

L9965A/L99BM218 Hardware design guide

Introduction

This document describes how to use the L9965A/L99BM218 with related components on a PCB to implement a contact-monitoring cells application.

The L9965A/L99BM218 (analog front end) provides:

- 18 independent ADC for cell voltage monitoring
- 10 GPIOs for temperature sensing using NTCs or absolute measurements for other sensors
- 18 integrated power-MOSFETs for passive balancing
- 1 dedicated ADC for bus bar monitoring
- Isolated serial communication interface (VIF)
- Integrated switching buck pre-regulator (VPRE)
- Integrated 5 V LDO (V5V) to supply external sensors (e.g. NTC)

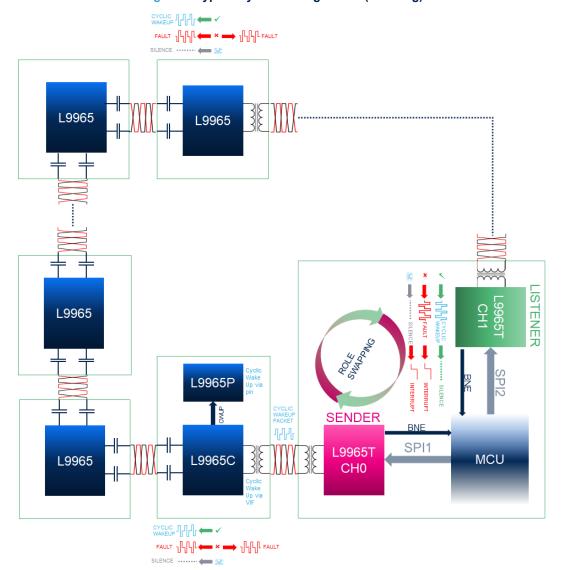
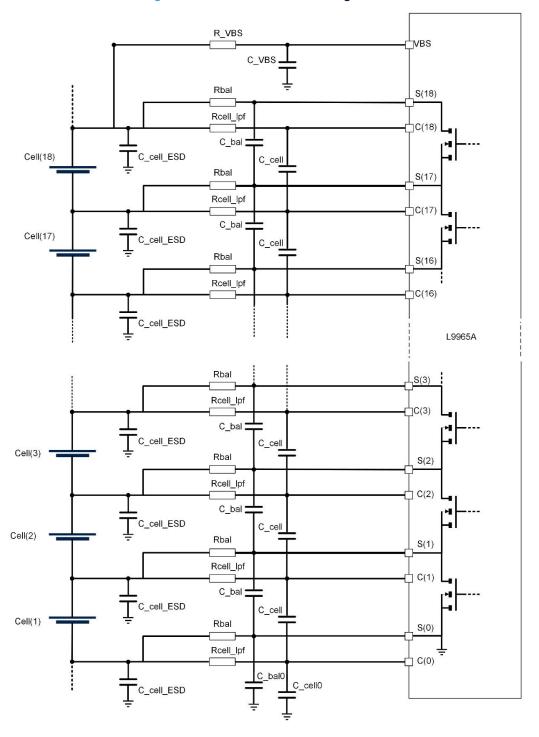


Figure 1. Typical system configuration (dual ring)

hardware


design

guide

L9965A/L99BM218 hardware design guide

Cell voltage measurement and cell passive balancing 1.1

Figure 2. Cell monitor and balancing circuit

AN6387 - Rev 1 page 2/25

hardware

design

guide

1.1.1 Cell voltage measurement

The device has a dedicated ADC for each C(x) pin to measure the differential voltages across the cells.

The R_{CELL} and C_{CELL} can be chosen according to the indications in Table 1. The cutoff frequency shall be sized according to application requirements. The IC has been characterized for noise and BCI immunity using the BOM in Table 1. A higher cutoff frequency means more external noise coupled to the IC pins, hence noisier measurements.

The R_{CELL} can be incremented ensuring that no open load on Cell1 occurs during the open load diagnostic. Please refer to the document AN – open load diagnostic.

