

1 STPMIC25 passive external components

This AN is intended to guide the customer in the selection of the external passive components for the BUCK and LDO regulators of STPMIC25 device.

A typical application schematic is shown in below figure

Figure 1. STPMIC25 Typical application schematic

AN6116 - Rev 2 page 1/15

1.1 Buck converters

The STPMIC25 is provided with 7 buck converters optimized to supply circuits with high current consumption and comply with fast transient response requirements. The input supply range of all BUCK converters goes from 2.8V to 5.5V, and they are featured with soft-start and DVS ramp for system power optimization.

The switching frequency of the converters is typically 2 MHz in a steady-state CCM condition. In details:

Table 1. BUCK converters general description

Regulator	Output voltage (V)	Programming step (mV)	Rated output current (mA)	Application use (typical MCU application)
				Buck1 = VDDCPU
BUCK1, BUCK6	0.5 – 1.5	10	2000, 1500, 1000, 500	Buck6 = VDD_DDR (DDR3L, DDR4, lpDDR3, lpDDR4)
BLICKS BLICKS	2, BUCK3 0.5 – 1.5	10	2000, 1500, 1000, 500	Buck2 = VDDCORE
BUCKZ, BUCKS				Buck3 = VDDGPU
BUCK4, BUCK5	15 42	100	E00, 2E0	Buck4 = VDD (VDDIO)
BUCK4, BUCKS	CK5 1.5 – 4.2 100 500, 250		500, 250	Buck5 = VDDA18x
BUCK7	1.5 – 4.2	100	2500, 2000, 1500, 1000	General Purpose

Following sections show the recommended values of the inductors and output capacitors that have been defined for STPMIC25A,B and D to fulfill the expected performances for STM32MP2s MPUs, such as the output voltage ripple and the load transient response in all operating conditions (DCM, CCM and temperature).

Table 2. STPMIC25A/B/D BUCK converters description

Regulator	Input voltage max (V)	Default output voltage (V)	Rated output current (A)	OCP threshold I _{BCKLIM} (A)	Typical MPU application
BUCK1		0.8	1	2.1	VDDCPU
BUCK2	5.5V	0.82	2	3.3	VDDCORE
BUCK3		0.8	2	3.3	VDDGPU
BUCK4		1.8 (B) 3.3 (A & D)	0.5	1.5	VDDIO
BUCK5		1.8	0.5	1.5	VDDA18x
BUCK6		1.1	1.5	2.8	VDD_DDR
BUCK7		3.3	2.5	3.6	General purpose

Note: For battery applications (with STPMIC25B), the max input voltage could be reduced to 4.2V (maximum battery voltage) to optimize IL ripple computation. Nevertheless, that will no change significantly the IL max

AN6116 - Rev 2 page 2/15

1.1.1 Inductor selection for buck converters

The inductors must be rated for their DC resistance and saturation current. The DC resistance of the inductance directly influences the efficiency of the DC-DC converter. For this reason, an inductor with the lowest DC resistance should be selected to reach a higher efficiency.

Equation 1. Peak-to-peak inductor current (CCM mode)

$$\Delta I_{L} = \frac{(Vinmax - Vout) * D_{max}}{L x f} = Vout * \frac{1 - \frac{Vout}{Vinmax}}{L x f}$$

Equation 2. Maximum inductor current (CCM mode)

$$I_{Lmax} = I_{out_max} + \frac{\Delta I_L}{2}$$

Equation 1 and equation 2 show how to calculate the maximum inductor current under static load conditions. The saturation current of the inductor then must be rated higher than the maximum inductor current as calculated with Equation 2. This is needed because during heavy load transient the inductor current rises above the calculated value.

Where:

- D_{max}= maximum duty cycle
- f = Switching frequency (2 MHz typical in CCM mode)
- L = Inductor value
- ΔIL = Peak-to-peak inductor ripple current
- IL_{max} = Maximum inductor current

The highest inductor current occurs at maximum Vin.

For BUCK1, BUCK2, BUCK3, BUCK6 and BUCK7 a 0.68 μH output inductor must be used, while for BUCK4 and BUCK5 a 2.2 μH output inductor must be used.

