit ADC, through a dedicated request.

The registers to be read are still the four DIAGCTRL_X (see the Table 33):

Table 33. Squib resistance measurements (first step) - DIAGCTRL_X register


					(1)	(2)	15	14	13	12	11	10	9	8	7	6 5 4 3 2 1 0
	\$			CTRL_X , C, D	-	W	х	X	X	Х	Х	X	х	x	x	ADCREQ_X \$06 = squib x resistance
(3)	19	18	17	16												19: 1 = conversion finished
	1	0	ADCREQ_X	-	R	\$0		DCR	_		ice		Α[OCF	REQ_X 10 bit ADC result	

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

Once read the ADC measurement, to obtain the value it is necessary to consider the divider ratio of the ADC. In case of resistance x, it is 1:1.

4.1.7.2 Squib resistance measurements - Second step

Figure 16. Squib resistance measurements - Second step

Through this set-up (see the Figure 16):

- The ISRC is connected to the SRx.
- The squib is correctly connected between SFx and SRx.
- SRx is internally connected to ISINK that is able to sink the current.

AN5720 - Rev 3 page 32/72

The correspondent set up is done by setting the \$38 LPDIAGREQ properly (see the Table 34):

Table 34. Squib resistance measurements (second step) - LPDIAGREQ register

	(1)	(2)	15	14	13	12:11	10	9:8	7:4	3:0	
									RES_MEAS_CHSEL	LEAK_CHSEL	
									0000 = ch0	0000 = ch0	15: 0 = low level diag
									0001 = ch1	0001 = ch1	14: 0 = ISRC = 40 mA
									0010 = ch2	0010 = ch2	13: 1 = pull-down curr. OFF all ch
\$38 LPDIAGREQ	(I)	w	0	0	1	10	1	00	0011 = ch3	0011 = ch3	12, 11: 10 = bypass (RES_MEAS_CH) ON,
QUO EI BII (GI LEG	(.,	···				10			0100 = ch4	0100 = ch4	OFF the others
									0101 = ch5	0101 = ch5	10: 1 = ISINK (RES_MEAS_CH) ON, OFF the
									0110 = ch6	0110 = ch6	others
									0111 = ch7	0111 = ch7	9, 8: 00 = VRCM not connected
									1000 = ch8	1000 = ch8	

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE

The second step of the measurement is the read out of the voltage between SFx and SRx, named resistance into ADC addressing.

This measurement considers the leakage that may be present on the SFx and SRx pins.

As the previous measurement, also this is readable by the microcontroller, via a 10-bit ADC, through the same dedicated request.

The registers to be read are still the four DIAGCTRL_X.

Once read the ADC measurement, to obtain the value it is necessary to consider the divider ratio of the ADC. In case of resistance x, it is 1:1.

In LPDIAGSTAT it is possible to verify on which channel the resistance measurement has been performed (see the Table 35):

Table 35. Squib resistance measurements (second step) - LPDIAGSTAT register

					(1)	(2)	15:12	11:8	7:4	3:0	
	\$37 L	SSTAT	-		R		RES_MEAS_CHSEL		LEAK_CHSEL		
(3)	19	18	17	16		R		0000 = ch0		0000 = ch0	
								0001 = ch1		0001 = ch1	
								0010 = ch2		0010 = ch2	
							Х	0011 = ch3	x	0011 = ch3	19: 0 = low level diag
							^	0100 = ch4	^	0100 = ch4	19. 0 – low level diag
	0	0	0	0				0101 = ch5		0101 = ch5	
								0110 = ch6		0110 = ch6	
								0111 = ch7		0111 = ch7	
								1000 = ch8		1000 = ch8	

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

Having the microcontroller these two measurements (that are two voltage drops across SF and SR), the squib resistance is so calculated:

$$\Delta V_{OUT} = (SFx - SRx)_1 - (SFx - SRx)_2 \tag{3}$$

AN5720 - Rev 3 page 33/72

$$R_{SQUIB} = \frac{\Delta V_{OUT}}{G * ISRC} \tag{4}$$

With:

- G = 5.25 ± 2% (differential amplifier gain)
- ISRC = 40 mA ± 5%

Immediately after the ADC read-out, ISRC is automatically switched OFF to reduce the power consumption.

Example:

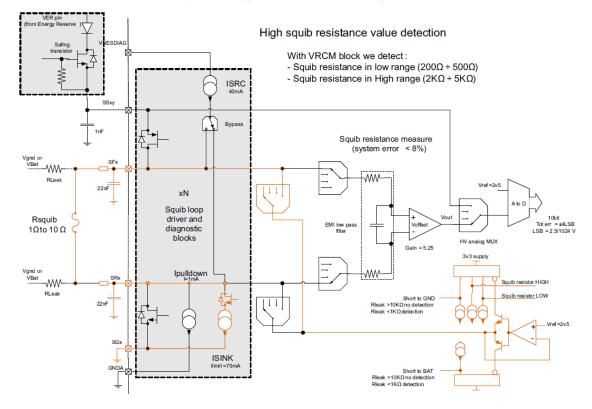
- ADC_{1ST CONVERSION} = 0b0100111000 = 312
- ADC_{2ND CONVERSION} = 0b0010000001 = 129
- $\Delta_{ADC} = 312 129 = 183$

In order to obtain the result in Volt, being the ADC characteristic linear:

$$2.5 V: 1024 = x: \Delta_{ADC} \rightarrow x = \frac{183 * 2.5 V}{1024} = 0.44 V$$
 (5)

In order to obtain resistance value, considering typical factors:

$$R_{SQUIB} = \frac{x}{G*ISRC} = \frac{0.44 \, V}{5.25*40 \, mA} = 2.1 \, \Omega \tag{6}$$


4.1.8 High squib resistance diagnostic

The aim of the test is to understand if the squib resistor is below 200 Ω , between 500 Ω and 2 k Ω , or beyond 5 k Ω .

In case of a very high squib resistance, there is the possibility to set a lower ISRC current, through the ISRC_CURR_SEL bit, bit 14 in the \$LPDIAGREQ register. In this way, ADC maintains a good dynamic.

The Figure 17, referred to ISRC = 40 mA, is true also in case of ISRC = 8 mA.

Figure 17. High squib resistance diagnostic

Through this set-up (see the Figure 17):

AN5720 - Rev 3 page 34/72

- The ISINK is connected to the SRx.
- The squib is correctly connected between SFx and SRx.
- SRx is internally connected to ISINK that can sink the current.

Note:

In Pyro Fuse Application with channels shorted together, the high squib resistance measurement should be the same on all the channels.

The correspondent set up is done by setting the \$38 LPDIAGREQ properly (see the Table 36).

Table 36. High squib resistance diagnostic - LPDIAGREQ register

	(1)	(2)	15	14	13	12:11	10	9:8	7:4	3:0	
									RES_MEAS_CHSEL	LEAK_CHSEL	
									0000 = ch0	0000 = ch0	
									0001 = ch1	0001 = ch1	15: 0 = low level diag
									0010 = ch2	0010 = ch2	14: 0= ISRC = 40 mA, 1 = ISRC = 8 mA
									0011 = ch3	0011 = ch3	13: 1 = pull-down curr. OFF for all channels
\$38 LPDIAGREQ	(1)	W	0	0/1	1	00	1	01	0100 = ch4	0100 = ch4	12, 11: 00 = ISCR OFF for all channels
									0101 = ch5	0100 ch4	10: 1 = ISINK (RES_MEAS_CH) ON, OFF the
											others
									0110 = ch6	0110 = ch6	9, 8: 01 = VRCM to SFx (LEAK CHSEL)
									0111 = ch7	0111 = ch7	, _ ,
									1000 = ch8	1000 = ch8	

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE

ISINK and VRCM have to be addressed to the same channel, that means RES_MEAS_CHSEL (bit[7:4]) and LEAK CHSEL (bit[3:0]) are equal. If there is a wrong selection in the two fields there is no notice of the mistake.

Through this set-up, the VRCM is connected to SFx and ISINK to SRx. Current flowing through SFx is measured and compared with the ISRlow and ISRhigh (6 mA and 0.7 mA respectively) to identify in which range the resistor measured is.

- HSR HIGH = $R_{SquibHigh}$ = 2 $k\Omega \div 5 k\Omega$
- HSR LOW = $R_{SquibLow}$ = 200 Ω ÷ 500 Ω

In case of low resistance value, as with 2 Ω load, VRCM sees a path from SRx and GND, so STG (very low impedance towards ground) could be detected (see the Table 37).

Read out of these bits has to be done before the next diagnostic request, because these bits are not latched.