1.1.2 Cell balance

For the passive balancing, there is an integrated FET positioned between each S(x) and S(x-1) pins. RBAL shall be sized according to the target balancing current considering the max cell voltage and FET's AMRIBAL (MAX). Assuming the desired balance current I_{BAL} (MAX) is known, the R_{BAL} must be sized as follows:

$$I_{BAL} = \frac{V_{CELL}}{(2R_{BAL} + R_{DSON})} \tag{1}$$

$$R_{BAL} = \frac{\frac{V_{CELL}}{I_{BAL}} - R_{DSON}}{2} \tag{2}$$

Considering a cutoff frequency of 100 kHz, the capacitor of each differential channel S(x) is C_{BAL}=68 nF.

$$f_{cutoff} = \frac{1}{(2\pi * 2R_{BAL} * C_{BAL})} \tag{3}$$

The device is able to sustain +/- 8 kV ESD according to ISO 10605, system level network 150 pF/330 ohm, using $C_{CELL ESD} \ge 22 \text{ nF}.$

AN6387 - Rev 1 page 3/25

1.1.3 **Battery sensing**

The ADC positioned on VBS is used for a single-ended measurement; consequently, the filtering capacity is referred to the ground and sized to sustain the V_{BAT}, 3 kHz is the suggested cutoff frequency, estimated with the

$$f_{cutoff} = \frac{1}{(2\pi * R_{VBS} * C_{VBS})} \tag{4}$$

1.2 **GPIO**

The GPIO can be used as:

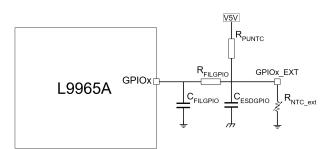
- NTC temperature measurement (Ratiometric)
- GPIO generic analog input (Absolute)

1.2.1 NTC temperature measurement

Using NTC sensors, the GPIO has to be configured as "Analog input ratiometric" by setting the field GPIOx CONF=0b01 in the register GPIO CONF x.

The NTC's voltage divider must be supplied by the V5V regulator by means of the pull-up resistor R_{PUNTC} chosen according to the NTC variable resistance. The GPIOs measure the voltage drops on the NTCs according to

Using a first order filter stage can be useful to improve measurement results and filter possible noise.


As an example, for an $R_{NTC-EXT}$ with a max resistance of 10 k Ω , possible values for the components can be:

 R_{PUNTC} = 10 k Ω ;

 $R_{(FIL\ GPIO)} = 3.3 k\Omega;$

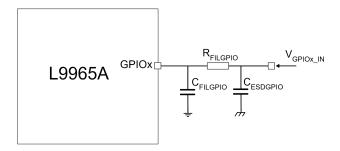
 $C_{(FIL\ GPIO)}$ = 100 nF;

Figure 3. GPIO used as NTC

GPIOs connected to external NTCs shall withstand short circuit to VB maximum operating voltage by means of external series resistors, keeping the injected current below 20 mA (a reasonable value to keep the device input

The unused GPIOs must be connected directly to GND as explained in the unused pin section of the product specification.

Optional ESD capacitor CESDGPIO can be used to improve ESD immunity performance. A typical suggested value is C_{ESDGPIO} = 6.8 nF to be placed as near the GPIO connectors as possible. The device is able to sustain +/- 8 kV ESD according to ISO 10605, system level network 150 pF/330 ohm, using C_{ESDNTC}.


AN6387 - Rev 1 page 4/25

1.2.2 **GPIO** generic analog input

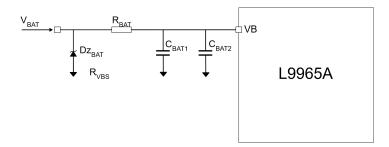
The GPIOs can also be used to convert any V_{GPIOx_IN}. In this case, GPIOx must be configured as an analog absolute input by setting the field GPIOx_CONF=0b00 in the register GPIO_CONF_x.

Figure 4. GPIO used as analog absolute input

AN6387 - Rev 1 page 5/25

hardware

Battery supply


The L9965A/L99BM218 is supplied from the VB pin, which must be connected to the topmost cell of the stack. As reported in the datasheet, it is recommended to place a series resistance on the VB pin to protect it from hot plug inrush currents. A suitable value can be R_{BAT} = 10 Ω , to keep the total resistor voltage drop below 1 V.

