
Introduction

This application note introduces the RSS extension Key Wrap (RSSe KW) feature available on the STM32 MCUs listed in
Table 1.

In a context of symmetric or asymmetric cryptography, protection of secret keys is essential. For this purpose, ST proposes a
solution so that the keys remain secret at any time and usable only on a specific device.

On STM32, two elements are required to do so. The first one is a hardware coupling and chaining bridge (CCB) to isolate the
key manipulation inside hardware cryptographic IPs from any master on the system. The second one is a Root Security
Services extension (RSSe) library allowing the user firmware to use the secret key while never giving access to the secret key
itself. In the document, the library is referenced as “RSSe KW” and the output is referenced as “wrapped Key”.

The provisioning of unique keys may be required for some use cases as initial attestation, for example. This provisioning is a
crucial step and may be very costly to guaranty the unicity and confidentiality of the keys. STMicroelectronics addresses this
challenge by provisioning, in secure facilities, each applicable STM32 (cf. Table 1) unique key pairs called Device Unique
Authentication keys (DUA). These keys are ECC (Elliptic Curve Cryptographic) keys of 256 bits. The public part is freely
accessible through a certificate signed by an STMicroelectronics Certificate Authority (CA) while the wrapped private part is
accessible only through the RSSe KW.

This application note gives an overview of the STM32 RSSe KW solution with its associated tools ecosystem and explains how
to use it to safely manipulate secret keys for cryptographic operations.

Table 1. Applicable products

Type Products

Microcontroller STM32U385VG, STM32U385RGU, STM32U385RG, STM32U385RE,
STM32U385RC, STM32U385KG, STM32U385CG

Note: In this document, the STM32U385xx devices are referred as STM32U3.

Introduction to RSS extension for Key Wrap (RSSe KW) service on STM32 MCUs

AN6278

Application note

AN6278 - Rev 1 - March 2025
For further information, contact your local STMicroelectronics sales office.

www.st.com

1 General information

This document applies to the STM32U3 series Arm® Cortex®‑M33‑based microcontrollers.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

1.1 References

Table 2. List of documents

Reference Name Title

[1] AN3155 USART protocol used in the STM32 bootloader

[2] AN3156 USB DFU protocol used in the STM32 bootloader

[3] AN4221 I2C protocol used in the STM32 bootloader

[4] AN4286 SPI protocol used in the STM32 bootloader

[5] AN5927 I3C protocol used in the STM32 bootloader

[6] RM0487 STM32U3 series Arm®-based 32-bit MCUs

[7] UM2237 STM32CubeProgrammer software description

[8] UM2238 STM32 Trusted Package Creator tool software description

1.2 Glossary

Acronym Definition

AES Advanced Encryption Standard

AES CBC AES Cipher Block Chaining mode

AES ECB AES Electronic Code Block mode

AES GCM AES Gallois Counter Mode

CA Certificate Authority

DUA Device Unique Authentication

ECC Elliptic Curve Cryptography

KW Key Wrapping

MAC Message Authentication Code

MCU Microcontroller Unit

OB Option Byte

RDP Readout Protection

RSS Root Security Services

RSSe KW RSS extension Key Wrap

RSSe SFI RSS extension Secure Firmware Install

Secure Boot Root of Trust, checks STM32 security protection

Secure bootloader Standard ST bootloader with additional security features

STM32 TPC STM32 Trusted Package Creator (see document [8])

TZEN TrustZone® enable option byte

AN6278
General information

AN6278 - Rev 1 page 2/19

https://www.st.com/en/microcontrollers-microprocessors/stm32u3-series.html

2 STM32 RSSe Key Wrapping

2.1 RSSe KW principles overview
RSSe KW is a library implemented in STM32 microcontrollers that get wrapped keys in trusted facilities. The
RSSe KW can be used through debugger access. The main goal of the RSSe KW is to provide wrapped keys.
Here wrapped means usable only on one specific device.
The RSSe KW prevents the sensitive keys from:
• Being accessed by any firmware or debugging access
• Being used by another device (including STM32)
For the moment, the main goal of the RSSe KW is to provide wrapped DUA keys usable only on the current chip
for a context given by the user. The DUA keys are provisioned in a trusted environment in ST facilities.

