m ANG6278

Application note

Introduction to RSS extension for Key Wrap (RSSe KW) service on STM32 MCUs

Introduction

This application note introduces the RSS extension Key Wrap (RSSe KW) feature available on the STM32 MCUs listed in
Table 1.

In a context of symmetric or asymmetric cryptography, protection of secret keys is essential. For this purpose, ST proposes a
solution so that the keys remain secret at any time and usable only on a specific device.

On STM32, two elements are required to do so. The first one is a hardware coupling and chaining bridge (CCB) to isolate the
key manipulation inside hardware cryptographic IPs from any master on the system. The second one is a Root Security
Services extension (RSSe) library allowing the user firmware to use the secret key while never giving access to the secret key
itself. In the document, the library is referenced as “RSSe KW” and the output is referenced as “wrapped Key”.

The provisioning of unique keys may be required for some use cases as initial attestation, for example. This provisioning is a
crucial step and may be very costly to guaranty the unicity and confidentiality of the keys. STMicroelectronics addresses this
challenge by provisioning, in secure facilities, each applicable STM32 (cf. Table 1) unique key pairs called Device Unique
Authentication keys (DUA). These keys are ECC (Elliptic Curve Cryptographic) keys of 256 bits. The public part is freely
accessible through a certificate signed by an STMicroelectronics Certificate Authority (CA) while the wrapped private part is
accessible only through the RSSe KW.

This application note gives an overview of the STM32 RSSe KW solution with its associated tools ecosystem and explains how
to use it to safely manipulate secret keys for cryptographic operations.

Table 1. Applicable products

STM32U385VG, STM32U385RGU, STM32U385RG, STM32U385RE,

Microcontroller STM32U385RC, STM32U385KG, STM32U385CG

Note: In this document, the STM32U385xx devices are referred as STM32U3.

ANG6278 - Rev 1 - March 2025

For further information, contact your local STMicroelectronics sales office.

m ANG6278

General information

1 General information

This document applies to the STM32U3 series Arm® Cortex®-M33-based microcontrollers.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

1.1 References

Table 2. List of documents

I S

[1] AN3155 USART protocol used in the STM32 bootloader
[2] AN3156 USB DFU protocol used in the STM32 bootloader
[3] AN4221 12C protocol used in the STM32 bootloader
[4] AN4286 SPI protocol used in the STM32 bootloader
[5] AN5927 I13C protocol used in the STM32 bootloader
[6] RMO0487 STM32U3 series Arm®-based 32-bit MCUs
[7] UM2237 STM32CubeProgrammer software description
[8] UM2238 STM32 Trusted Package Creator tool software description
1.2 Glossary

AES Advanced Encryption Standard

AES CBC AES Cipher Block Chaining mode

AES ECB AES Electronic Code Block mode

AES GCM AES Gallois Counter Mode

CA Certificate Authority

DUA Device Unique Authentication

ECC Elliptic Curve Cryptography

KwW Key Wrapping

MAC Message Authentication Code

MCU Microcontroller Unit

OB Option Byte

RDP Readout Protection

RSS Root Security Services

RSSe KW RSS extension Key Wrap

RSSe SFI RSS extension Secure Firmware Install

Secure Boot Root of Trust, checks STM32 security protection

Secure bootloader Standard ST bootloader with additional security features

STM32 TPC STM32 Trusted Package Creator (see document [8])

TZEN TrustZone® enable option byte

ANG6278 - Rev 1 page 2/19

https://www.st.com/en/microcontrollers-microprocessors/stm32u3-series.html

ANG6278
STM32 RSSe Key Wrapping

2 STM32 RSSe Key Wrapping

2.1 RSSe KW principles overview
RSSe KW is a library implemented in STM32 microcontrollers that get wrapped keys in trusted facilities. The
RSSe KW can be used through debugger access. The main goal of the RSSe KW is to provide wrapped keys.
Here wrapped means usable only on one specific device.
The RSSe KW prevents the sensitive keys from:
. Being accessed by any firmware or debugging access
. Being used by another device (including STM32)
For the moment, the main goal of the RSSe KW is to provide wrapped DUA keys usable only on the current chip
for a context given by the user. The DUA keys are provisioned in a trusted environment in ST facilities.