Regulator	Typical MPU application	Input voltage max	Default output voltage	Rated output current	OCP threshold	Switching frequency (CCM mode)	Recommended output coil	Peak-to- peak inductor current (CCM mode)	Maximum inductor current (CCM mode)
		(V)	(V)	(A)	I _{BUCKLIM} (A)	(MHz)	(μΗ)	∆l _L (A)	I _{Lmax} (A)
BUCK1	VDDCPU		0.8	1	2.1	2	0.68	0.50	1.25
BUCK2	VDDCORE		0.82	2	3.3	2	0.68	0.51	2.25
BUCK3	VDDGPU		0.8	2	3.3	2	0.68	0.50	2.25
	VDDIO 5.5		1.8 (B)				2.2	0.28	0.64
BUCK4		5.5	3.3 (A & 0.5 D)	1.5	2	2.2	0.30	0.15	
BUCK5	VDDA18x		1.8	0.5	1.5	2	2.2	0.28	0.64
BUCK6	VDD_DDR		1.1	1.5	2.8	2	0.68	0.65	1.83
BUCK/	General purpose		3.3	2.5	3.6	2	0.68	0.97	2.98

Following inductor part numbers were chosen in the final application:

AN6116 - Rev 2 page 3/15

Table 3	Buck	converters	 recommended 	Inductors

BUCK	Component	Vendor	Part number	⁽¹⁾ Value [µH]	Size	⁽²⁾ DCR [mΩ]	⁽³⁾ Isat [A]
BUCK1, BUCK6	LX1, LX6	Murata	DFE201610E-R68M	0.68	0806	36	4.3
BUCK2, BUCK3	LX2, LX3	Murata	DFE252012F-R68M	0.68	1008	25	5.4
BUCK4, BUCK5	LX4, LX5	Murata	DFE201610E-2R2M	2.2	0806	117	2.4
BUCK7	LX7	Murata	DFE201610E-R68M	0.68	0806	36	4.3

- 1. The inductance value should not be lower than -50% when the peak current on the inductor reaches the OCP threshold (I_{BUCKLIM}) in case of an overload or short circuit. In fact, if the inductance value is too low, if the IL is very near to I_{BUCKLIM} (i.e. the inductor is near the saturation), the IL will increase faster than the OCP circuitry loop is able to detect, causing the destruction of the high-side MOS.
- 2. Selecting inductors with similar DCR values will help to limit power efficiency losses and also reduce the self-heating of the coils.
- 3. Please refer to the inductor's datasheet for the Isat value specification.

Different PN can be used compared to table 3, but keeping the same characteristic (value, DCR) and selecting the saturation current higher than the maximum expected inductor peak current (IBUCKLIM) indicated in the datasheet.

The inductors package size should be small enough to allow good PCB placement around the STPMIC25 (not too far from the STPMIC25 on PCB)

Shielded inductors are recommended to reduce possible electromagnetic interferences.

AN6116 - Rev 2 page 4/15

1.1.2 Output capacitor selection for buck converters

Table 4 shows the recommended output capacitor part numbers.

Table 4. Buck converters - recommended output capacitors

виск	Component	Vendor	Part number	Value [µF]	DC voltage [V]	Size	ESR [mΩ] @ f=2MHz, T=25°C (for 1 cap.)
BUCK1, BUCK6	CVOUT1, CVOUT6	Murata	GRM188R60J226MEA0D	3x22	6.3	0603	6
BUCK2, BUCK3	CVOUT2, CVOUT3	Murata	GRM188R60J226MEA0D	4x22	6.3	0603	6
BUCK4, BUCK5	CVOUT4, CVOUT5	Murata	GRM21BR61A226ME51L	3x22	10	0805	5
BUCK7	CVOUT7	Murata	GRM21BR61A226ME51L	4x22	36	0805	5

The X5R capacitors are indicated if the temperature does not exceed +85°C (combination of PCB temperature plus self-heating). If there is need to work at temperatures higher than +85°C, X7R ceramic capacitors with similar characteristics of X5R should be used.

Table 5 shows the recommended output capacitance ranges to meet the ripple and dynamic performance requirements of the buck converters for satisfying the power needs of STM32MP2x microprocessors.