Table 37. High squib resistance diagnostic - LPDIAGSTAT register

			(1)	(2)	15:14	13	12	11:8	7	6	5	4	3:0	
\$37 LPDIA (3) 19 18 0 0	7 1	00		RR	15:14 X	0	12	11:8 RES_MEAS_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7 1000 = ch8	X	0/1	X	1	3:0 LEAK_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7 1000 = ch8	19: 0 = low level diag 13: 0 = resis < HSR HIGH 1 = resis > HSR HIGH 12: 0 = resis < HSR LOW 1 = resis < HSR LOW 6: STG 1 = STG detected 4: 1 = VRCM to SFx:

^{1.} I = INIT, D = DIAG, S = SAFING, A = ARMING, - = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING

AN5720 - Rev 3 page 35/72

^{2.} R = READ, W = WRITE

3. Further bit over the 16 standard.

AN5720 - Rev 3 page 36/72

4.1.9 High Side FET diagnostic

The test is possible only in the diagnostic phase.

Before running this test, VRCM has to be previously validated and leakage tests have to be already performed with no fails found. At this point, the HIGH SIDE FET test can be performed.

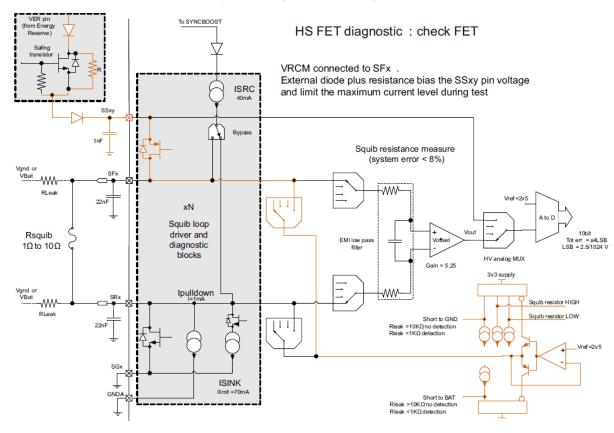


Figure 18. High Side FET diagnostic

ISRC and ISINK are kept off and VRCM is connected to SFx (see the Figure 18) through the LEAK_CHSEL bits in the the LPDIAGREQ register (see the Table 38). The High Side FET test is enabled through the SYSDIAGREG register.

(1) (2) 15 14 13 12:11 10 9:8 7:4 3:0 RES_MEAS_CHSEL LEAK_CHSEL 0000 = ch00000 = ch00001 = ch10001 = ch115: 0 = low level diag 0010 = ch20010 = ch214: 0 = ISRC = 40 mA 0011 = ch30011 = ch313: 1 = pull-down curr. OFF for all channels \$38 LPDIAGREQ (I) W 0 0 1 00 0 01 12, 11: 00 = ISCR OFF for all channels 0100 = ch40100 = ch410: 0 = ISINK all OFF 0101 = ch50101 = ch50110 = ch60110 = ch69, 8: 01 = VRCM to SFx (LEAK_CHSEL) 0111 = ch70111 = ch71000 = ch81000 = ch8\$36 SYSDIAGREQ D W X Χ 1 1 0111: DSTEST = HSFET active

Table 38. High Side FET diagnostic - LPDIAGREQ and SYSDIAGREQ registers

AN5720 - Rev 3 page 37/72

 $^{1. \}quad I = INIT, \ D = DIAG, \ S = SAFING, \ A = ARMING, \ - = ALL \ STATES, \ (I) = no \ in \ INIT, \ (D) = no \ in \ DIAG, \ (S) = no \ in \ SAFING, \ (A) = no \ in \ ARMING = no \ i$

^{2.} R = READ, W = WRITE

Test result

The High Side FET test turns ON the HS power: if it turns ON correctly, SFx is connected to SSxy which is at VER voltage through the resistor R in parallel to the safing FET.

During the test, the device monitors the current flowing through VRCM.

If the High Side FET works properly, this current exceeds the thresholds I_{HSFET} , that is 1.8 mA \pm 10%, and the channel is immediately turned off.

In case the current doesn't exceed the limit mentioned, after the time $T_{FETTIMEOUT}$, that is 200 μ s, the test is terminated, and the output is turned off.

During the T_{FETTIMEOUT} period, FET activation is flagged through a bit, FETON, readable via SPI.

In any condition, the current in SFx doesn't exceed I_{SVRCM} (I_{LIM_SRC} = -20 ÷ -10 mA and I_{LIM_SNK} = 10 ÷ 20 mA), and during the FET test the energy provided to the squib is limited at $E_{FETtest}$ (< 170 μ J).

					(1)	(2)	15	14:12	11:8	7	6	5	4	3:0	
	\$37 L	PDIA	GSTA	Λ Τ		R			RES_MEAS_CHSEL					LEAK_CHSEL	
(3	0 0	0	0	0		R	0/1	x	0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7 1000 = ch8	0	0	1	1	0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7 1000 = ch8	19: 0 = low level diag 15: 0 = FET OFF during diag 7: 0 = no short between loops 1 = FET ON during diag 6: 0 = STG not detected 5: 1 = STB detected 4: 1 = test on SFx

Table 39. High Side FET diagnostic - LPDIAGSTAT register

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

Possible results for High Side FET test are (see the Table 39):

- STB = 1 and STG = 0 → ok.
- STB = 0 or STG = 1 → missing SSxy connection during FET test, or High Side not switched ON, or short to GND during FET test.

STG and STB, after FET test, are latched. They are cleared through a new LPDIAGREQ or a new SYSDIAGREQ.

Note:

- If VRCM is not previously connected to the SFx and the test is run, a dangerous condition could happen.
- In case of SRx shorted to GND, when the HS is turned ON, even if the current flowing through the squib is greater than IHSFET, the HS is not immediately turned off and the current flows through the squib until T_{FETTIMEOUT} expires. This could determine an undesired deployment.

AN5720 - Rev 3 page 38/72

4.1.10 Low Side FET diagnostic

The test is possible only in the diagnostic phase.

Before running this test, VRCM has to be previously validated and leakage tests have to be already performed with no fails found. At this point, the LOW SIDE FET test can be performed.

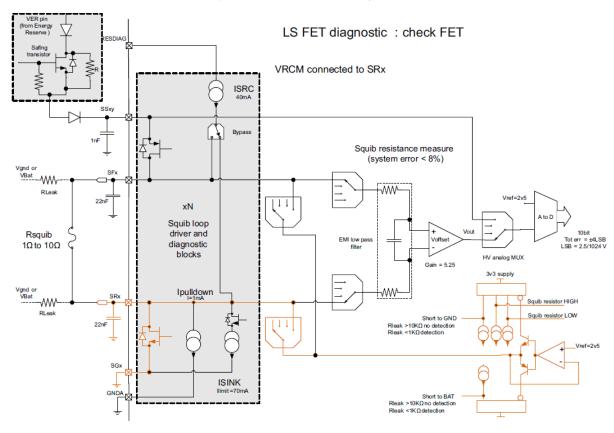


Figure 19. Low Side FET diagnostic

ISRC and ISINK are kept off and VRCM is connected to SRx (see the Figure 19) through the LEAK_CHSEL bits in the LPDIAGREG register (see the Table 40). The Low Side FET test is enabled through the SYSDIAGREG register.

(1) (2) 15 14 13 12:11 10 9.8 7:4 3:0 RES_MEAS_CHSEL LEAK_CHSEL 0000 = ch00000 = ch00001 = ch10001 = ch115: 0 = low level diag 0010 = ch20010 = ch214: 0 = ISRC = 40 mA 0011 = ch30011 = ch313: 1 = pull-down curr. OFF for all channels \$38 LPDIAGREQ (I) W 0 0 1 00 0 01 12. 11: 00 = ISCR OFF for all channels 0100 = ch40100 = ch410: 0 = ISINK all OFF 0101 = ch50101 = ch50110 = ch60110 = ch69, 8: 01 = VRCM to SFx (LEAK_CHSEL) 0111 = ch70111 = ch71000 = ch81000 = ch8\$36 SYSDIAGREQ D W X $X \mid X$ $X \mid X$ 0 0 0 1000: DSTEST = LSFET active

Table 40. Low Side FET diagnostic - LPDIAGREQ and SYSDIAGREQ registers

AN5720 - Rev 3 page 39/72

 $^{1. \}quad I = INIT, \ D = DIAG, \ S = SAFING, \ A = ARMING, \ - = ALL \ STATES, \ (I) = no \ in \ INIT, \ (D) = no \ in \ DIAG, \ (S) = no \ in \ SAFING, \ (A) = no \ in \ ARMING = no \ i$

^{2.} R = READ, W = WRITE

Test result

The Low Side FET test turns ON the LS power: if it turns ON correctly, SRx is connected to SGxy. During the test, the device monitors the current flowing through VRCM.

If the Low Side FET works properly, this current exceeds the thresholds I_{HSFET} , that is 1.8 mA \pm 10%, and the channel is immediately turned off.

In case the current doesn't exceed the limit mentioned, after the time $T_{FETTIMEOUT}$, that is 200 μ s, the test is terminated, and the output is turned off.

During the T_{FETTIMEOUT} period, FET activation is flagged through a bit, FETON, readable via SPI.

In any condition, the current in SRx doesn't exceed I_{SVRCM} (I_{LIM_SRC} = -20 ÷ -10 mA and I_{LIM_SNK} = 10 ÷ 20 mA), and during the FET test the energy provided to the squib is limited at $E_{FETtest}$ (< 170 μ J).