2.2 RSSe KW features

221 Internal key wrapped
The STM32U3 embeds two unique key pairs called the DUA. These pairs are provisioned at ST level in trusted
facilities. The public part is accessible to the user through a certificate signed by a STMicroelectronics CA. The
private part is never accessible by a user application nor a debugger access. The RSSe KW aims to provide
wrapped DUA private keys. The private key is provided inside a container that contains all necessary informations
to be used by the CCB in the customer's application. For more details about the container format, refer to
Section 3.3.5: RSSE_KEYWRAP_ECC_CHIP_PRIVATE_KEY_ID.

2.3 RSSe KW constraints

ANG6278 - Rev 1

The RSSe KW only runs on crypto parts.

One shot service: once installed, the RSSe KW allows only one service to be called (meaning one wrapped key
structure at a time). To get another wrapped key, the user must uninstall the RSSe KW (by doing a reset on the
board), then, critically, do a RDP regression (RDP = 0xAA) and reinstall it, thus run the procedure from the
beginning (as detailed later).

page 3/19

‘_ ANG6278
’l Interface

3 Interface

3.1 Cube Programmer interface

The Cube Programmer command to get wrapped DUA keys from the device is detailed in Cube Programmer
documentation [7].

With the use of Cube Programmer, the user can get the wrapped key with only one command as shown in
Figure 1. The output container is stored into a binary file chosen by the user.

Figure 1. Cube Programmer interface with user

Send KW command

v

Receive output contener

A

Output
contener

Wrapped
DUA_pvk

DT76293V1

With a custom tool, the user must follow the steps detailed in Figure 2 to get the wrapped key. This flow is also
detailed in Section 3.3.5.

Figure 2. Detailed programming tool interface with user

1. Install RSSe

2. Get status

.
>

3. Receive status Install Success

-
<

4. Write descriptor and input values

=
>

5. Send KW command

v

6. Receive output contener

Output
contener

...

DUA_pvk

DT76294V1

3.2 Tool/ RSSLIB interface

In case Cube Programmer cannot be used to get the wrap key, the programing tool must follow the steps below.
3.21 Key wrap flow overview

The user needs to be equipped with a programming tool. To get a specific wrapped key, the tool must perform the
following steps:

ANG6278 - Rev 1 page 4/19

‘_ ANG6278
’l Interface

1. Install the RSSe KW.
a. Set mandatory OB:
i. TZEN=1
ii. RDP =0x55
ii. SRAM2_RST=0
b. Get the encrypted RSSe KW binary from the X-Cube RSSe package and download it into SRAM download
area.

c. Write the address of the encrypted RSSe KW binary to be installed at the address expected by the
descriptor.

d. Setthe RSSCMD value in download area and the address expected by the descriptor “input address”.
e. Set PC to RSSLIB_Set RSSCMD function call or send BL special command for RSSCMD setting.
2. Get RSSe KW installation status.
3. Write descriptor parameters for key wrapping.
a. Input address to input structure
b. Output address to expected output structure
4. Write input structure at the expected address.
5. Call RSSLIB_RSSeCall API with RSSE_KEYWRAP_ECC_CHIP_PRIVATE_KEY_ID.
6. Read the output structure at the expected address.
The steps are detailed in the following parts of this document.

3.2.2 STM32 descriptor

The STM32 system flash memory embeds a structure called STM32 descriptor. This structure provides host
information regarding the STM32 device and the way the host can communicate with RSS.

The following table gives the C structure that describes the STM32 descriptor fields.

Table 3. stm32_descriptor_t description

Version uint32_t Descriptor version
CertificateAddr uint32_t Address of the chip certificate
AvailableRamStartAddr uint32_t E(t;:t address of the available SRAM for
AvailableRamEndAddr uint32_t 52; address of the available SRAM for
RsseLoadAddr uint32_t Address where to find address of the

RSSe to install
RsseMaxSize uint32_t Maximum size of an RSSe

Address where to find the input

RsseParamAddr uint32_t parameter address for the API call
RsseParamMaxSize uint32_t Maximum size of an RSSe parameter
RsseResultAddr uint32 t Address where to find RSSe call result
— value
Reserved uint32_t[7] Reserved
RSSLIBApiTable RSSLIB_STM32xxApiTable_t RSSIib AP table within the RSSLIB

system flash memory area

The address of STM32 descriptor field is provided within STM32 system memory at a specific address tied to the
product.

ANG6278 - Rev 1 page 5/19

‘_ ANG6278
,’ Interface
Table 4. STM32 descriptor address per product

Product lines STM32 descriptor address

STM32U385 0x0BF99000

3.23 RSS library API description
The root secure services library provides services for both secure and nonsecure firmware.