2.2 RSSe KW features

2.2.1 Internal key wrapped
The STM32U3 embeds two unique key pairs called the DUA. These pairs are provisioned at ST level in trusted
facilities. The public part is accessible to the user through a certificate signed by a STMicroelectronics CA. The
private part is never accessible by a user application nor a debugger access. The RSSe KW aims to provide
wrapped DUA private keys. The private key is provided inside a container that contains all necessary informations
to be used by the CCB in the customer's application. For more details about the container format, refer to
Section 3.3.5: RSSE_KEYWRAP_ECC_CHIP_PRIVATE_KEY_ID.

2.3 RSSe KW constraints
The RSSe KW only runs on crypto parts.
One shot service: once installed, the RSSe KW allows only one service to be called (meaning one wrapped key
structure at a time). To get another wrapped key, the user must uninstall the RSSe KW (by doing a reset on the
board), then, critically, do a RDP regression (RDP = 0xAA) and reinstall it, thus run the procedure from the
beginning (as detailed later).

AN6278
STM32 RSSe Key Wrapping

AN6278 - Rev 1 page 3/19

3 Interface

3.1 Cube Programmer interface
The Cube Programmer command to get wrapped DUA keys from the device is detailed in Cube Programmer
documentation [7].
With the use of Cube Programmer, the user can get the wrapped key with only one command as shown in
Figure 1. The output container is stored into a binary file chosen by the user.

Figure 1. Cube Programmer interface with user

D
T7

62
93

V1

With a custom tool, the user must follow the steps detailed in Figure 2 to get the wrapped key. This flow is also
detailed in Section 3.3.5.

Figure 2. Detailed programming tool interface with user

D
T7

62
94

V1

3.2 Tool/ RSSLIB interface
In case Cube Programmer cannot be used to get the wrap key, the programing tool must follow the steps below.

3.2.1 Key wrap flow overview
The user needs to be equipped with a programming tool. To get a specific wrapped key, the tool must perform the
following steps:

AN6278
Interface

AN6278 - Rev 1 page 4/19

1. Install the RSSe KW.
a. Set mandatory OB:

i. TZEN = 1
ii. RDP = 0x55
iii. SRAM2_RST = 0

b. Get the encrypted RSSe KW binary from the X-Cube RSSe package and download it into SRAM download
area.

c. Write the address of the encrypted RSSe KW binary to be installed at the address expected by the
descriptor.

d. Set the RSSCMD value in download area and the address expected by the descriptor “input address”.
e. Set PC to RSSLIB_Set RSSCMD function call or send BL special command for RSSCMD setting.

2. Get RSSe KW installation status.
3. Write descriptor parameters for key wrapping.

a. Input address to input structure
b. Output address to expected output structure

4. Write input structure at the expected address.
5. Call RSSLIB_RSSeCall API with RSSE_KEYWRAP_ECC_CHIP_PRIVATE_KEY_ID.
6. Read the output structure at the expected address.
The steps are detailed in the following parts of this document.

3.2.2 STM32 descriptor
The STM32 system flash memory embeds a structure called STM32 descriptor. This structure provides host
information regarding the STM32 device and the way the host can communicate with RSS.
The following table gives the C structure that describes the STM32 descriptor fields.

Table 3. stm32_descriptor_t description

Field name Type Description

Version uint32_t Descriptor version

CertificateAddr uint32_t Address of the chip certificate

AvailableRamStartAddr uint32_t Start address of the available SRAM for
host

AvailableRamEndAddr uint32_t End address of the available SRAM for
host

RsseLoadAddr uint32_t Address where to find address of the
RSSe to install

RsseMaxSize uint32_t Maximum size of an RSSe

RsseParamAddr uint32_t Address where to find the input
parameter address for the API call

RsseParamMaxSize uint32_t Maximum size of an RSSe parameter

RsseResultAddr uint32_t Address where to find RSSe call result
value

Reserved uint32_t[7] Reserved

RSSLIBApiTable RSSLIB_STM32xxApiTable_t RSSlib API table within the RSSLIB
system flash memory area

The address of STM32 descriptor field is provided within STM32 system memory at a specific address tied to the
product.