				(1)	(2)	15	14:12	11:8	7	6	5	4	3:0	
\$37 LF	PDIA	GSTA	AΤ		R			RES_MEAS_CHSEL					LEAK_CHSEL	
0	0	0	0		R	0/1	X	0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7 1000 = ch8	0	1	0	0	0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7 1000 = ch8	19: 0 = low level diag 15: 0 = FET OFF during diag 7: 0 = no short between loops 1 = FET ON during diag 6: 1 = STG detected 5: 0 = STB not detected 4: 0 = test on SRx

Table 41. Low Side FET diagnostic - LPDIAGSTAT register

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

Possible results for Low Side FET test are (see the Table 41):

- STB = 0 and STG = $1 \rightarrow ok$
- STB = 1 or STG = 0 → short to battery in Low Side, or Low Side not switched ON.

STG and STB, after FET test, are latched. They are cleared through a new LPDIAGREQ or a new SYSDIAGREQ.

Note:

- Ground loss (SGxy) is not detected through FET test because there is a diode between SGxy and the substrate.
- If VRCM is not previously connected to the SRx and the test is run, a dangerous condition could happen.
- In case of SFx shorted to SSxy, when the LS is turned ON, even if the current flowing through the squib is greater than I_{LSFET}, the LS is not immediately turned off and the current flows through the squib until T_{FETTIMEOUT} expires. This could determine an undesired deployment.
- In case of SRx shorted to SSxy, when the LS is turned ON, even if the current flowing through it is greater than I_{LSFET}, the LS not immediately turned off and the current flows until T_{FETTIMEOUT} expires. Such a high current could damage the LS power.

AN5720 - Rev 3 page 40/72

4.1.11 Loss of ground

This test is based on the voltage of the ground pin, SGxy, during the squib resistor measurement or the High Side driver diagnostic.

Any voltage shift of the SGxy pin over V_{SGopen} , that is 400 to 800 mV, is considered loss of ground, readable in the LP_GNDLOSS register (see the Table 42).

Table 42. Loss of ground - LP_GNDLOSS register

					(1)	(2)	15:8	7	6	5	4	3	2	1	0	
	\$26 LF	P_GN	DLOS	S		R										0 = no loss of ground
(3)	19	18	17	16		R	0	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0	0 = no loss of ground 1 = loss of ground
	0	0	0	0												1 1000 of ground

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

GNDLOSSx is set considering t_{SGopen} filter time (46 to 50 µs) and it is cleared upon read.

Four GND pins are available: SG01, SG23, SG45 and SG67. The IC is able to detect GND loss on CHx or CHy basing on the channel selected.

4.1.12 Safing FET diagnostic

The aim of the test is to verify the SSxy voltage level.

SSxy voltages are readable by the microcontroller through the ADC converter in the \$3X DIAGCTRL_x registers (see the Table 43).

AN5720 - Rev 3 page 41/72

					(1)	(2)	15	14	13	12	11	10	9	8	7	6	5	5 4	3	:	2	1	0	
	9			CTRL_X s, C, D	-	W	×	×	×	x	×	×	X	Х	X			\$25 \$3 \$3 \$3 \$3 \$3	= V 86 = 37 = 88 = 89 = 84 = 85 = 85 = 85 = 85 = 85 = 85 = 85	SY SS SS SS SS SS	'NC 60 61 62 63 64 65 66			
(3)	19	18	17	16																				19: 1 = conversion finished
	1	0	0	ADCREQ_X	-	R		\$2	25 = \ \$36 = \ \$37 = \ \$38 = \ \$39 = \ \$3A = \ \$3B = \ \$3C = \	REQ_ VSYN = SS0 = SS1 = SS2 = SS3 = SS4 = SS5 = SS6	IC) 2 3 4 5			ADC	RE	Q_)	X 1	0 b	it AE	ос	res	sult	t	

Table 43. Safing FET diagnostic - DIAGCTRL_X register

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

Once read the ADC measurement, to obtain the voltage value it is necessary to consider the divider ratio of the ADC. In case of SSxy, it is 15:1.

4.1.13 Deployment time diagnostic

The aim of the test is to pass to the microcontroller the deploy time information that the IC has stored with the previous SPI commands.

This test is possible only in DIAG state.

Table 44. Deployment time diagnostic - SYSDIAGREQ register

	(1)	(2)	15:8	7:4	3	2	1	0	
\$36 SYSDIAGREQ	D	W	Х		1	0	0	1	1001: DSTEST - Output timing on FENL pin

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE

Once the \$36 SYSDIAGREQ register is set for output timing on the FENL pin check, even if the test has been performed, it is not possible any modification in the deployment channel configuration (\$06 DCR0, \$07 DCR1, \$08 DCR2, \$09 DCR3 registers).

This feature prevents any modification in the deployment time and deployment current after the test has been performed and, therefore, it is no longer visible by the microcontroller.

AN5720 - Rev 3 page 42/72

To modify again the deployment channel configuration (\$06 DCR0, \$07 DCR1, \$08 DCR2, \$09 DCR3 registers) it is first necessary to change the DSTEST request, and secondly to modify the deployment channel configuration itself as previously done.

Test result

Once the test is ongoing, a signal 0 V \rightarrow 5 V/3.3 V (depending on VCC) is output on the FENL pin, which reports in sequence, from channel 0 to channel 7, the deployment time programmed, with a 8 ms delay between each channel. Starting from ch0, the FENL signal is high for the deploy time of ch0; then it remains low until the next pulse corresponding to the channel 1 occurs (8 ms delay between each pulse to start); the same happens up to channels 7.

The microcontroller can test the latest deployment time programmed in the DRCx registers measuring the duration of the high ARM pulse.

If the test is performed on a channel with no deployment time previously configured, the high FENL pulse lasts 8 µs.

If the combination time/current deployment programmed for a channel is wrong, then the combination time/current deployment turns back to the default value. In case the deployment time is monitored through the FENL signal, the default one is output.

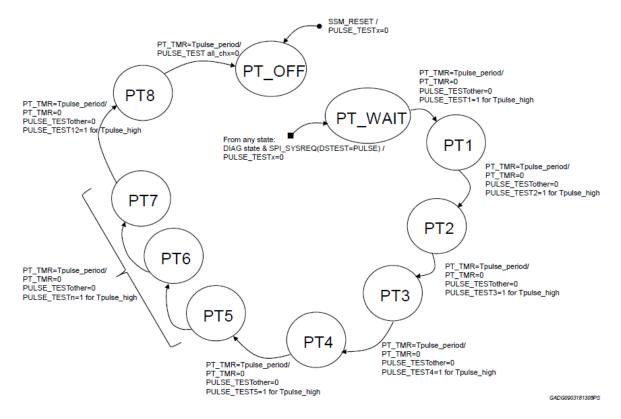


Figure 20. Deployment timer diagnostic sequence

AN5720 - Rev 3 page 43/72

4.2 High level diagnostic

The device performs the measurement, as requested by the microcontroller, through the LPDIAGREQ register.

Based on the requests from the microcontroller, diagnostics run according to the set up described for the low level mode but each test set up is driven step by step by the IC itself.

The IC timing schedule is selected through the HI_LEV_DIAG_TIME bit in INIT (see the Table 45):

Table 45. High level diagnostic

	(1)	(2)	15	14:13	12	11	10	9:8	7:5	4	3:0	
\$01 SYS_CFG	I	W		X	X	X	0					10: HI_LEV_DIAG_TIME 0 = short time 1 = long time
\$38 LPDIAGREQ	(1)	W	1	X	X	X	X	×	HIGH_LEVEL_DIAG_SEL 000 = No diag sel 001 = VRCM Check 010 = Leakage Check 011 = Short Btw Loops Check 100 = Unused 101 = resistance range check 110 = resistance measurement 111 = FET test	SQP	LOOP_DIAG_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0111 = ch7 1000 = ch8	15: 1 = high level diag 4: SQP 0 = SRx 1 = SFx

^{1.} I = INIT, D = DIAG, S = SAFING, A = ARMING, - = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING

In case of high level diagnostic selection, the IC automatically schedules the preparatory tasks to be eventually run in order to perform the required diagnostic.