These secure services are split between secure firmware that can only call secure services and the nonsecure
firmware that can only call nonsecure service.

The address of secure services is provided within a specific area named RSSLIB_STM32xxApiTable within
STM32 system memory at a specific address tied to the product.RSSLIB_STM32xxApiTable address per product.

Table 5. RSSLIB_STM32xxApiTable address per product

Product lines RSSLIB_STM32xxApiTable address

STM32U385 0x0BF99040

The following table gives the C structure that describes the RSSLIB_STM32xxApiTable dedicated to the
supported STM32 microcontrollers.

Table 6. RSSLIB_STM32ApiTable_t structure description

RSSLIB_RSSeCall RSSLIB_RSSeCall_t Gateway to call RSSe API
RSSLIB_Call RSSLIB_Call_t NS Gateway to call RSSLIB API
Reserved uint32_t[8] NA NA

Close and exit from flash
memory HDP area jumping

RSSLIB sec CloseExitHDP RSSLIB_sec_CloseExitHDP_ s on passed vector table
- = t address

(More details in product
reference manual.)
Close and exit from flash
memory HDPEXxt area

RSSLIB_sec_CloseExitHDP A RSSLIB_sec_CloseExitHDPE s jumping on passed vector

Ext xt_t table address

(More details in product
reference manual.)

1. Each field of RSSLIB_STM32xxApiTable_t is a pointer to a function.
2. NS: nonsecure callable only; S: secure callable only

The RSSLIB_RSSeCall & RSSLIB_Call fields listed in the above table are function types described in the
following section.

By default, nonsecure callable services are not defined within a nonsecure callable SAU region. Hence, the user
has no SAU parameters nor region to set in order to deny such secure services to nonsecure firmware.

3.24 RSSLIB API function types

This section provides the function types in C for RSSLIB API not described within product reference manual and
that are relevant for SFI.

3.24.1 RSSLIB_Call
Service description: call a RSSIlib service using the command identifier (CmdID) of the RSSIib service
Input parameter: payload_addr, type RSSLIB_ RSSCmd_t

ANG6278 - Rev 1 page 6/19

‘_ ANG6278
’l Interface

Output parameter: parameter stored in the address pointed by STM32 descriptor—RsseResultAddr. For
example, if STM32 descriptor->RsseResultAddr = 0x3000800C, the RSSlib stores the API result at the
address pointed by 00x3000800C. The output parameter type depends on the RSSIib service called (described
in RSSLIB_SetRSSCMD).

Return value: RSSLIB RSS SUCCESS, RSSLIB RSS ERROR

function type: typedef uint32 t (*RSSLIB Call t) (RSSLIB RSSCmd t *payload addr);

Table 7. RSSLIB_RSSCmd_t description

CmdID uint32_t Command ID
InputParamAddr uint32_t API input parameter address
3.24.2 RSSLIB_RSSeCall

Service description: call a RSSe service using the command identifier (CmdID) of the RSSe service
Input parameter: payload_addr, type RSSLIB_ RSSeCmd_t

Output parameter: parameter stored in the address pointed by STM32 descriptor—RsseResultAddr. For
example, if STM32 descriptor->RsseResultAddr = 0x3000800C, the RSSe stores the API result at the
address pointed by 00x3000800C. The output parameter type depends on the RSSe service called (described in
RSSe KEYWRAP_GetVersion).

Return value: RSSLIB RSS SUCCESS, RSSLIB RSS ERROR
function type: typedef uint32 t (*RSSLIB RSSeCall t) (RSSLIB RSSECmd t *payload addr);

Table 8. RSSLIB_RSSeCmd_t description

CmdID uint32_t Command ID
InputParamAddr uint32_t API input parameter address
3.3 RSSLIB & RSSe services

For each API, a command ID identifies the called RSSLIB or RSSe service. This command ID is the one
mentioned as RSSLIB_CMD_ID or RSSe_KW_CMD_ID in the following figures.