As an additional protection for the VB pin, to avoid violation of the AMR voltage, it is recommended to add a diode D_{ZRAT} as shown in . The diode's breakdown voltage value is chosen according to V_{VR} AMR. a good candidate can be SM30T100AY. This component should be placed as near as possible to the V_{BAT} connector.

To filter out possible supply noise, capacitors C_{BAT1} = 4.7 uF and C_{BAT2} = 100 nF are placed on the V_{BAT} path. Both capacitors should be placed as close as possible to the VB pin.

When choosing a capacitor component, please take care of the DC bias effect.

Figure 5. Battery supply

VIF 1.4

The BMS controller can communicate with other devices in the daisy chain by means of the VIF (Vertical Isolated Interface).

Interconnections between modules can be realized either with UTP (Unshielded Twisted Pair) or STP (Shielded Twisted Pair). The recommended AWG is between 22 and 26, and the recommended cable length is up to 10 meters.

Two different isolation methods are supported:

- Capacitive isolation
- Inductive isolation

In case of capacitive isolation uses series capacitor on the ISO pins, it is recommended to use a 6.8 nF capacitor as C_{ISO}. Keep tolerance low to avoid generating unwanted differential signals due to capacitor mismatches.

The capacitor voltage rating shall be sized according to the maximum isolation voltage to be guaranteed in the application:

- 100 V for adjacent devices
- 1 kV is recommended for other cases (this value can be chosen according to the max voltage of the battery pack).

In case of inductive isolation, a transformer between the ISOx_P and ISOx_M can be used. ST recommends using the transformer ESMIT- 4180/C, which shows a dielectric breakdown isolation of at least 3750 V.

A low pass filter can be added to ISOx P and ISOx M pins to reject noise and improve protection against the hot plug events and fast transients (R_{ISO}= 39 Ω, C_{FIL} = 100 pF). Consider sizing the filtering capacitor C_{FIL} with a breakdown voltage of 25 V as suggested by the datasheet.

The use of TVS on external VIF lines is recommended as additional protection; the sizing depends on the system and can be defined on a case-by-case basis.

An optional CMC can be added to improve possible EMC issue (a suitable value is 100 uH).

AN6387 - Rev 1 page 6/25

Figure 6. Isolated Vertical Interface (VIF) with capacitive isolation

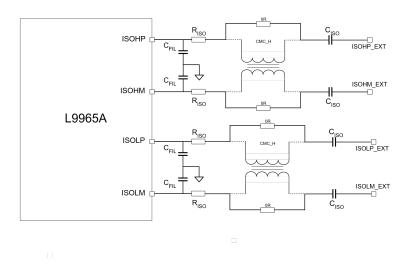
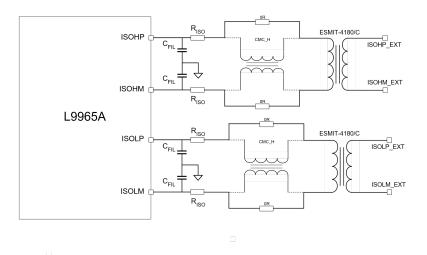
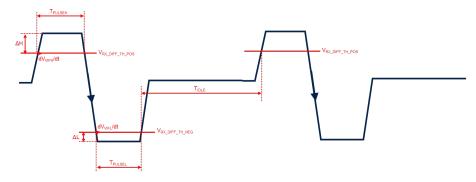



Figure 7. Isolated Vertical Interface (VIF) with inductive isolation

AN6387 - Rev 1 page 7/25

hardware

design


guide

1.4.1 VIF signal integrity assessment

The VIF protocol is Manchester-encoded, meaning that bit '1' or '0' are represented using low==>high transitions or vice versa. The VIF decoding is based on analog differential comparators using fixed thresholds.

Figure 8 reports a reference differential waveform (ISOxP - ISOxM) encoding two consecutive bit.