The flow chart in the Figure 21 shows the time sequence implemented:

AN5720 - Rev 3 page 44/72

^{2.} R = READ, W = WRITE

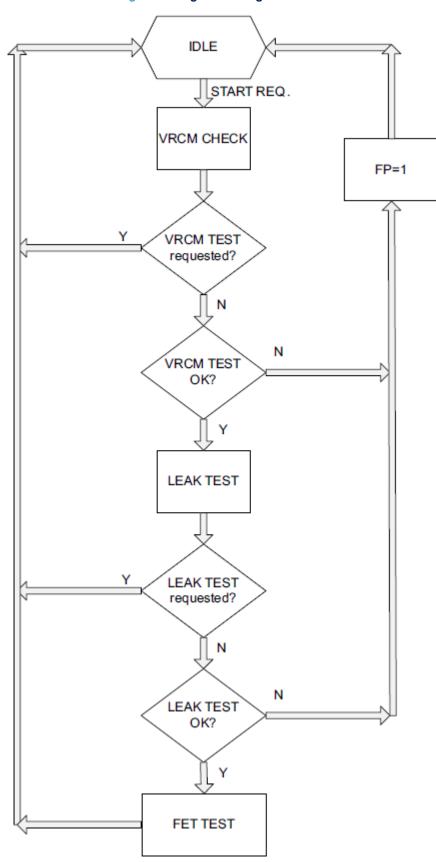
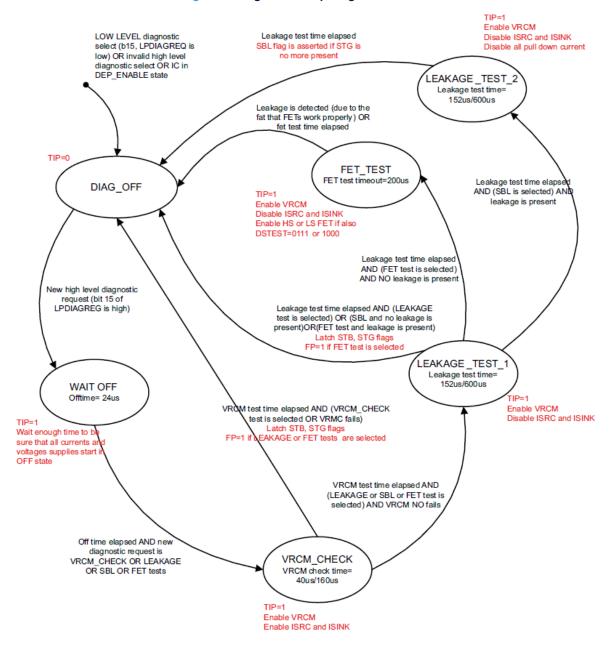


Figure 21. High level diagnostic flow

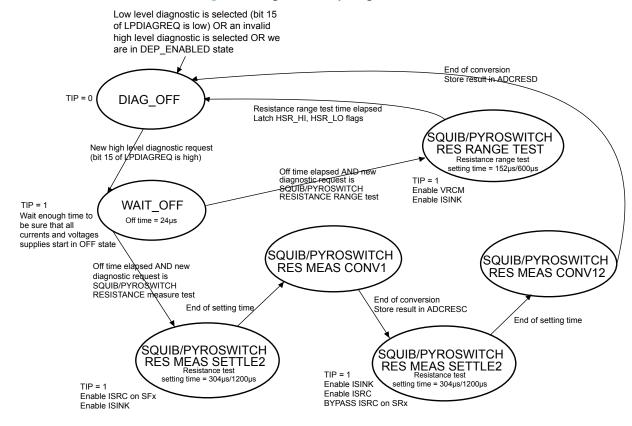
AN5720 - Rev 3 page 45/72



The FP bit in the LPDIAGSTAT register is available only in case of high level diagnostic selected. It is stuck at 0 otherwise.

Once a test which requires preliminary measurement phases is selected (i.e. leakage test and FET test), this bit is set if the diagnostic procedure has been stopped because of a fault recorded in such a preliminary step.

Two diagnostic flows are implemented, as shown in the Figure 22 and Figure 23:


Figure 22. High level loop diagnostic flow 1

AN5720 - Rev 3 page 46/72

Figure 23. High level loop diagnostic flow 2

AN5720 - Rev 3 page 47/72

4.2.1 VRCM check - High Side

HS FET diagnostic: check VRCM functionality First we use ISRC current generator to check VRCM block ISRC SSx Вура Squib resistance measure (system error < 8%) WW Vref=2v5 χN A to D Squib loop 10bit Rsquib driver and Tot err = ±4LSB LSB = 2.5/1024 V 1Ωto 10Ω diagnostic blocks HV analog MUX Gain = 5.25 3v3 supply Vgnd or VBat lpulldown Squib resistor HIGH Short to GND Rleak >10KΩ no detection Rleak <1KΩ detection Squib resistor LOW 111 ISINK Short to BAT Rleak >10KΩ no detection Rleak <1KΩ detection

Figure 24. VRCM check - High Side (Diagnostic)

The correspondent set up (see the Figure 24) is done by setting the \$38 LPDIAGREQ register properly (see the Table 46).

15 14:8 7:5 4 3:0 LOOP DIAG CHSEL 0000 = ch00001 = ch10010 = ch2HIGH_LEVEL_DIAG_SEL SQP 0011 = ch315: 1 = high level diag \$38 LPDIAGREQ Χ (l) W 1 001 = VRCM Check 0100 = ch44: 1 = SFx 1 0101 = ch50110 = ch60111 = ch71000 = ch8

Table 46. VRCM check, High Side - LPDIAGREQ register

The result of the diagnostic is readable in the \$37 LPDIAGSTAT register (see the Table 47) and shown in the Figure 25.

AN5720 - Rev 3 page 48/72

^{1.} I = INIT, D = DIAG, S = SAFING, A = ARMING, - = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING

^{2.} R = READ, W = WRITE

					(1)	(2)	15:12	11:8	7	6	5	4	3:0	
\$	37 L	PDIA	GST/	AT.		R							LEAK_CHSEL	
(3)	19	18	17	16		R							0000 = ch0	
													0001 = ch1	19: 1 = high level diag
													0010 = ch2	18: 1 = high level diag is running
							X	HIGH_LEVEL_DIAG_SEL	0	0	1	1	0011 = ch3	7: 0 = no short between loops
							^	0001 = VRCM Check	U	U	'	'	0100 = ch4	6: 0 = STG not detected
	1	0/1	0	0									0101 = ch5	5: 1 = STB detected
													0110 = ch6	4: 1 = SFx
													0111 = ch7	
													1000 = ch8	

Table 47. VRCM check, High Side - LPDIAGSTAT register

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

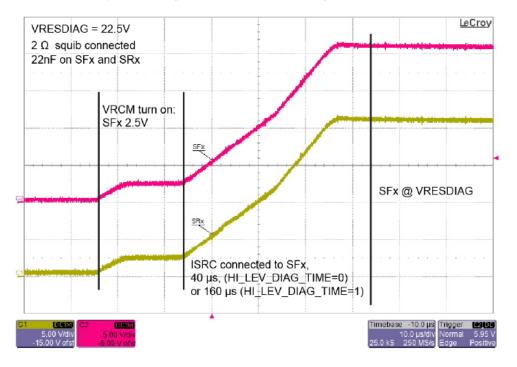


Figure 25. Diagnostic - VRCM check - High Side waveform

 $\label{lem:controller} \mbox{VRCM check, once required, is not run one shot on both HS and LS, but the microcontroller selects through the SQP bit the High Side or the Low Side.}$

AN5720 - Rev 3 page 49/72

4.2.2 VRCM check - Low Side

LS FET diagnostic: check VRCM functionality Second we use ISINK current generator to check VRCM block ISRC Bypass Squib resistance measure (system error < 8%) Vgnd or VBat -WW χN A to D Squib loop driver and Rsquib Tot err = ±4LSB LSB = 2.5/1024 V 1Ω to 10Ω diagnostic blocks HV analog MUX Gain = 5.25 3v3 supply Vgnd or VBat Ipulldown Squib resistor HIGH Short to GND Rleak >10KΩ no detection Rleak <1KΩ detection Squib resistor LOW 11 ISINK

Figure 26. VRCM check - Low Side (Diagnostic)

The correspondent set up (see the Figure 26) is done by setting the \$38 LPDIAGREQ register properly (see the Table 48).

(1) (2) 15 LOOP_DIAG_CHSEL 0000 = ch00001 = ch10010 = ch2HIGH_LEVEL_DIAG_SEL SQP 0011 = ch315: 1 = high level diag \$38 LPDIAGREQ **(l)** W 1 Х 001 = VRCM Check 0100 = ch44: 0 = SRx 0 0101 = ch50110 = ch60111 = ch71000 = ch8

Table 48. VRCM check, Low Side - LPDIAGREQ register

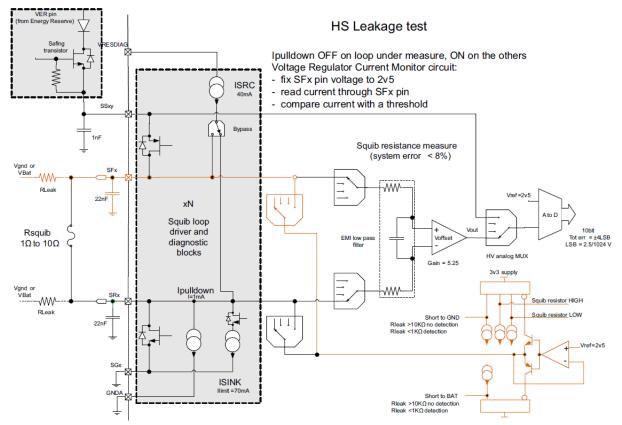
Being ISRC and VRCM connected to SFx, if VRCM works correctly, short to battery, readable in the \$37 LPDIAGSTAT register, is asserted for the channel selected (see the Table 49).