Figure 3. Host basic RSSe service call

Flashing Tool RSSe service call example

[01]: WriteMem SRAM RSSe API input parameters

[02): Write RSSe API input parameters

[03): SpecialRead(RSSE_OPCODE. RSSE_KW_CMD_ID)

04]: RSSLIB_RSSeCall(RSSE_KW _CMD _ID)

[05]: RSSe_ServiceCall(RSSE_KW_CMD_ID;

[06): R¢dd RSSe API input parameters.

ug: RSSe API processing

[08]: Wille service output param at STM32_descriptor->RsseResultAddr

| 08 retum RSSE KW _SUCCESS

| 0L retum RSSE_KW_SUCCESS

[11]: SpecialRead DATA

12): ReadMem at STM32 descriptor RsseResu tAddr

13): Read DATA at STM32 descriptor RsseResultAddr

[14]: ReadMem DATA

RSSe_KW_Fiashing_Tool_RSSa_basic_call tx

DT77802V1

ANG6278 - Rev 1 page 7/19

‘_ ANG6278
’l Interface

Figure 4. Host basic RSS_lib service call

[01]: Writehlem SRAM RSS_lib API input paramaters

02 Wiite RSS_lib AP| input parameters

[03): SpacialRead{RSSUB_OPCODE, RSSUB_CMD_ID)

[04] RSSLIB_Call{RSSLIB_CMD_ID}

|05): RSS_lib AP1 processing
—

L [°B], Wirte serice outout param at STM32 descriptor:>RsseResulthddr

[07], retum RSSLIB_RSS_SUCCESS

|08]: SpecialRead DATA

03] Readhem at STM3Z2_descriptor ReseResultAddr

[10]. Read DATA at STM32_descriptor. RsseRasultAdds

[11]: ReadMem DATA

3.31 RSSLIB_SetRSSCMD
Command ID: RSSLIB RSSCMD CMD ID = 0x00

Service description: User calls RSSLIB_SetRSSCMD in order to request boot from root security service (RSS) on
next boot. This request is canceled if bit BOOTLOCK within register FLASH_SECBOOTADDOR is already set.

Input parameter: uint32_t RSSCMD

Output parameter: None

Return value: RSSLIB RSS SUCCESS, RSSLIB RSS ERROR
Parameter description: see Table 9

Table 9. uint32_t rsscmd values description

RSSLIB_RSSCMD_RSSE_JTAG_BOO OXE0O Request RSS to install RSSe on next
TLOADER STM32 boot

3.3.2 RSSLIB_GetRssVersion
Command ID: RSSLIB_GET RSS_VERSION_ ID = 0x01
Service description: RSSLIB writes RSS version at address pointed by STM32 descriptor-RsseResultAddr
Input parameter: None
Output parameter: RSSLIB_RSSVersion_t description
Return value: RSSLIB RSS SUCCESS, RSSLIB RSS ERROR

Table 10. RSSLIB_RSSVersion_t description

Patch uint8_t Bug fix

Backward compatible changes: public
Minor uint8_t API deprecated improvements, for new
API functions

Backward incompatible changes: public

Major uint8_t API modification
Reserved uint8_t -
3.3.3 RSSe_KEYWRAP_GetVersion

Command ID: RSSE_KEYWRAP GET VERSION CMD ID = 0x02

ANG6278 - Rev 1 page 8/19

‘_ ANG6278
’l Interface

Service description: RSSe writes RSSe KW version at address pointed by STM32 descriptor-
>RsseResultAddr.

Input parameter: None
Output parameter: RSSe_Version_t description
Return value: see RSSe_Version_t description.

RSSe_Version_t

Table 11. RSSe_Version_t description

Patch uint8_t Bug fix

Backward compatible changes: public
Minor uint8_t API| deprecated improvements, for new
API functions

Backward incompatible changes: public

Major uint8_t API modification
Reserved uint8_t -
3.34 RSSe_KEYWRAP_GetStatus

Command ID: RSSE_KEYWRAP_GET STATUS CMD_ ID = 0x01

Service description: RSSe writes KW status at STM32 descriptor-RsseResultAddr.
Input parameter: None

Output parameter: uint32 t, KW status is described in Table 12.

Return value: see RSSe KW status enumeration.

Table 12. RSSe KW status enumeration

KW_STATUS_INITIALISED OxEAEA0808U
KW_STATUS_NOT_INITIALISED OxF5F50808U
3.3.5 RSSE_KEYWRAP_ECC_CHIP_PRIVATE_KEY_ID

Command ID: RSSE_KEYWRAP ECC_CHIP PRIVATE KEY ID =0x06

Service description: This service returns the wrapped DUA private key container at
STM32 descriptor—-RsseResultAddr.

Input parameter: InputKeyWrapEccChipPrivateKey t
Output parameter: BinaryWrappedChipEccPrivateKey t
Return value: InputKeyWrapEccChipPrivateKey _t

The input parameters are detailed bellow in Table 13 to Table 19.