AN6278
Interface

AN6278 - Rev 1 page 5/19

Table 4. STM32 descriptor address per product

Product lines STM32 descriptor address

STM32U385 0x0BF99000

3.2.3 RSS library API description
The root secure services library provides services for both secure and nonsecure firmware.
These secure services are split between secure firmware that can only call secure services and the nonsecure
firmware that can only call nonsecure service.
The address of secure services is provided within a specific area named RSSLIB_STM32xxApiTable within
STM32 system memory at a specific address tied to the product.RSSLIB_STM32xxApiTable address per product.

Table 5. RSSLIB_STM32xxApiTable address per product

Product lines RSSLIB_STM32xxApiTable address

STM32U385 0x0BF99040

The following table gives the C structure that describes the RSSLIB_STM32xxApiTable dedicated to the
supported STM32 microcontrollers.

Table 6. RSSLIB_STM32ApiTable_t structure description

Field name(1) Type Callable Attribute(2) Description

RSSLIB_RSSeCall RSSLIB_RSSeCall_t NS Gateway to call RSSe API

RSSLIB_Call RSSLIB_Call_t NS Gateway to call RSSLIB API

Reserved uint32_t[8] NA NA

RSSLIB_sec_CloseExitHDP RSSLIB_sec_CloseExitHDP_
t S

Close and exit from flash
memory HDP area jumping
on passed vector table
address
(More details in product
reference manual.)

RSSLIB_sec_CloseExitHDP
Ext

RSSLIB_sec_CloseExitHDPE
xt_t S

Close and exit from flash
memory HDPExt area
jumping on passed vector
table address
(More details in product
reference manual.)

1. Each field of RSSLIB_STM32xxApiTable_t is a pointer to a function.
2. NS: nonsecure callable only; S: secure callable only

The RSSLIB_RSSeCall & RSSLIB_Call fields listed in the above table are function types described in the
following section.
By default, nonsecure callable services are not defined within a nonsecure callable SAU region. Hence, the user
has no SAU parameters nor region to set in order to deny such secure services to nonsecure firmware.

3.2.4 RSSLIB API function types
This section provides the function types in C for RSSLIB API not described within product reference manual and
that are relevant for SFI.

3.2.4.1 RSSLIB_Call
Service description: call a RSSlib service using the command identifier (CmdID) of the RSSlib service
Input parameter: payload_addr, type RSSLIB_RSSCmd_t

AN6278
Interface

AN6278 - Rev 1 page 6/19

Output parameter: parameter stored in the address pointed by STM32_descriptor→RsseResultAddr. For
example, if STM32_descriptor->RsseResultAddr = 0x3000800C, the RSSlib stores the API result at the
address pointed by 00x3000800C. The output parameter type depends on the RSSlib service called (described
in RSSLlB_SetRSSCMD).
Return value: RSSLIB_RSS_SUCCESS, RSSLIB_RSS_ERROR
function type: typedef uint32_t (*RSSLIB_Call_t)(RSSLIB_RSSCmd_t *payload_addr);

Table 7. RSSLIB_RSSCmd_t description

Field name Type Comment

CmdID uint32_t Command ID

InputParamAddr uint32_t API input parameter address

3.2.4.2 RSSLIB_RSSeCall
Service description: call a RSSe service using the command identifier (CmdID) of the RSSe service
Input parameter: payload_addr, type RSSLIB_RSSeCmd_t
Output parameter: parameter stored in the address pointed by STM32_descriptor→RsseResultAddr. For
example, if STM32_descriptor->RsseResultAddr = 0x3000800C, the RSSe stores the API result at the
address pointed by 00x3000800C. The output parameter type depends on the RSSe service called (described in
RSSe_KEYWRAP_GetVersion).
Return value: RSSLIB_RSS_SUCCESS, RSSLIB_RSS_ERROR
function type: typedef uint32_t (*RSSLIB_RSSeCall_t)(RSSLIB_RSSECmd_t *payload_addr);

Table 8. RSSLIB_RSSeCmd_t description

Field name Type Comment

CmdID uint32_t Command ID

InputParamAddr uint32_t API input parameter address

3.3 RSSLIB & RSSe services
For each API, a command ID identifies the called RSSLIB or RSSe service. This command ID is the one
mentioned as RSSLIB_CMD_ID or RSSe_KW_CMD_ID in the following figures.