AN5720 - Rev 3 page 50/72

^{1.} I = INIT, D = DIAG, S = SAFING, A = ARMING, - = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING

^{2.} R = READ, W = WRITE

					(1)	(2)	15:12	11:8	7	6	5	4	3:0	
\$	37 LI	PDIA	GSTA	λT		R							LEAK_CHSEL	
(3)	19	18	17	16		R							0000 = ch0	
													0001 = ch1	19: 1 = high level diag
													0010 = ch2	18: 1 = high level diag is running
							Х	HIGH_LEVEL_DIAG_SEL	0	1	0	0	0011 = ch3	7: 0 = no short between loops
		014					^	0001 = VRCM Check	0	'	U	U	0100 = ch4	6: 1 = STG detected
	1	0/1	0	0									0101 = ch5	5: 0 = STB not detected
													0110 = ch6	4: 0 = SRx
													0111 = ch7	
													1000 = ch8	


Table 49. VRCM check, Low Side - LPDIAGSTAT register

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

VRCM check, once required, is not run one shot on both HS and LS, but the microcontroller selects through the SQP bit the High Side or the Low Side.

4.2.3 Leakage test - High Side

Figure 27. Leakage test - High Side (Diagnostic)

The correspondent set up (see the Figure 27) is done by setting the \$38 LPDIAGREQ register properly (see the Table 50).

AN5720 - Rev 3 page 51/72

							•	
	(1)	(2)	15	14:8	7:5	4	3:0	
							LOOP_DIAG_CHSEL	
							0000 = ch0	
							0001 = ch1	
							0010 = ch2	
¢20 I DDIA CDEO	//\	W	1	X	HIGH_LEVEL_DIAG_SEL	SQP	0011 = ch3	15: 1 = high level diag
\$38 LPDIAGREQ	(1)	VV	'	^	010 = leakage test	1	0100 = ch4	4: 1 = SFx
							0101 = ch5	
							0110 = ch6	
							0111 = ch7	
							1000 = ch8	

Table 50. Leakage test, High Side - LPDIAGREQ register

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE

The result of the diagnostic is readable in the \$37 LPDIAGSTAT register (see the Table 51).

(1) (2) 15:12 11:8 7 6 5 4 3:0 R LEAK_CHSEL \$37 LPDIAGSTAT 0000 = ch0(3) 19 18 17 16 R 0001 = ch119: 1 = high level diag 0010 = ch218: 1 = high level diag is running HIGH_LEVEL_DIAG_SEL 0011 = ch37: 0 = no short between loops Χ 0 0 0 1 010 = LEAKAGE Check 0100 = ch46: 0 = STG not detected 1 0/1 0 0 0101 = ch55: 0 = STB not detected 0110 = ch64: 1 = SFx 0111 = ch71000 = ch8

Table 51. Leakage test, High Side - LPDIAGSTAT register

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

Depending on the value of the capacitors mounted on the ECU, the same high level diagnostic can be performed setting the HI_LEV_DIAG_TIME bit in order to increase the time of the internal diagnostic finite state machine operation (see the Figure 28 and Figure 29).

This bit can be written only in INIT state.

AN5720 - Rev 3 page 52/72

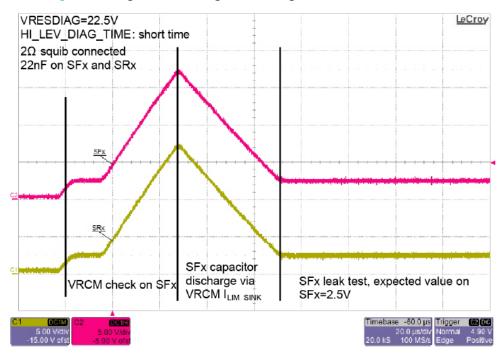


Figure 28. Diagnostic - Leakage check - High Side waveform, short time

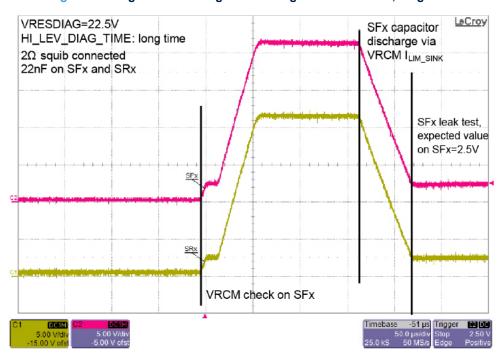


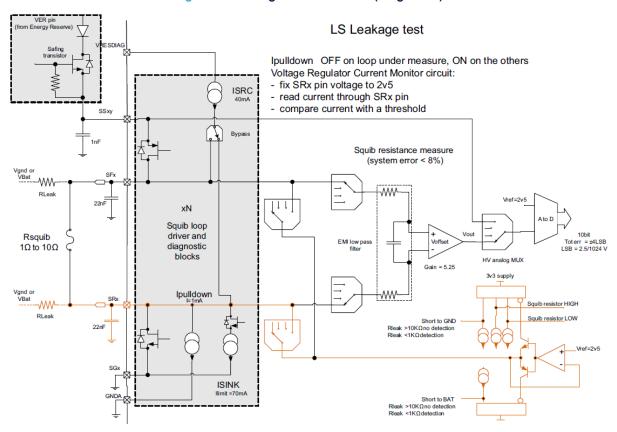
Table 52. Leakage test, High Side - SYS_CFG register

	(1)	(2)	15:13	12	11	10	9:1	0	
\$01 SYS_CFG	I	W		Х		1			10: HI_LEV_DIAG_TIME 0 = short time, 1 = long time

 $^{1. \}quad I = INIT, \ D = DIAG, \ S = SAFING, \ A = ARMING, \ - = ALL \ STATES, \ (I) = no \ in \ INIT, \ (D) = no \ in \ DIAG, \ (S) = no \ in \ SAFING, \ (A) = no \ in \ ARMING$

AN5720 - Rev 3 page 53/72

^{2.} R = READ, W = WRITE



Note:

In Pyro Fuse Application with channels shorted together, a leakage on a channel causes a fault on all the channels.

4.2.4 Leakage test - Low Side

Figure 30. Leakage test - Low Side (Diagnostic)

The correspondent set up (see the Figure 30) is done by setting the \$38 LPDIAGREQ register properly (see the Table 53).

(1) (2) 15 14:8 7:5 3:0 4 LOOP_DIAG_CHSEL 0000 = ch00001 = ch10010 = ch2HIGH_LEVEL_DIAG_SEL SQP 0011 = ch315: 1 = high level diag \$38 LPDIAGREQ (l) W 1 Χ 0100 = ch44: 0 = SRx 010 = leakage test 0 0101 = ch50110 = ch60111 = ch71000 = ch8

Table 53. Leakage test, Low Side - LPDIAGREQ register

The result of the diagnostic is readable in the \$37 LPDIAGSTAT register (see the Table 54):

AN5720 - Rev 3 page 54/72

^{1.} I = INIT, D = DIAG, S = SAFING, A = ARMING, - = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING

^{2.} R = READ, W = WRITE

Table 54. Leakage test, Low Side - LPDIAGSTAT register

					(1)	(2)	15:12	11:8	7	6	5	4	3:0	
\$	37 LI	PDIA	GSTA	ΑT		R							LEAK_CHSEL	
(3)	19	18	17	16		R							0000 = ch0	
													0001 = ch1	19: 1 = high level diag
													0010 = ch2	18: 1 = high level diag is running
							x	HIGH_LEVEL_DIAG_SEL	0	0	0	0	0011 = ch3	7: 0 = no short between loops
							^	010 = LEAKAGE Check	U	U	U	U	0100 = ch4	6: 0 = STG not detected
	1	0/1	0	0									0101 = ch5	5: 0 = STB not detected
													0110 = ch6	4: 0 = SRx
													0111 = ch7	
													1000 = ch8	

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

Note:

In Pyro Fuse Application with channels shorted together, a leakage on a channel causes a fault on all the channels.

AN5720 - Rev 3 page 55/72

4.2.5 Short between loops

The correspondent set up is done by setting the \$38 LPDIAGREQ properly (see the Table 55).

Table 55. Short between loops - LPDIAGREQ register

	(1)	(2)	15	14:8	7:5	4	3:0	
							LOOP_DIAG_CHSEL	
							0000 = ch0	
							0001 = ch1	
							0010 = ch2	
\$38 LPDIAGREQ	(1)	w	1	X	HIGH_LEVEL_DIAG_SEL	SQP	0011 = ch3	15: 1 = high level diag
400 EI DIAGILE	(1)		'		011 = short between loop	0/1	0100 = ch4	4: 0 = SRx, 1 = SFx
							0101 = ch5	
							0110 = ch6	
							0111 = ch7	
							1000 = ch8	

^{1.} I = INIT, D = DIAG, S = SAFING, A = ARMING, - = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING

The result of the diagnostic is readable in the \$37 LPDIAGSTAT register (see the Table 56).