Table 5. Output capacitance range of buck converters and max ESR

		Output capacitance						
виск	Component	⁽¹⁾ MIN effective [µF]	TYP [μF]	MAX [μF]	⁽²⁾ Max ESR [mΩ]			
BUCK1, BUCK6	CVOUT1, CVOUT6	23.2	3x22	106	106			
BUCK2, BUCK3	CVOUT2, CVOUT3	34.8	4x22	106	2			
BUCK4, BUCK5	CVOUT4, CVOUT5	21.7	3x22	80	2			
BUCK7	CVOUT7	20.4	4x22	106	1.5			

^{1.} The MIN effective capacitance is obtained considering all the derating factors that can affect the recommended capacitors shown in table 3, such as: nominal tolerance, worst case operating temperature, the highest voltage DC bias for each buck converter and the aging.

AN6116 - Rev 2 page 5/15

^{2.} Using multiple output capacitors in parallel instead of one will help to reduce the ESR value, improving electrical dynamic performance such as ripple and load transient response.

1.1.3 Input capacitor selection for buck converters

The table below shows the minimum values of the input capacitors required to stabilize the input voltage of the BUCK converters, which can be affected by the input peak current due to the DC-DC switching activity.

Table 6. Buck converters - recommended input capacitors

виск	Component	Vendor	Part number	Value [µH]	DC voltage [V]	⁽¹⁾ Size	Dielectric
BUCK1,BUCK2, BUCK3,BUCK4, BUCK5,BUCK6, BUCK7	CBUCK1,2,3,4,5,6,7_IN	Murata	GRM188R61A106ME69D	10	10	0603	X5R

For each buck converter, we recommend using a minimum of a 10 μF ceramic input capacitor. The 0603 size is suggested
as the best compromise between capacitance value and component placement on the PCB.
In fact, while larger value and dimension capacitors would help to have better filtering on the input pins, limiting ringing
effects, on the other hand, it would be necessary to place such capacitors further away from the input pins of the PMIC25,
significantly increasing the parasitic inductance values between the VIN and GND pins.

AN6116 - Rev 2 page 6/15

1.2 LDO regulators

The STPMIC25 is provided with 8 LDOs and 1 reference voltage LDO for DDR memories. In details:

- LDO1 is a fixed 1.8 V low drop regulator typically used to supply the VDDA18 MPUs applications domain;
- LDO2, LDO5, LDO6 and LDO7 are general purpose LDOs suitable to supply MPU application peripherals.
 All these LDOs are provided with bypass mode function. In case a LDO is used in bypass mode, no output capacitor is required.
- LDO3 has three different operating modes:
 - Normal mode: used as general purpose LDO
 - Sink-source mode: for DDR3, DDR3L, DDR4 memory termination
 - Bypass mode: for lpDDR3 or lpDDR4 memory
- LDO4 is a fixed 3.3 V regulator designed to supply 3V3 USB PHY circuit.
- LDO8 is a general-purpose regulator with extended voltage range. It supports bypass mode.
- VREFDDR is a sink-source LDO dedicated to providing the voltage reference for lpDDR/DDR memory.

Table 7. LDO general description

Regulator	Regulator Output voltage (V)		Rated output current (mA)	Application use (typical MCU application)
LDO1	1.8	-	20	VDDA18AON
LDO2, LDO5, LDO6, LDO7	0.9 V to 4.0 V or bypass mode	100 400/200/100/50		General purpose (eMMC, DDR4 VPP, SD card, LCD camera)
LDO8	0.9 V to 4.0 V or bypass mode	100	150	General purpose (low voltage peripheral)
LDO3 normal mode	0.9 V to 4.0 V	100	120	General purpose/lpDDR VDD1
LDO3 sink-source mode	$\frac{V_{OUT6}}{2}$	-	+/-120 (rms) +/-230 (peak)	DDR3L/DDR4 terminations (VTT)
LDO3 bypass mode	VINLDO3	-	80	lpDDR VDD1
LDO4	3.3	-	40	VDD33USB VDD33UCPD
VREFDDR	V _{OUT6} 2	-	+/-5 (rms) +/-10 (peak)	Reference voltage for DDR memories

AN6116 - Rev 2 page 7/15

1.2.1 Output capacitor selection for LDOs

The output capacitor is essential to maintain the stability of a voltage linear regulator. It stores charge to manage sudden changes in load current, thereby reducing output voltage ripple and noise. Additionally, it creates a pole with the LDO's output impedance, which can influence the phase margin and the overall stability of the regulator. The value and type of the output capacitor can greatly affect the transient response and the stability of the LDO. Below table shows the minimum effective output capacitance that must be guaranteed for each LDO:

Table 8. Output capacitance range of LDOs

		Output capacitance				
LDO	Component	* MIN effective [µF]	TYP	MAX		
			[µF]	[μF]		
LDO1	CLDO10UT	2	4.7	10		
LDO2	CLDO2OUT	2	4.7	10		
*LDO3	CLDO3OUT	2	10	15		
(normal mode)	CEDOSOOT	2	10	15		
*LDO3	CLDO3OUT	6	10	15		
(sink-source mode)	OLDO3001	Ü	10	10		
LDO4	CLDO4OUT	2	4.7	10		
LDO5	CLDO5OUT	2	4.7	10		
LDO6	CLDO6OUT	2	4.7	10		
LDO7	CLDO7OUT	2	4.7	10		
LDO8	CLDO8OUT	2	4.7	10		
VREFDDR	CVREF	0.5	1	2.2		
INTLDO	CINTLDO	2	4.7	10		

^{*}The MIN effective capacitance is obtained considering all the derating factors that can affect the recommended capacitors shown in Table 8, such as: nominal tolerance, worst case operating temperature, the highest voltage DC bias for each LDO and the aging.

Table 9 shows the recommended part numbers.

Table 9. LDOs - recommended output capacitors

LDO	Component	Vendor	Part number Value [µF] DC voltage [V		DC voltage [V]	Size	ESR [mΩ] @ f=1MHz, T=25°C
LDO1	CLDO10UT	Murata	GRM155R60J475ME47D	4.7	6.3	0402	6
LDO2	CLDO2OUT	Murata	GRM155R60J475ME47D	4.7	6.3	0402	6
(1) LDO3 (normal mode)	CLDO3OUT	Murata	GRM155R60J106ME05D	10	6.3	0402	6
(1) LDO3 (sink-source mode)	CLD030UT	Murata	GRM155R60J106ME05D	10	6.3	0402	6
LDO4	CLDO4OUT	Murata	GRM155R60J475ME47D	4.7	6.3	0402	6
LDO5	CLDO5OUT	Murata	GRM155R60J475ME47D	4.7	6.3	0402	6
LDO6	CLDO6OUT	Murata	GRM155R60J475ME47D	4.7	6.3	0402	6
LDO7	LDO7 CLDO7OUT Murata		GRM155R60J475ME47D	4.7	6.3	0402	6
LDO8	CLDO8OUT	Murata	GRM155R60J475ME47D	4.7	6.3	0402	6
VREFDDR	CVREF	Murata	GRM155R61E105KA12D	1	25	0402	20

AN6116 - Rev 2 page 8/15

Size

0603

0402

0402

0402

16

25

25

25

LDO	Component	Vendor	Part number	Value [µF]	DC voltage [V]	Size	ESR [mΩ] @ f=1MHz, T=25°C
INTLDO	CINTLDO	Murata	GRM155R60J475ME47D	4.7	6.3	0402	6

^{1.} We suggest using 10µF/6.3V capacitor either for LDO3 working in normal and sink-source mode.

1.2.2 Input capacitor selection for LDOs

LDO

LDO3

LDO4

LDO5, LDO6

LD07, LD08

VREFDDR

The main function of an input capacitor in a LDO is to supply high-frequency current that cannot be obtained from the power source because of the inductance in the power supply line. It aids in minimizing the ripple voltage from the power supply and stops the LDO from oscillating by offering a low impedance path to ground for highfrequency noise. The input capacitor's value is determined by the LDO's input impedance and the highest input ripple voltage that the application can handle.

Below table shows the recommended input capacitor for each LDO

Murata

Murata

Murata

Murata

CVBUS

CLDO56IN

CLDO78IN

CVREF

Component Vendor Value [µF] DC voltage [V] Part number LDO1, LDO2 CLDO12IN Murata GRM155R61E105KA12D 0402 1 25 **CLDO3IN** GRM155R60J106ME05D 10 6.3 0402 Murata **CVIN** Murata GRM155R60J475ME47D 4.7 6.3 0402

GRM188R61C475KE11D

GRM155R61E105KA12D

GRM155R61E105KA12D

GRM155R61E105KA12D

4.7

1

1

1

Table 10. LDOs - recommended input capacitors

AN6116 - Rev 2 page 9/15

1.3 Recommended BOM

The below table summarize all the suggested BOM part numbers also used on the STPMIC25 evaluation board (STEVAL-PMIC25V1).