Figure 3. Host basic RSSe service call
D

T7
78

02
V1

AN6278
Interface

AN6278 - Rev 1 page 7/19

Figure 4. Host basic RSS_lib service call

3.3.1 RSSLlB_SetRSSCMD
Command ID: RSSLIB_RSSCMD_CMD_ID = 0x00
Service description: User calls RSSLIB_SetRSSCMD in order to request boot from root security service (RSS) on
next boot. This request is canceled if bit BOOTLOCK within register FLASH_SECBOOTADD0R is already set.
Input parameter: uint32_t RSSCMD
Output parameter: None
Return value: RSSLIB_RSS_SUCCESS, RSSLIB_RSS_ERROR
Parameter description: see Table 9

Table 9. uint32_t rsscmd values description

Constant name Value Comment

RSSLIB_RSSCMD_RSSE_JTAG_BOO
TLOADER 0xE00 Request RSS to install RSSe on next

STM32 boot

3.3.2 RSSLlB_GetRssVersion
Command ID: RSSLIB_GET_RSS_VERSION_ID = 0x01
Service description: RSSLIB writes RSS version at address pointed by STM32_descriptor→RsseResultAddr
Input parameter: None
Output parameter: RSSLIB_RSSVersion_t description
Return value: RSSLIB_RSS_SUCCESS, RSSLIB_RSS_ERROR

Table 10. RSSLIB_RSSVersion_t description

Field name Type Comment

Patch uint8_t Bug fix

Minor uint8_t
Backward compatible changes: public
API deprecated improvements, for new
API functions

Major uint8_t Backward incompatible changes: public
API modification

Reserved uint8_t -

3.3.3 RSSe_KEYWRAP_GetVersion
Command ID: RSSE_KEYWRAP_GET_VERSION_CMD_ID = 0x02

AN6278
Interface

AN6278 - Rev 1 page 8/19

Service description: RSSe writes RSSe KW version at address pointed by STM32_descriptor-
>RsseResultAddr.
Input parameter: None
Output parameter: RSSe_Version_t description
Return value: see RSSe_Version_t description.

RSSe_Version_t

Table 11. RSSe_Version_t description

Field name Type Comment

Patch uint8_t Bug fix

Minor uint8_t
Backward compatible changes: public
API deprecated improvements, for new
API functions

Major uint8_t Backward incompatible changes: public
API modification

Reserved uint8_t -

3.3.4 RSSe_KEYWRAP_GetStatus
Command ID: RSSE_KEYWRAP_GET_STATUS_CMD_ID = 0x01
Service description: RSSe writes KW status at STM32_descriptor→RsseResultAddr.
Input parameter: None
Output parameter: uint32_t, KW status is described in Table 12.
Return value: see RSSe KW status enumeration.

Table 12. RSSe KW status enumeration

Constant name Constant value (C hexadecimal notation)

KW_STATUS_INITIALISED 0xEAEA0808U

KW_STATUS_NOT_INITIALISED 0xF5F50808U

3.3.5 RSSE_KEYWRAP_ECC_CHIP_PRIVATE_KEY_ID
Command ID: RSSE_KEYWRAP_ECC_CHIP_PRIVATE_KEY_ID = 0x06
Service description: This service returns the wrapped DUA private key container at
STM32_descriptor→RsseResultAddr.
Input parameter: InputKeyWrapEccChipPrivateKey_t
Output parameter: BinaryWrappedChipEccPrivateKey_t
Return value: InputKeyWrapEccChipPrivateKey_t
The input parameters are detailed bellow in Table 13 to Table 19.

Table 13. InputKeyWrapEccChipPrivateKey_t

Field name type Comment

ECCChipPrivateKeyID EccChipPrivateKeyID_t ID of the chip private key

WrappingKeySel WrappingKeySel_t Selection of the key to wrap the chip
private key

Reserved uint8_t[1] 4 bytes alignment

Context WrapUnwrapContext_t Context to wrap chip private key

Reserved uint32_t[10] Reserved for future use

AN6278
Interface

AN6278 - Rev 1 page 9/19

Field name type Comment

Crc uint32_t CRC on above fields

Table 14. EccChipPrivateKeyID_t

Constant name Constant value (C hexadecimal notation)

KW_ECC_CPVK_DUA2_FU 0x00U

KW_ECC_CPVK_DUA2_LU 0x01U

Table 15. WrappingKeySel_t

Constant name Constant value (C hexadecimal notation)