Table 56. Short between loops - LPDIAGSTAT register

			(1)	(2)	15:12	11:8	7	6	5	4	3:0				
\$	\$37 LPDIAGSTAT			ΑT		R							LEAK_CHSEL		
(3)	19	18	17	16		R							0000 = ch0		
								HIGH_LEVEL_DIAG_SEL	0	0			0001 = ch1	19: 1 = high level diag	
													0010 = ch2	18: 1 = high level diag is running	
							x				0	0/1	0011 = ch3	7: 0 = no short between loops	
		014		0 0				^	011 = short between loop	U		U	0/1	0100 = ch4	6: 0 = STG not detected
	1	0/1	0 0										0101 = ch5	5: 0 = STB not detected	
												0110 = ch6	4: 0 = SRx, 1 = SFx		
													0111 = ch7		
													1000 = ch8		

 $^{1. \}quad I = INIT, \ D = DIAG, \ S = SAFING, \ A = ARMING, \ - = ALL \ STATES, \ (I) = no \ in \ INIT, \ (D) = no \ in \ DIAG, \ (S) = no \ in \ SAFING, \ (A) = no \ in \ ARMING$

Note:

In Pyro Fuse Application with channels shorted together, the short to ground should be a real short of SRx or SFx pin to GND. Moreover, a short to ground on a channel will be present on all the others.

AN5720 - Rev 3 page 56/72

^{2.} R = READ, W = WRITE

^{2.} R = READ, W = WRITE

^{3.} Further bit over the 16 standard.

4.2.6 Squib resistance range

High squib resistance value detection With VRCM block we detect: - Squib resistance in low range (200Ω ÷ 500Ω) - Squib resistance in High range (2KΩ ÷ 5KΩ) ISRC Squib resistance measure (system error < 8%) W χN A to D Sauib loop Rsquib driver and Tot err = ±4LSB LSB = 2.5/1024 V 1Ω to 10Ω diagnostic blocks HV analog MUX Gain = 5.25 3v3 supply **Ipulldown** Squib resistor HIGH -WV Short to GND Rleak >10KΩ no detection Rleak <1KΩ detection ISINK Short to BAT Rleak >10KΩ no detection Rleak <1KΩ detection

Figure 31. Squib resistance range (Diagnostic)

The correspondent set up (see the Figure 31) is done by setting the \$38 LPDIAGREQ register properly (see the Table 57).

(1) (2) 15 14:8 7:5 4 3:0 LOOP_DIAG_CHSEL 0000 = ch00001 = ch10010 = ch215: 1 = high level diag HIGH_LEVEL_DIAG_SEL 0011 = ch3**SQP** \$38 LPDIAGREQ **(l)** W 1 Х 0100 = ch44: 1 = SFx 101 = squib res range 1 0101 = ch50110 = ch60111 = ch71000 = ch8

Table 57. Squib resistance range - LPDIAGREQ register

The result of the diagnostic in case of **2 Ω squib** is readable in the \$37 LPDIAGSTAT register (see the Table 58):

AN5720 - Rev 3 page 57/72

^{1.} I = INIT, D = DIAG, S = SAFING, A = ARMING, - = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING

^{2.} R = READ, W = WRITE

					(1)	(2)	15:14	13	12	11:8	7	6	5	4	3:0	
\$37	7 LF	PDIA	GST	AT		R									LEAK_CHSEL	
(3)	19	18	17	16		R									0000 = ch0	19: 1 = high level diag
+							-								0001 = ch1	18: 1 = high level diag is running
															0010 = ch2	13: 0 = HSR meas < HSR HIGH value
							x	0	1	HIGH_LEVEL_DIAG_SEL	0	1	0	1	0011 = ch3	12: 1 = HSR meas < HSR LOW value
		0/4					^		'	101 = squib res range	0	'	U	'	0100 = ch4	7: 0 = no short between loops
	1	0/1	0	0											0101 = ch5	6: 1 = STG detected
															0110 = ch6	5: 0 = STB not detected
															0111 = ch7	4: 1 = SFx
															1000 = ch8	

Table 58. Squib resistance range - LPDIAGSTAT register

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

The results could be the following:

- STG = 1 → the squib has a very low resistive value.
- SQP = 1 → VRCM is connected to the High Side.

Note: In Pyro Fuse Application with channels shorted together, the high squib resistance measurement should be the same on all the channels.

4.2.7 Squib resistance measurement

The IC allows measuring the squib resistance value in the range of 1 \div 10 Ω with overall 8% precision.

Two steps of the measurement, described in the Figure 32 and Figure 33, are managed by the IC, which also makes ADC conversion results available.

Note: In Pyro Fuse Application with channels shorted together, the squib resistance measurement should be the same on all the channels.

AN5720 - Rev 3 page 58/72

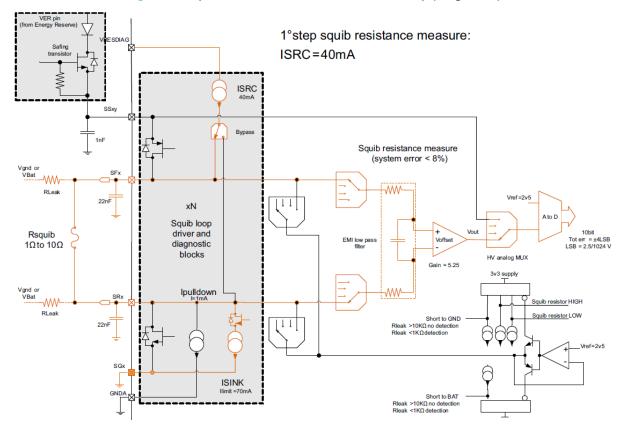
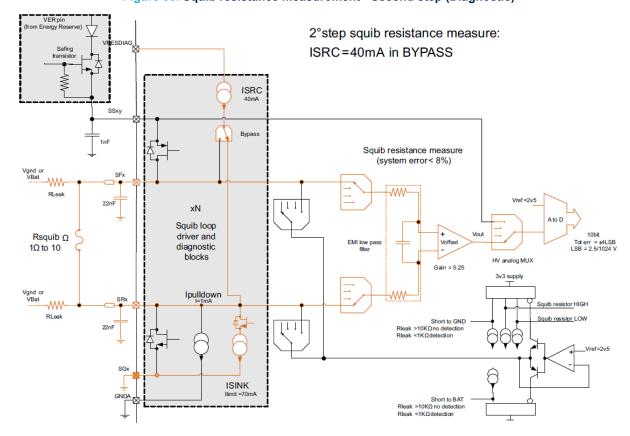



Figure 32. Squib resistance measurement - First step (Diagnostic)

Figure 33. Squib resistance measurement - Second step (Diagnostic)

AN5720 - Rev 3 page 59/72

The correspondent set up is done by setting the \$38 LPDIAGREQ properly (see the Table 59).

	(1)	(2)	15	14:8	7:5	4	3:0		
							LOOP_DIAG_CHSEL		
							0000 = ch0		
							0001 = ch1		
							0010 = ch2		
\$38 LPDIAGREQ	(1)	W	1	X	HIGH_LEVEL_DIAG_SEL	×	0011 = ch3	15: 1 = high level diag	
\$30 LPDIAGREQ	(1)	VV	'	^	110 = squib res range		0100 = ch4	15. T – High lever diag	
							0101 = ch5		
							0110 = ch6		
					0111 = ch7				
							1000 = ch8		

Table 59. Squib resistance measurement - LPDIAGREQ register

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE

The IC triggers at the end of each step above an ADC conversion. Once the high level diagnostic has been performed, results of ADC conversions have to be read in the registers \$3C, \$3D DIAGCTRL_X by selection of SQUIB resistance measurement (bit [6:0] = \$06).

The result of the first conversion, $ADC_{1ST\ CONVERSION}$, is stored in \$3C DIAGCTRL_C. Instead, the result of the second conversion, $ADC_{2ND\ CONVERSION}$, is stored in \$3D DIAGCTRL_D.

Once read the ADC measurement, to obtain the value it is necessary to consider the divider ratio of the ADC. In case of resistance x, it is 1:1.

Being two measurements, the squib resistance is so calculated:

$$\Delta V_{OUT} = (SFx - SRx)_1 - (SFx - SRx)_2 \tag{7}$$

$$R_{SQUIB} = \frac{\Delta V_{OUT}}{G * ISRC} \tag{8}$$

With:

- G = 5.25 ± 2% (differential amplifier gain)
- ISRC = 40 mA ± 5%

Example:

- ADC_{1ST CONVERSION} = 0b0100111000 = 312
- ADC_{2ND CONVERSION} = 0b0010000001 = 129
- $\Delta_{ADC} = 312 129 = 183$

In order to obtain the result in Volt, being the ADC characteristic linear:

$$2.5 V: 1024 = x: \Delta_{ADC} \rightarrow x = \frac{183 * 2.5 V}{1024} = 0.44 V$$
 (9)

In order to obtain resistance value, considering typical factors:

$$R_{SQUIB} = \frac{x}{G*ISRC} = \frac{0.44 \, V}{5.25*40 \, mA} = 2.1 \, \Omega \tag{10}$$

AN5720 - Rev 3 page 60/72

4.2.8 High Side FET diagnostic

The test is possible only in the diagnostic phase.