Table 13. InputKeyWrapEccChipPrivateKey_t

ECCChipPrivateKeylD EccChipPrivateKeyID_t ID of the chip private key

. . Selection of the key to wrap the chip
WrappingKeySel WrappingKeySel_t private key
Reserved uint8_t[1] 4 bytes alignment
Context WrapUnwrapContext_t Context to wrap chip private key
Reserved uint32_t[10] Reserved for future use

ANG6278 - Rev 1 page 9/19

‘_ ANG6278
’l Interface

Crc uint32_t CRC on above fields

Table 14. EccChipPrivateKeylD_t

KW_ECC_CPVK_DUA2_FU 0x00U
KW_ECC_CPVK_DUA2_LU 0x01U

Table 15. WrappingKeySel_t

KW_WRAPPING_KEY_DHUK 0x00U
KW_WRAPPING_KEY_DHUK_XOR_BHK 0x01U

Table 16. WrapUnwrapContext_t

Indicate for what purpose the key is

KeyUsage KeyUsage_t used

Reserved uint8_t Reserved for future use

SecAttr SecAttr t Key u_sed in secure or nonsecure
domain

PrivAttr PrivAttr t Key used in prl\{lleged or nonprl\(lleged
mode (only privileged mode available)

Reserved uint8_t Reserved for future use

Table 17. KeyUsage_t

KW_KEY_ECC_USAGE_SIGN 0x00U
KW_KEY_ECC_USAGE_SCALAR_MUL 0x01U

Table 18. SecAttr_t

KW_SEC_ATTR_SECURE 0x00U
KW_SEC_ATTR_NON_SECURE OxFAU

Table 19. PrivAttr_t

KW_PRIV_ATTR_PRIVILEGED 0x00U
KW_PRIV_ATTR_NON_PRIVILEGED O0XAFU (not supported)

The output container is composed of a header and a payload described in Table 20 to Table 24.

ANG6278 - Rev 1 page 10/19

S7

ANG6278

Interface

Table 20. BinaryWrappedChipEccPrivateKey_t

Header BinaryHeader_t

Payload EccWrappedChipPrivateKeyPayload_t

Table 21. BinaryHeader_t

Header of the output container,
containing elements to use the wrapped
key.

Payload of the output container,
containing the wrapped key.

WrappedKeyIlD WrappedKeyld_t

PayloadSize uint32_t
AdditionalData

RSSeVersion

AdditionalData _t
RSSe_version_t
Reserved uint32_t[7]

Crc uint32_t

Table 22. WrappedKeyld_t

Identifier of the key.

Payload size in bytes.

Data used to unwrap the wrapped key.
RSSe KW version.

Reserved for future usage.

CRC on above fields and payload.

Serviceld uint8_t
KeyUsageld KeyUsage t
KeySizeld uint8_t
Reserved uint8_t

Identifier of the key.
Payload size in bytes.

Key size identifier, 0x00 for ECC curve
SECP256R1.

4 bytes alignment.

Table 23. AdditionalData _t

v uint32_t[4] Identifier of the key.

Tag uint32_t[4] Payload size in bytes.

AESMode uint8_t AES mode identifier, 0x02 for AES GCM
Reserved uint8_t[3] 4 bytes alignment

Table 24. EccWrappedChipPrivateKeyPayload_t

WrappedPrivateKey uint8_t[32] Wrapped Private Key

3.3.6 Dynamic description of key wrap command

ANG6278 - Rev 1 page 11/19

m ANG6278

Interface

Figure 5. KW installation by JTAG: Get Wrapped CPVK

KW over JTAG: Process Area

] RSSe KW installed f

Descriptor parameter address setting)

[01]: TM32_descript . _Inp)

[02]:

[03]: TM32_descrip! .0)

[04]:

RSSLIB_RSSeCall InputStructure settin,
[05): Build RSSe Wrap CPVK APl command

Host build RSSe Wrap CPVK API command with:
* CmdID: RSSE_KEYWRAP_ECC_CHIP_PRIVATE_KEY_ID
« InputParamAddr: InputAddr

[06]: WriteMem(InputParamAddr , RSSe Wrap CPVK API command)

[07:

[08]: Build RSSe InputStructure

Host build RSSe InputStructure with:

* ECCChipPrivateKeylD : key_id

* WrappingKeySel : wrapping_key_selection
o KeyUsage : key_usage

® SecAttr : security_attribute

« PrivAttr : privilege_attribute

[09]: WriteMem(InputAddr , InputStructure)