KW_WRAPPING_KEY_DHUK 0x00U

KW_WRAPPING_KEY_DHUK_XOR_BHK 0x01U

Table 16. WrapUnwrapContext_t

Field name type Comment

KeyUsage KeyUsage_t Indicate for what purpose the key is
used

Reserved uint8_t Reserved for future use

SecAttr SecAttr_t Key used in secure or nonsecure
domain

PrivAttr PrivAttr_t Key used in privileged or nonprivileged
mode (only privileged mode available)

Reserved uint8_t Reserved for future use

Table 17. KeyUsage_t

Constant name Constant value (C hexadecimal notation)

KW_KEY_ECC_USAGE_SIGN 0x00U

KW_KEY_ECC_USAGE_SCALAR_MUL 0x01U

Table 18. SecAttr_t

Constant name Constant value (C hexadecimal notation)

KW_SEC_ATTR_SECURE 0x00U

KW_SEC_ATTR_NON_SECURE 0xFAU

Table 19. PrivAttr_t

Constant name Constant value (C hexadecimal notation)

KW_PRIV_ATTR_PRIVILEGED 0x00U

KW_PRIV_ATTR_NON_PRIVILEGED 0xAFU (not supported)

The output container is composed of a header and a payload described in Table 20 to Table 24.

AN6278
Interface

AN6278 - Rev 1 page 10/19

Table 20. BinaryWrappedChipEccPrivateKey_t

Field name Type Comment

Header BinaryHeader_t
Header of the output container,
containing elements to use the wrapped
key.

Payload EccWrappedChipPrivateKeyPayload_t Payload of the output container,
containing the wrapped key.

Table 21. BinaryHeader_t

Field name Type Comment

WrappedKeyID WrappedKeyId_t Identifier of the key.

PayloadSize uint32_t Payload size in bytes.

AdditionalData AdditionalData _t Data used to unwrap the wrapped key.

RSSeVersion RSSe_version_t RSSe KW version.

Reserved uint32_t[7] Reserved for future usage.

Crc uint32_t CRC on above fields and payload.

Table 22. WrappedKeyId_t

Field name Type Comment

ServiceId uint8_t Identifier of the key.

KeyUsageId KeyUsage_t Payload size in bytes.

KeySizeId uint8_t Key size identifier, 0x00 for ECC curve
SECP256R1.

Reserved uint8_t 4 bytes alignment.

Table 23. AdditionalData _t

Field name Type Comment

IV uint32_t[4] Identifier of the key.

Tag uint32_t[4] Payload size in bytes.

AESMode uint8_t AES mode identifier, 0x02 for AES GCM

Reserved uint8_t[3] 4 bytes alignment

Table 24. EccWrappedChipPrivateKeyPayload_t

Field name Type Comment

WrappedPrivateKey uint8_t[32] Wrapped Private Key

3.3.6 Dynamic description of key wrap command

AN6278
Interface

AN6278 - Rev 1 page 11/19

Figure 5. KW installation by JTAG: Get Wrapped CPVK

D
T7

62
95

V1

KW over JTAG: Process Area

Host

Host

JTAG

JTAG

SRAM

SRAM

RSS_lib

RSS_lib

RSSe

RSSe

RSSe KW installed

Descriptor parameter address setting

[01]: WriteMem(STM32_descriptor->RsseParamAddr, InputParamAddr)

[02]:

[03]: WriteMem(STM32_descriptor->RsseResultAddr, OutputAddr)

[04]:

RSSLIB_RSSeCall InputStructure setting

[05]: Build RSSe Wrap CPVK API command

Host build RSSe Wrap CPVK API command with:
CmdID: RSSE_KEYWRAP_ECC_CHIP_PRIVATE_KEY_ID
InputParamAddr: InputAddr

[06]: WriteMem(InputParamAddr , RSSe Wrap CPVK API command)

[07]:

[08]: Build RSSe InputStructure

Host build RSSe InputStructure with:
ECCChipPrivateKeyID : key_id
WrappingKeySel : wrapping_key_selection
KeyUsage : key_usage
SecAttr : security_attribute
PrivAttr : privilege_attribute

[09]: WriteMem(InputAddr , InputStructure)

[10]:

Call RSSLIB_RSSeCall

[11]: JTAGWriteReg(LR, @return)