Before running this test, the IC validates VRCM, then performs leakage test and in case of no failures, High Side FET test is performed.

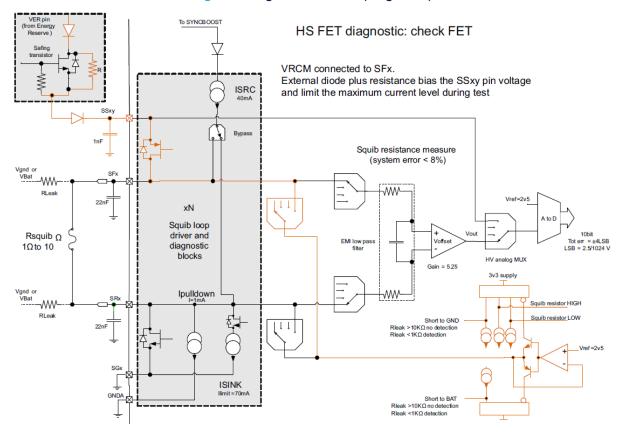


Figure 34. High Side FET test (Diagnostic)

The correspondent set up (see the Figure 34) is done by setting the \$38 LPDIAGREQ and \$36 SYSDIAGREQ registers (see the Table 60).

(1) (2) 15 14:8 7:5 3:0 4 LOOP_DIAG__CHSEL 0000 = ch00001 = ch10010 = ch2RES_MEAS_CHSEL SQP 0011 = ch315: 0 = high level diag \$38 LPDIAGREQ (I) W Χ 1 4: 1 = SFx 111 = FET test 1 0100 = ch40101 = ch50110 = ch60111 = ch71000 = ch8\$36 SYSDIAGREQ D W X Χ 0 1 1 0111: DSTEST = HSFET active

Table 60. High Side FET diagnostic - LPDIAGREQ and SYSDIAGREQ registers

AN5720 - Rev 3 page 61/72

 $^{1. \}quad I = INIT, \ D = DIAG, \ S = SAFING, \ A = ARMING, \ - = ALL \ STATES, \ (I) = no \ in \ INIT, \ (D) = no \ in \ DIAG, \ (S) = no \ in \ SAFING, \ (A) = no \ in \ ARMING$

^{2.} R = READ, W = WRITE

The High Side FET test turns ON the HS power: if it turns ON correctly, SFx is connected to SSxy which is at VER voltage through the resistor R in parallel to the safing FET.

During the test, the device monitors the current flowing through VRCM.

If the High Side FET works properly, this current exceeds the thresholds I_{HSFET} , that is 1.8 mA \pm 10%, and the channel is immediately turned off.

In case the current does not exceed the limit mentioned, after the time $T_{FETTIMEOUT}$, that is 200 μ s, the test is terminated, and the output is turned off.

The result of the diagnostic is readable in the \$37 LPDIAGSTAT register (see the Table 61):

(1) (2) 15 14:12 11.8 7 6 5 4 3:0 \$37 LPDIAGSTAT R LEAK_CHSEL 0000 = ch019 18 17 16 R 19: 1 = high level diag 0001 = ch118: 1 = high level diag is running 0010 = ch215: 1 = FET ON during diag 0011 = ch3RES_MEAS_CHSEL 0 0 1 1 0/1 Х 7: 0 = no short between loops 111 = FET test 0100 = ch46: 0 = STG not detected 1 0/1 0 0 0101 = ch55: 1 = STB detected 0110 = ch64: 1 = SFx 0111 = ch7 1000 = ch8

Table 61. High Side FET diagnostic - LPDIAGSTAT register

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

Possible results for High Side FET test are:

- STB = 1 and STG = $0 \rightarrow ok$.
- STB = 0 or STG = 1 → missing SSxy connection during FET test, or High Side not switched ON, or short to GND during FET test.

STG and STB, after FET test, are latched. They are cleared through a new LPDIAGREQ or a new SYSDIAGREQ.

AN5720 - Rev 3 page 62/72

4.2.9 Low Side FET diagnostic

Before running this test, IC validates VRCM, then performs leakage test and in case of no failures, Low Side FET test is performed.

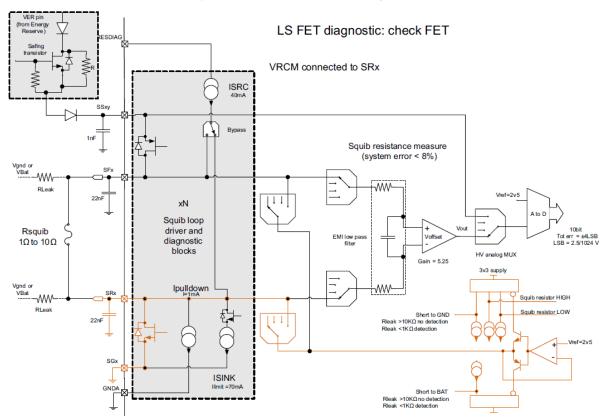


Figure 35. Low Side FET test (Diagnostic)

The orrespondent set up (see the Figure 35) is done by setting the \$38 LPDIAGREQ and \$36 SYSDIAGREQ registers (see the Table 62).

(1) (2) 15 14:8 7:5 3:0 LOOP_DIAG__CHSEL 0000 = ch00001 = ch10010 = ch2RES_MEAS_CHSEL SQP 0011 = ch315: 0 = high level diag \$38 LPDIAGREQ (I) W 1 Х 111 = FET test 0 0100 = ch44: 0 = SRx 0101 = ch50110 = ch60111 = ch71000 = ch80 0 \$36 SYSDIAGREQ D W Х Х 1000: DSTEST = LSFET active

Table 62. Low Side FET diagnostic - LPDIAGREQ and SYSDIAGREQ registers

Low Side FET test turns ON the Low Side. If the Low Side turns ON correctly, SRx is connected to SGxy.

AN5720 - Rev 3 page 63/72

^{1.} I = INIT, D = DIAG, S = SAFING, A = ARMING, - = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING

^{2.} R = READ, W = WRITE

During the test, the device monitors the current flowing through VRCM.

If the FET works properly, this current exceeds the thresholds I_{LSFET} , that is 450 μ A \pm 10%, and the channel is immediately turned off.

In case the current doesn't exceed the limit mentioned, after the time $T_{FETTIMEOUT}$, that is 200 μ s, the test is terminated, and the output is turned off.

The result of the diagnostic is readable in the \$37 LPDIAGSTAT register (see the Table 63).

Table 63. Low Side FET diagnostic - LPDIAGSTAT register

\$37 LPDIAGSTAT R (3) 19 18 17 16 R O/1 X 0 1 RES_MEAS_CHSEL 111 = FET test O 1 0 0 LEAK_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6 0110 = ch6 0110 = ch6 0110 = ch6 0111 = ch7 0 = SRx				(1) (2) 15 14 1			13	12	11:8	7	6	5	4	3:0			
	19	18	17	16	(1)	R					RES_MEAS_CHSEL		1			LEAK_CHSEL 0000 = ch0 0001 = ch1 0010 = ch2 0011 = ch3 0100 = ch4 0101 = ch5 0110 = ch6	18: 1 = high level diag is running 15: 1 = FET ON during diag 7: 0 = no short between loops 6: 1 = STG detected 5: 0 = STB not detected

- 1. I = INIT, D = DIAG, S = SAFING, A = ARMING, = ALL STATES, (I) = no in INIT, (D) = no in DIAG, (S) = no in SAFING, (A) = no in ARMING
- 2. R = READ, W = WRITE
- 3. Further bit over the 16 standard.

Possible results for Low Side FET test are:

- STB = 0 and STG = $1 \rightarrow ok$
- STB = 1 or STG = $0 \rightarrow$ short to battery in Low Side, or Low Side not switched ON.

STG & STB, after FET test, are latched. They are cleared through a new LPDIAGREQ or a new SYSDIAGREQ.

AN5720 - Rev 3 page 64/72

5 Optimized application circuit

In the scenario of only one channel deployment, the application can be further simplified by:

- Connecting the SSxy directly to battery.
- Not using Remote Sensor interface.

In this case there is a consistent reduction in BOM cost, paying a loss in Safety level.

Table 64. Simplified BOM

Component	Тур	Unit	Requirement	Notes
C1a	100	nF	35 V	VSYNC input capacitor
C1b	2.2	μF	35 V	VSYNC input capacitor
C2a	100	nF	25 V	VSAT input capacitor
C2b	2.2	μF	25 V	VSAT input capacitor
СЗа	100	nF	16 V	VCC input capacitor
C3b	2.2	μF	16 V	VCC input capacitor
C4	100	nF	16 V	CVDD capacitor
C5	10	nF	25 V	SS01 capacitor
C9	22	nF	25 V	SF0 capacitor
C17	22	nF	25 V	SR0 capacitor

AN5720 - Rev 3 page 65/72

Revision history

Table 65. Document revision history

Date	Version	Changes
09-Nov-2021	1	Initial release.
20-May-2024	2	 Updated: Figure 1. Application circuit; Figure 23. High level loop diagnostic flow 2. Minor text changes in Section 4.2.3: Leakage test - High Side.
22-Jul-2025	3	Figure 1. Application circuit and Table 64. Simplified BOM updated.