[10]:

Call RSSLIB_RSSeCall)

[11]: JTAGWriteReg(LR, @return)

[12]: JTAGWri , STM32_descriptor->RSSLIBApiTable.RSSLIB_RSSeCall)

[13]: JTAGRun

al [no debug up to end df RSSe service]
14]

[15]: RSSe_ServiceCall(RSSE_KEYWRAP_ECC_CHIP_PRIVATE_KEY_ID)

[16]: Write O at O

< [17): return RSSE_SUCCESS

I
|
|
|
|
|
|
|
J_< [18]: rfym RSSE_SUCCES

[19]: JTAGReadReg(R0)

alt J [RO = RSSE_SUCCESS]
[20]): RSSe KW Ot = JT/ Outpt)

[21): Error Handling

DT76295V1

RSSe_KW. CPVK.txt

3.4 Appendix A: kw.h file

/**
LRSS RS SRS R RS R EEREEEREEEEEEEEEEEEREE S
* @file kw.h

* @author MCD Application Team

* @brief key wrapping interface module.
hhkhkhkhkhkhkhkhhkhkhhhhhhhhhhhkrhhhkhkhhhhhrhhhhkhhhhhkrkh bbbk rhhhhkrhhhhkrhrhkhkrkhrhkhkrhrhkhkkhrhkkx

* @attention

*

* Copyright (c) 2024 STMicroelectronics.

* All rights reserved.

*

* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.

* If no LICENSE file comes with this software, it is provided AS-IS.

*

LRSS SRS R RS R EEREEE RS EEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS E

*/

#ifndef KW_H
#define KW_H
#include "rsslib.h"

ANG6278 - Rev 1 page 12/19

‘_ ANG6278
,’ Interface

/% HEperitEcl COMSEANES =sessssmmmmmmmme e e e eSS e S e S e S e S e S e e w/

/* KeyWrap error codes */

#define RSSE KW SUCCESS (RSSLIB_RSS_SUCCESS)

#define RSSE KW _ERROR O0xFFF4DA36U /* Generic value for error during key
wrapping */

#define RSSE KW OB INIT ERROR 0XxFFEA3D79U /* Wrong OB programmed for RSSe initi
alization */

#define RSSE KW SERVICE INIT ERROR O0XFFEAEE56U /* Error during service call */
#define RSSE KW CRC_ERROR OxFS5F5EOQQEU /* CRC check error on input or output
parameters */

#define RSSE KW NO HW CRYPTO O0xF5F5A0AAU /* No HW crypto on this sample */

#define RSSE KW _WRONG INPUT PARAM CONTEXT O0xF5F50EOEU /* Context selected not supported */
#define RSSE_KW_WRONG_INPUT PARAM SELECTION OxF5F5EOEQU /* key size ID or Curve ID not suppor
ted */

#define RSSE KW EXPORT PUBLIC KEY ECC_ERROR OxF5F58080U /* ECC export public key error*/
#define RSSE KW WRONG INPUT PARAM KEY SEL 0xF5F58008U /* wrap AES key, wrapping key selecti
on not supported (only DHUK and DHUK XOR BHK supported for AES) */

/* Key sizes definition for output contener */
/* ECC SECP256R1 */
#define RSSE_ECC_256R1_CPVK SIZEB 32U

/* Additionnal data */

#define RSSE AES GCM IV SIZEW 4U
#define RSSE AES GCM TAG SIZEW 4U
#define RSSE AES CBC IV SIZEW 4U

/% B EEl] B e S e e e e e e e e e e e e e e oo oo ooos =
enum rsse_kw_service id
{
RSSE_KEYWRAP_SERVICE ID BASIC = (0U),
RSSE_KEYWRAP_GET_STATUS_ID = (1U),
RSSE_KEYWRAP_GET_VERSION_ID = (2U),
RSSE_KEYWRAP_ECC_CHIP_ PRIVATE KEY ID = (6U),
RSSE_KW_MAX ID
bi

typedef enum

{
KW_WRAPPING KEY DHUK = (0U), /* Use DHUK to wrap */
KW_WRAPPING KEY DHUK XOR BHK, /* Use DHUK " BHK to wrap */
} WrappingKeySel t;

typedef enum
{

AES MODE _ECB = (0U), /* AES ECB Mode to wrap AES key, (no IV, no Tag) */
AES MODE_CBC, /* AES CBC Mode to wrap AES key, (IV, no Tag) */
AES MODE_GCM /* AES GCM mode to wrap asymmetric key, (IV, Tag) */