[12]: JTAGWriteReg(PC, STM32_descriptor->RSSLIBApiTable.RSSLIB_RSSeCall)

[13]: JTAGRun

critical [no debug up to end of RSSe service]

[14]:

[15]: RSSe_ServiceCall(RSSE_KEYWRAP_ECC_CHIP_PRIVATE_KEY_ID)

[16]: Write OutputStructure at OutputAddr

[17]: return RSSE_SUCCESS

[18]: return RSSE_SUCCESS

[19]: JTAGReadReg(R0)

alt [R0 = RSSE_SUCCESS]

[20]: RSSe KW OutputStructure = JTAGReadMem(OutputAddr)

[R0 != RSSE_SUCCESS]

[21]: Error Handling

RSSe_KW_JTAG_Get_Wrapped_CPVK.txt

3.4 Appendix A: kw.h file
/**
 **
 * @file kw.h
 * @author MCD Application Team
 * @brief key wrapping interface module.
 **
 * @attention
 *
 * Copyright (c) 2024 STMicroelectronics.
 * All rights reserved.
 *
 * This software is licensed under terms that can be found in the LICENSE file
 * in the root directory of this software component.
 * If no LICENSE file comes with this software, it is provided AS-IS.
 *
 **
 */

#ifndef KW_H
#define KW_H
#include "rsslib.h"

AN6278
Interface

AN6278 - Rev 1 page 12/19

/* Exported constants --*/
/* KeyWrap error codes */
#define RSSE_KW_SUCCESS (RSSLIB_RSS_SUCCESS)
#define RSSE_KW_ERROR 0xFFF4DA36U /* Generic value for error during key
 wrapping */
#define RSSE_KW_OB_INIT_ERROR 0xFFEA3D79U /* Wrong OB programmed for RSSe initi
alization */
#define RSSE_KW_SERVICE_INIT_ERROR 0xFFEAEE56U /* Error during service call */
#define RSSE_KW_CRC_ERROR 0xF5F5E00EU /* CRC check error on input or output
 parameters */
#define RSSE_KW_NO_HW_CRYPTO 0xF5F5A0AAU /* No HW crypto on this sample */
#define RSSE_KW_WRONG_INPUT_PARAM_CONTEXT 0xF5F50E0EU /* Context selected not supported */
#define RSSE_KW_WRONG_INPUT_PARAM_SELECTION 0xF5F5E0E0U /* key size ID or Curve ID not suppor
ted */
#define RSSE_KW_EXPORT_PUBLIC_KEY_ECC_ERROR 0xF5F58080U /* ECC export public key error*/
#define RSSE_KW_WRONG_INPUT_PARAM_KEY_SEL 0xF5F58008U /* wrap AES key, wrapping key selecti
on not supported (only DHUK and DHUK XOR BHK supported for AES) */

/* Key sizes definition for output contener */
/* ECC SECP256R1 */
#define RSSE_ECC_256R1_CPVK_SIZEB 32U

/* Additionnal data */
#define RSSE_AES_GCM_IV_SIZEW 4U
#define RSSE_AES_GCM_TAG_SIZEW 4U
#define RSSE_AES_CBC_IV_SIZEW 4U

/* Exported types --*/
enum rsse_kw_service_id
{
 RSSE_KEYWRAP_SERVICE_ID_BASIC = (0U),
 RSSE_KEYWRAP_GET_STATUS_ID = (1U),
 RSSE_KEYWRAP_GET_VERSION_ID = (2U),
 RSSE_KEYWRAP_ECC_CHIP_PRIVATE_KEY_ID = (6U),
 RSSE_KW_MAX_ID
};

typedef enum
{
 KW_WRAPPING_KEY_DHUK = (0U), /* Use DHUK to wrap */
 KW_WRAPPING_KEY_DHUK_XOR_BHK, /* Use DHUK ^ BHK to wrap */
} WrappingKeySel_t;

typedef enum
{
 AES_MODE_ECB = (0U), /* AES ECB Mode to wrap AES key, (no IV, no Tag) */
 AES_MODE_CBC, /* AES CBC Mode to wrap AES key, (IV, no Tag) */
 AES_MODE_GCM /* AES GCM mode to wrap asymmetric key, (IV, Tag) */
} AESMode_t;