AN5720 - Rev 3 page 66/72

Contents

1	Description											
	1.1	Main fe	eatures	2								
	1.2	Applica	ation overview	3								
2	Devi	ice conf	iguration	4								
	2.1	Unused	d functions	4								
3	Dep	loyment	t	5								
	3.1	Deploy	ment requirement	5								
	3.2	Deploy	ment driver protection	10								
	3.3	Deploy	ment driver example	10								
		3.3.1	Deployment waveforms									
	3.4	Arming	command after deployment command	13								
4	Diag	nostic.		14								
	4.1	Low lev	vel diagnostic	16								
		4.1.1	High voltage leak test, oxide isolation IC-car chassis	17								
		4.1.2	VRCM test validation	19								
		4.1.3	Leakage test - High Side	22								
		4.1.4	Leakage test - Low Side	24								
		4.1.5	Leakage test - Low Side pulldown current	26								
		4.1.6	Short between loops	28								
		4.1.7	Squib resistance measurements	30								
		4.1.8	High squib resistance diagnostic									
		4.1.9	High Side FET diagnostic									
		4.1.10	Low Side FET diagnostic									
		4.1.11	Loss of ground									
		4.1.12	Safing FET diagnostic									
		4.1.13	Deployment time diagnostic									
	4.2	_	evel diagnostic									
		4.2.1	VRCM check - High Side									
		4.2.2	VRCM check - Low Side									
		4.2.3	Leakage test - High Side									
		4.2.4	Leakage test - Low Side									
		4.2.5	Short between loops									
		4.2.6	Squib resistance range									
		4.2.7	Squib resistance measurement									
		4.2.8	High Side FET diagnostic	61								

	4.2.9	Low Side FET diagnostic	63
5	Optimized a	pplication circuit	65
Rev	ision history		66

AN5720 - Rev 3

List of tables

Table 1.	Unused functions management	4
Table 2.	DCR_x register	
Table 3.	Relationship between deploy current profile and SSxy voltage	6
Table 4.	DSR_x register	
Table 5.	LOOP_MATR_ARMx registers	
Table 6.	SPI commands to pass in SAFING state	7
Table 7.	ARM_STATE register	7
Table 8.	SPIDEPEN register	7
Table 9.	DEPCOM register	
Table 10.	DCMTSxy registers	
Table 11.	Global Status Word - GSW	. 10
Table 12.	DEPOK in GSW	. 10
Table 13.	Deployment SPI sequence	
Table 14.	Deploy event with Arming command after SPI deployment command	. 13
Table 15.	High or Low level diagnostic	. 14
Table 16.	Low level diagnostic	. 16
Table 17.	High voltage leak test, oxide isolation IC-car chassis - LPDIAGREQ register	. 17
Table 18.	High voltage leak test, oxide isolation IC-car chassis - DIAGCTRL_X registers	. 18
Table 19.	VRCM test validation (first step) - LPDIAGREQ register	. 19
Table 20.	VRCM test validation (first step) - LPDIAGSTAT register	. 20
Table 21.	VRCM test validation (second step) - LPDIAGREQ register	. 21
Table 22.	VRCM test validation (second step) - LPDIAGSTAT register	. 21
Table 23.	Leakage test, High Side - LPDIAGREQ register	. 22
Table 24.	Leakage test, High Side - DIAGCTRL_X register	. 23
Table 25.	Leakage test, High Side - LPDIAGSTAT register	. 23
Table 26.	Leakage test, Low Side - LPDIAGREQ register	. 24
Table 27.	Leakage test, Low Side - DIAGCTRL_X register	. 25
Table 28.	Leakage test, Low Side - LPDIAGSTAT register	
Table 29.	Leakage test, Low Side pulldown current - LPDIAGREQ register	
Table 30.	Leakage test, Low Side pulldown current - LPDIAGSTAT register	
Table 31.	Short between loops - LPDIAGREQ register	
Table 32.	Squib resistance measurements (first step) - LPDIAGREQ register	
Table 33.	Squib resistance measurements (first step) - DIAGCTRL_X register	
Table 34.	Squib resistance measurements (second step) - LPDIAGREQ register	
Table 35.	Squib resistance measurements (second step) - LPDIAGSTAT register	. 33
Table 36.	High squib resistance diagnostic - LPDIAGREQ register	
Table 37.	High squib resistance diagnostic - LPDIAGSTAT register	
Table 38.	High Side FET diagnostic - LPDIAGREQ and SYSDIAGREQ registers	
Table 39.	High Side FET diagnostic - LPDIAGSTAT register	
Table 40.	Low Side FET diagnostic - LPDIAGREQ and SYSDIAGREQ registers	
Table 41.	Low Side FET diagnostic - LPDIAGSTAT register	
Table 42.	Loss of ground - LP_GNDLOSS register	
Table 43.	Safing FET diagnostic - DIAGCTRL X register	
Table 44.	Deployment time diagnostic - SYSDIAGREQ register	
Table 45.	High level diagnostic	
Table 46.	VRCM check, High Side - LPDIAGREQ register	
Table 47.	VRCM check, High Side - LPDIAGSTAT register	
Table 48.	VRCM check, Low Side - LPDIAGREQ register	
Table 49.	VRCM check, Low Side - LPDIAGSTAT register.	
Table 50.	Leakage test, High Side - LPDIAGREQ register	
Table 51.	Leakage test, High Side - LPDIAGSTAT register	
Table 52.	Leakage test, High Side - SYS_CFG register	
Table 53.	Leakage test, Low Side - LPDIAGREQ register	

AN5720 - Rev 3

AN5720

Table 54.	Leakage test, Low Side - LPDIAGSTAT register	55
Table 55.	Short between loops - LPDIAGREQ register	56
Table 56.	Short between loops - LPDIAGSTAT register	56
Table 57.	Squib resistance range - LPDIAGREQ register	57
Table 58.	Squib resistance range - LPDIAGSTAT register	58
Table 59.	Squib resistance measurement - LPDIAGREQ register	60
Table 60.	High Side FET diagnostic - LPDIAGREQ and SYSDIAGREQ registers	61
Table 61.	High Side FET diagnostic - LPDIAGSTAT register	62
Table 62.	Low Side FET diagnostic - LPDIAGREQ and SYSDIAGREQ registers	63
Table 63.	Low Side FET diagnostic - LPDIAGSTAT register	64
Table 64.	Simplified BOM	65
Table 65.	Document revision history	66

AN5720 - Rev 3

List of figures

Figure 1.	Application circuit	. 3
Figure 2.	Current measurement during deploy	. 9
Figure 3.	Deployment waveforms, VER = 33 V	12
Figure 4.	Deployment waveforms, VER = 24 V	12
Figure 5.	Deploy event with Arming command after SPI deployment command	13
Figure 6.	Squib diagnostic blocks	15
Figure 7.	High voltage leak test, oxide isolation IC-car chassis	17
Figure 8.	VRCM test validation - First step	19
Figure 9.	VRCM test validation - Second step	20
Figure 10.	Leakage test - High Side	22
Figure 11.	Leakage test - Low Side	24
Figure 12.	Low Side pulldown current - Leakage test	26
Figure 13.	High Side short to ground	29
Figure 14.	Low Side short to ground	30
Figure 15.	Squib resistance measurements - First step	31
Figure 16.	Squib resistance measurements - Second step	32
Figure 17.	High squib resistance diagnostic	34
Figure 18.	High Side FET diagnostic	37
Figure 19.	Low Side FET diagnostic	39
Figure 20.	Deployment timer diagnostic sequence	43
Figure 21.	High level diagnostic flow	45
Figure 22.	High level loop diagnostic flow 1	46
Figure 23.	High level loop diagnostic flow 2	47
Figure 24.	VRCM check - High Side (Diagnostic)	48
Figure 25.	Diagnostic - VRCM check - High Side waveform	49
Figure 26.	VRCM check - Low Side (Diagnostic)	50
Figure 27.	Leakage test - High Side (Diagnostic)	51
Figure 28.	Diagnostic - Leakage check - High Side waveform, short time	
Figure 29.	Diagnostic - Leakage check - High Side waveform, long time	53
Figure 30.	Leakage test - Low Side (Diagnostic)	
Figure 31.	Squib resistance range (Diagnostic)	57
Figure 32.	Squib resistance measurement - First step (Diagnostic)	59
Figure 33.	Squib resistance measurement - Second step (Diagnostic)	59
Figure 34.	High Side FET test (Diagnostic)	61
Figure 35	Low Side FET test (Diagnostic)	63

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

AN5720 - Rev 3 page 72/72