} AESMode t;

typedef struct

{
uint32 t IV[RSSE AES GCM IV _SIZEW]; /* IV to unwrap the wrapped key */
uint32 t Tag[RSSE AES GCM TAG SIZEW]; /* Tag used to verify the unwrapped key */
AESMode t AESMode; /* AES mode to wrap the key */
uint8 t Reserved[3U]; /* 4 bytes alignment */

} AdditionalData t;

typedef enum
{

KW_KEY ECC_USAGE SIGN = (0U), /* ECC Key used to compute signature */

KW_KEY ECC_USAGE SCALAR MUL, /* ECC Key used to compute scalar multiplication */
} KeyUsage t;

typedef enum

{
KW_SEC_ATTR SECURE = (0U), /* Wrap key for usage in secure domain */
KW_SEC_ATTR NON SECURE = (0xFAU) /* Wrap key for usage in non-secure domain */

ANG6278 - Rev 1 page 13/19

ANG6278

ANG6278 - Rev 1

Interface
} SecAttr t;
typedef enum
{
KW PRIV ATTR PRIVILEGED = (0U), /* Wrap key for usage in privileged domain */
KW_PRIV_ATTR NON PRIVILEGED = (0xAFU) /* Wrap key for usage in non-privileged domain */
} PrivAttr t;
typedef struct
{
KeyUsage t KeyUsage; /* Indicate for what purpose the key will be used */
uint8 t Hdpl; /* HDPLevel using the key Parameter. Not used: OxFE */
SecAttr t SecAttr; /* Key used in Secure or Non-Secure domain */
PrivAttr t PrivAttr; /* Key used in Privileged or Non-Privileged mode */
uint8 t Cpuld; /* On multi cores platform, indicates which CPU uses the key. Not used
: OxFE *x/
} WrapUnwrapContext t;
typedef enum
{
KW_ECC_CPVK_DUA2_FU = (0U), /* Chip private key DUA2 FU */
KW _ECC_CPVK DUA2 LU /* Chip private key DUA2 LU */
} EccChipPrivateKeyID t;
typedef struct
{
EccChipPrivateKeyID t ECCChipPrivateKeyID; /* ID of the Chip Private key */
WrappingKeySel t WrappingKeySel; /* Selection of the key to wrap the Chip Private
key */
uint8 t Reserved[1U] ; /* 4 bytes alignment */
WrapUnwrapContext t Context; /* Context to wrap Chip Private key */
uint32 t Reserved[10U] ; /* Reserved for futur usage */
uint32 t Crep /* CRC on above fields and key */
} InputKeyWrapEccChipPrivateKey t;
/* Output contener structures */
typedef union
{
EccChipPrivateKeyID t EccCpvkSizelId;
} KeySizeld t;
typedef struct
{
uint8 t Serviceld; /* Taken from rsse kw service id values, only 0x06 available now */

KeyUsage t KeyUsageId; /* Depending on the key type, indicates the usage of the key */
KeySizeId t KeySizeId; /* From the union of the different key size identifiers */
uint8 t Reserved; /* 4 bytes alignment */

} WrappedKeyId t;

typedef struct
{

WrappedKeyId t WrappedKeyID; /* Identifier of the key */

uint32 t PayloadSize; /* Payload size in bytes */
AdditionalData t AdditionalData; /* Data used to unwrap the wrapped key */
RSSe version t RSSeVersion; /* RSSe KW version */

uint32 t Reserved[7U]; /* Reserved for future usage */

uint32 t Crc; /* CRC on above fields and payload */

} BinaryHeader t;

typedef struct

{

uint8 t WrappedPrivateKey [RSSE _ECC_256R1_CPVK SIZEB];
}EccWrappedChipPrivateKeyPayload t;

typedef struct
{
BinaryHeader t Header;
EccWrappedChipPrivateKeyPayload t Payload;
} BinaryWrappedChipEccPrivateKey t;

page 14/19

m ANG6278

Revision history

Table 25. Document revision history

21-Mar-2025 1 Initial release.