typedef struct
{
 uint32_t IV[RSSE_AES_GCM_IV_SIZEW]; /* IV to unwrap the wrapped key */
 uint32_t Tag[RSSE_AES_GCM_TAG_SIZEW]; /* Tag used to verify the unwrapped key */
 AESMode_t AESMode; /* AES mode to wrap the key */
 uint8_t Reserved[3U]; /* 4 bytes alignment */
} AdditionalData_t;

typedef enum
{
 KW_KEY_ECC_USAGE_SIGN = (0U), /* ECC Key used to compute signature */
 KW_KEY_ECC_USAGE_SCALAR_MUL, /* ECC Key used to compute scalar multiplication */
} KeyUsage_t;

typedef enum
{
 KW_SEC_ATTR_SECURE = (0U), /* Wrap key for usage in secure domain */
 KW_SEC_ATTR_NON_SECURE = (0xFAU) /* Wrap key for usage in non-secure domain */

AN6278
Interface

AN6278 - Rev 1 page 13/19

} SecAttr_t;

typedef enum
{
 KW_PRIV_ATTR_PRIVILEGED = (0U), /* Wrap key for usage in privileged domain */
 KW_PRIV_ATTR_NON_PRIVILEGED = (0xAFU) /* Wrap key for usage in non-privileged domain */
} PrivAttr_t;

typedef struct
{
 KeyUsage_t KeyUsage; /* Indicate for what purpose the key will be used */
 uint8_t Hdpl; /* HDPLevel using the key Parameter. Not used: 0xFE */
 SecAttr_t SecAttr; /* Key used in Secure or Non-Secure domain */
 PrivAttr_t PrivAttr; /* Key used in Privileged or Non-Privileged mode */
 uint8_t CpuId; /* On multi cores platform, indicates which CPU uses the key. Not used
: 0xFE */
} WrapUnwrapContext_t;

typedef enum
{
 KW_ECC_CPVK_DUA2_FU = (0U), /* Chip private key DUA2 FU */
 KW_ECC_CPVK_DUA2_LU /* Chip private key DUA2 LU */
} EccChipPrivateKeyID_t;

typedef struct
{
 EccChipPrivateKeyID_t ECCChipPrivateKeyID; /* ID of the Chip Private key */
 WrappingKeySel_t WrappingKeySel; /* Selection of the key to wrap the Chip Private
 key */
 uint8_t Reserved[1U]; /* 4 bytes alignment */
 WrapUnwrapContext_t Context; /* Context to wrap Chip Private key */
 uint32_t Reserved[10U]; /* Reserved for futur usage */
 uint32_t Crc; /* CRC on above fields and key */
} InputKeyWrapEccChipPrivateKey_t;

/* Output contener structures */
typedef union
{
 EccChipPrivateKeyID_t EccCpvkSizeId;
} KeySizeId_t;

typedef struct
{
 uint8_t ServiceId; /* Taken from rsse_kw_service_id values, only 0x06 available now */
 KeyUsage_t KeyUsageId; /* Depending on the key type, indicates the usage of the key */
 KeySizeId_t KeySizeId; /* From the union of the different key size identifiers */
 uint8_t Reserved; /* 4 bytes alignment */
} WrappedKeyId_t;

typedef struct
{
 WrappedKeyId_t WrappedKeyID; /* Identifier of the key */
 uint32_t PayloadSize; /* Payload size in bytes */
 AdditionalData_t AdditionalData; /* Data used to unwrap the wrapped key */
 RSSe_version_t RSSeVersion; /* RSSe KW version */
 uint32_t Reserved[7U]; /* Reserved for future usage */
 uint32_t Crc; /* CRC on above fields and payload */
} BinaryHeader_t;

typedef struct
{
 uint8_t WrappedPrivateKey [RSSE_ECC_256R1_CPVK_SIZEB];
}EccWrappedChipPrivateKeyPayload_t;

typedef struct
{
 BinaryHeader_t Header;
 EccWrappedChipPrivateKeyPayload_t Payload;
} BinaryWrappedChipEccPrivateKey_t;

AN6278
Interface

AN6278 - Rev 1 page 14/19

Revision history

Table 25. Document revision history

Date Version Changes

21-Mar-2025 1 Initial release.