Table 11. STPMIC25 recommended BOM list

Component	Manufacturer	Part number	Value	Size
CVIN, CLDO1,2,3,4,5,6,7,8_OUT, CINTLDO		GRM155R60J475ME47D	4.7 μF 6.3V	0402
CBUCK1,2,3,4,5,6,7_IN		GRM188R61A106ME69D	10 μF 10V	0603
CVOUT1, CVOUT6	CVOUT1, CVOUT6		3 x 22µF 6.3V	0000
CVOUT2, CVOUT3		GRM188R60J226MEA0D	4 x 22μF 6.3V	0603
CVOUT4, CVOUT5	MURATA		3 x 22μF 10V	0805
CVOUT7		GRM21BR61A226ME51L	4 x 22μF 10V	
CLDO12IN, CLDO56IN CLDO78IN, CVREF		GRM155R61E105KA12D	1μF 25V	0402
CLDO3IN, CLDO3OUT		GRM155R60J106ME05D	10μF 6.3V	0402
CVBUS		GRM188R61C475KE11D	4.7μF 16V	0603
LX1, LX6, LX7		DFE201610E-R68M=P2	0.68 µH	0806
LX2, LX3		DFE252012F-R68M=P2	0.68 µH	1008
LX4, LX5		DFE201610E-2R2M=P2	2.2µH	0806

Note: All the recommended part numbers are X5R guaranteed with Tpcb ≤85 °C.

Consider using X7R or better dielectric capacitors if the whole application works in an environment with Tpcb >85 °C.

Table 12 shows the alternative STPMIC25 part numbers that can be used in an environment with Tpcb>85°C

Table 12. Alternative X7R capacitor part numbers

Component	Manufacturer Part number		Value	Size
CVIN, CLDO1,2,3,4,5,6,7,8_OUT,		GRM21BR71A475ME51	4.7 µF	0805
CINTLDO	MURATA	GRIVIZIBRI 1A415IVIEST	10 V	0605
CBUCK1,2,3,4,5,6,7_IN		GRM21BR71A106MA73	10 μF	- 1206
			10 V	
CVOLITA CVOLITO		GRM31CR70J226ME19	3 x 22 μF	
CVOUT1, CVOUT6			6.3 V	
CVOUT2, CVOUT3			4 x 22 μF	
GV0012, GV0013			6.3V	

AN6116 - Rev 2 page 10/15

Component	Manufacturer	cturer Part number		Size
CVOUT4, CVOUT5			3 x 22 μF	1206
CVO014, CVO015	MURATA	GRM31CR71A226ME15	10V	
CVOUT7		GRIVISTORY TAZZOWIE 13	4 x 22 μF	
			10 V	
CLDO12IN, CLDO56IN CLDO78IN, CVREF		GRM219R71E105KA88	1 μF	0805 - 0805 - 0805
CEDOTZIN, CEDOSSIN GEDO78IN, CVREF		GRW219R71E103RA00	25 V	
CLDO3IN, CLDO3OUT		GRM21BR70J106MA73	10 μF	
CEDOSIN, CEDOSOOT		GRIVIZ IBR703 100IVIA73	6.3 V	
CVBUS		GRM21BR71C475ME51	4.7µF	
CVBUS		GRIVIZ IDR/ IC4/ SIVIES I	16 V	

AN6116 - Rev 2 page 11/15

Revision history

Table 13. Document revision history

Date	Version	Changes
14-June-2024	1	Initial release.
08-Jul-2025	2	Updated: Buck converters, Section 1.2, Section 1.2.1

AN6116 - Rev 2 page 12/15

Contents

1	STP	MIC25	passive external components	1
	1.1	Buck o	converters	2
		1.1.1	Inductor selection for buck converters	3
		1.1.2	Output capacitor selection for buck converters	5
		1.1.3	Input capacitor selection for buck converters	6
	1.2	LDO r	egulators	7
		1.2.1	Output capacitor selection for LDOs	8
		1.2.2	Input capacitor selection for LDOs	9
	1.3	Recon	nmended BOM	10
Rev	vision	history	·	12

	4		
	\boldsymbol{t}	 \sim	ILVOC
டு	LU	ul	ires

Figure 1.	STPMIC25 Typical application schematic
igui c i.	311 WIIO23 TYPICAI APPIICALION SCHEMALIC

AN6116 - Rev 2 page 14/15

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

AN6116 - Rev 2 page 15/15