ANG6278 - Rev 1 page 15/19

‘_ ANG278
,’ Contents

Contents
1 General information i i 2
1.1 R ErENCES. . . o 2
1.2 GOSNy . . v ot 2
2 STM32 RSSe Key WrappPingcouiimiiiiinieeeninaaaaaaassreannnnannnnnnsennns 3
2.1 RSSe KW princCiples OVervieWo e 3
2.2 RSSe KW features 3
221 Internal Key wrapped. 3
23 RSSe KW constraintso 3
3 L =Y = T 4
31 Cube Programmer interface. 4
3.2 Tooll RSSLIBINterfaceo 4
3.21 Key wrap flow overview. 4
3.2.2 STM32 deSCHPIOr e 5
3.23 RSS library APl description. 6
3.24 RSSLIB APl function types 6
3.3 RSSLIB & RSSE SEIVICES. . . .\ttt ittt e e e e e e e 7
3.31 RSSLIB_SetRSSCMD. 8
3.3.2 RSSLIB_GetRSSVersion 8
3.3.3 RSSe KEYWRAP_GetVersion e 8
3.34 RSSe KEYWRAP_GetStatus. e 9
3.3.5 RSSE_KEYWRAP_ECC CHIP_PRIVATE_KEY ID 9
3.3.6 Dynamic description of key wrapcommand 11
3.4 Appendix A: kw.hfile. 12
ReVISIiON RiStOryo i et i ei i s i s 15
List of tables i i 17
= o e U] =Y 18

ANG6278 - Rev 1 page 16/19

‘_ ANG278
,’ List of tables

List of tables

Table 1. Applicable producCts 1
Table 2. Listof doCUmMENtS. 2
Table 3. stm32_descriptor_t description e 5
Table 4. STM32 descriptor address per producCt 6
Table 5. RSSLIB_STM32xxApiTable address per product e 6
Table 6. RSSLIB_STM32ApiTable_t structure description 6
Table 7. RSSLIB_RSSCmd_t description 7
Table 8. RSSLIB_RSSeCmd_t description. 7
Table 9. uint32_trsscmd values description. 8
Table 10. RSSLIB_RSSVersion_t description 8
Table 1. RSSe_Version_tdescription e 9
Table 12. RSSe KW status enumeration 9
Table 13. InputKeyWrapEccChipPrivateKey t 9
Table 14. EccChipPrivateKeylD _f. 10
Table 15, WrappingKeySel t. 10
Table 16, WrapUnwrapContext_t. 10
Table 17, KeylUsage t 10
Table 18, SeCAHI_t . . . o 10
Table 19, PrivAHr b . o 10
Table 20. BinaryWrappedChipEccPrivateKey t 11
Table 21. BinaryHeader _t. 11
Table 22. WrappedKeyld_t 1"
Table 23. AdditionalData _t. 11
Table 24. EccWrappedChipPrivateKeyPayload_t. 11
Table 25. Document revision history 15

ANG6278 - Rev 1 page 17/19

‘,_l ANG6278

List of figures

List of figures

Figure 1. Cube Programmer interface with user e 4
Figure 2. Detailed programming tool interface with user. 4
Figure 3. Host basic RSSe service call 7
Figure 4. Host basic RSS_lib service call. 8

Figure 5. KW installation by JTAG: Get Wrapped CPVK

ANG6278 - Rev 1 page 18/19

‘,_l ANG6278

IMPORTANT NOTICE — READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics — All rights reserved

ANG6278 - Rev 1 page 19/19

http://www.st.com/trademarks

	AN6278
	Introduction
	1 General information
	1.1 References
	1.2 Glossary

	2 STM32 RSSe Key Wrapping
	2.1 RSSe KW principles overview
	2.2 RSSe KW features
	2.2.1 Internal key wrapped

	2.3 RSSe KW constraints

	3 Interface
	3.1 Cube Programmer interface
	3.2 Tool/ RSSLIB interface
	3.2.1 Key wrap flow overview
	3.2.2 STM32 descriptor
	3.2.3 RSS library API description
	3.2.4 RSSLIB API function types
	3.2.4.1 RSSLIB_Call
	3.2.4.2 RSSLIB_RSSeCall

	3.3 RSSLIB & RSSe services
	3.3.1 RSSLlB_SetRSSCMD
	3.3.2 RSSLlB_GetRssVersion
	3.3.3 RSSe_KEYWRAP_GetVersion
	3.3.4 RSSe_KEYWRAP_GetStatus
	3.3.5 RSSE_KEYWRAP_ECC_CHIP_PRIVATE_KEY_ID
	3.3.6 Dynamic description of key wrap command

	3.4 Appendix A: kw.h file

	Revision history
	Contents
	List of tables
	List of figures