AN6278

AN6278 - Rev 1 page 15/19

Contents

1 General information .2
1.1 References. 2

1.2 Glossary . 2

2 STM32 RSSe Key Wrapping .3
2.1 RSSe KW principles overview . 3

2.2 RSSe KW features . 3
2.2.1 Internal key wrapped. 3

2.3 RSSe KW constraints . 3

3 Interface. .4
3.1 Cube Programmer interface. 4

3.2 Tool/ RSSLIB interface . 4
3.2.1 Key wrap flow overview. 4

3.2.2 STM32 descriptor . 5

3.2.3 RSS library API description . 6

3.2.4 RSSLIB API function types . 6

3.3 RSSLIB & RSSe services. 7
3.3.1 RSSLlB_SetRSSCMD. 8

3.3.2 RSSLlB_GetRssVersion . 8

3.3.3 RSSe_KEYWRAP_GetVersion . 8

3.3.4 RSSe_KEYWRAP_GetStatus . 9

3.3.5 RSSE_KEYWRAP_ECC_CHIP_PRIVATE_KEY_ID . 9

3.3.6 Dynamic description of key wrap command . 11

3.4 Appendix A: kw.h file. 12

Revision history .15
List of tables .17
List of figures. .18

AN6278
Contents

AN6278 - Rev 1 page 16/19

List of tables
Table 1. Applicable products . 1
Table 2. List of documents. 2
Table 3. stm32_descriptor_t description . 5
Table 4. STM32 descriptor address per product . 6
Table 5. RSSLIB_STM32xxApiTable address per product . 6
Table 6. RSSLIB_STM32ApiTable_t structure description . 6
Table 7. RSSLIB_RSSCmd_t description . 7
Table 8. RSSLIB_RSSeCmd_t description. 7
Table 9. uint32_t rsscmd values description. 8
Table 10. RSSLIB_RSSVersion_t description . 8
Table 11. RSSe_Version_t description . 9
Table 12. RSSe KW status enumeration . 9
Table 13. InputKeyWrapEccChipPrivateKey_t . 9
Table 14. EccChipPrivateKeyID_t. 10
Table 15. WrappingKeySel_t . 10
Table 16. WrapUnwrapContext_t . 10
Table 17. KeyUsage_t . 10
Table 18. SecAttr_t . 10
Table 19. PrivAttr_t . 10
Table 20. BinaryWrappedChipEccPrivateKey_t . 11
Table 21. BinaryHeader_t . 11
Table 22. WrappedKeyId_t . 11
Table 23. AdditionalData _t . 11
Table 24. EccWrappedChipPrivateKeyPayload_t . 11
Table 25. Document revision history . 15

AN6278
List of tables

AN6278 - Rev 1 page 17/19

List of figures
Figure 1. Cube Programmer interface with user . 4
Figure 2. Detailed programming tool interface with user. 4
Figure 3. Host basic RSSe service call . 7
Figure 4. Host basic RSS_lib service call. 8
Figure 5. KW installation by JTAG: Get Wrapped CPVK . 12

AN6278
List of figures

AN6278 - Rev 1 page 18/19

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

AN6278

AN6278 - Rev 1 page 19/19

http://www.st.com/trademarks

	AN6278
	Introduction
	1 General information
	1.1 References
	1.2 Glossary

	2 STM32 RSSe Key Wrapping
	2.1 RSSe KW principles overview
	2.2 RSSe KW features
	2.2.1 Internal key wrapped

	2.3 RSSe KW constraints

	3 Interface
	3.1 Cube Programmer interface
	3.2 Tool/ RSSLIB interface
	3.2.1 Key wrap flow overview
	3.2.2 STM32 descriptor
	3.2.3 RSS library API description
	3.2.4 RSSLIB API function types
	3.2.4.1 RSSLIB_Call
	3.2.4.2 RSSLIB_RSSeCall

	3.3 RSSLIB & RSSe services
	3.3.1 RSSLlB_SetRSSCMD
	3.3.2 RSSLlB_GetRssVersion
	3.3.3 RSSe_KEYWRAP_GetVersion
	3.3.4 RSSe_KEYWRAP_GetStatus
	3.3.5 RSSE_KEYWRAP_ECC_CHIP_PRIVATE_KEY_ID
	3.3.6 Dynamic description of key wrap command

	3.4 Appendix A: kw.h file

	Revision history
	Contents
	List of tables
	List of figures