Figure 8. VIF differential waveform evaluation criteria

Having defined V_{VIF} as V_{ISOxP} - V_{ISOxM} , to be correctly interpreted by the receiver, a waveform shall satisfy the following criteria:

Amplitude: pulse absolute peak value shall be 20% above receiver thresholds

$$\begin{cases}
\left| \Delta H \right| \ge 1.2 \quad \left| V_{RX_{DIFFTH_{POS}}} \right| \\
\left| \Delta L \right| \ge 1.2 \quad \left| V_{RX_{DIFFTH_{NEG}}} \right|
\end{cases} \tag{5}$$

Duration: pulse duration shall be enough to allow comparator toggling within the expected time

$$\begin{cases} T_{PULSEH} \ge 45ns \\ T_{PULSEL} \ge 45ns \end{cases} \tag{6}$$

Slope: pulse shall cross thresholds with a slope higher than the minimum specified to allow comparator toggling within the expected time

$$\begin{cases} \frac{dV_{VIFH}}{dt} \ge 0.2 \frac{V}{ns} \\ \frac{dV_{VIFL}}{dt} \le -0.2 \frac{V}{ns} \end{cases}$$
 (7)

Idle: pulse differential amplitude shall be below both thresholds for a certain time interval to enable a correct symbol end condition

$$\begin{cases} V_{VIF} < V_{RXDIFFTHPOS} \\ V_{VIF} > V_{RXDIFFTHNEG} \end{cases} for T_{IDLE} > 110ns$$
 (8)

A waveform not respecting such constraints may not be decoded correctly, leading to communication error detection.

VIF components listed in the Table 1 have been extensively validated in application and during EMC trials, and are recommended for a correct communication. Usage of different components is possible. However, the signal integrity shall be re-assessed during system trials.

1.4.2 Imbalance due to a VIF port disabled

In single-access daisy chains, the ISOH VIF port of the topmost device is unused and shall be terminated as prescribed in the Section 1.6 paragraph. User software can decide whether to keep this port closed or leave it enabled, based on consumption imbalance considerations.

The SoC imbalance due to one device in the stack having a VIF port disabled is totally negligible most of the times. It only becomes significant if small packs with low capacity are used.

For instance, consider the following system example:

AN6387 - Rev 1 page 8/25

- Suppose to have a single-access daisy chain with N stacked devices. User SW may disable the topmost device ISOH port, as no L9965T/L99BM2T is listening on the other side.
- Suppose to have a 100 ms thread collecting all cell voltage/temperature from the AFEs.
- Suppose to have a 400 V system with N = 7 stacked L9965A/L99BM218. The worst case happens when the pack capacity is small. A reasonably small 400 V system would store 10 kWh energy, thus having a 25 Ah capacity. Then, 1% of SoC corresponds to 0.25 Ah.

If using burst read, the communication loop time to recover all information will be <10 ms, so bus duty-cycle will be <10%

However, the actual duty-cycle where ISOH/ISOL ports are transmitting is < 1%, due to interframe delays and VIF physical layer.

This 1% VIF TX duty-cycle is the parameter to account for calculating imbalancing.

Suppose all the AFEs are programmed with BIDI_ANSW = 1, except the last one, for which ISOH was disabled. In principle, this is not needed for a single-access chain. However, to compensate for VIF communication imbalance as much as possible, keeping BIDI_ANSW enabled is the right thing to do.

The main differences between the topmost L9965A/L99BM218 and the other ones are:

- When receiving an SoC command, it won't be propagated upwards. This corresponds to 5.125 us inactivity time of the ISOH port
- When receiving a burst read command, it won't be propagated upwards. This corresponds to 7 x 5.125 us inactivity time of the ISOH port
- When each AFE sends burst read data back to the XCVR, the LAST AFE will not propagate it upwards.
 This corresponds to ~14x100 us inactivity time of the ISOH port

The total inactivity time of the ISOH port of the last AFE can be estimated as 1.441 ms in a 100 ms loop time.

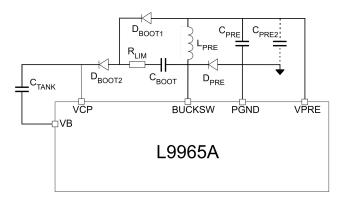
The amount of charge difference can then be estimated considering the typical ISO port transmitter consumption: $8.5 \text{ mA} * 1.441 \text{ ms} = 3.402*10^{-9} \text{ Ah}$. Such imbalance cumulates at each communication cycle.

With the calculated imbalance per cycle due to VIF, $7.3486*10^7$ communication cycles are needed to cumulate a 1% SoC imbalance (0.25 Ah). If communication cycle loop time is 100 ms, this corresponds to $7.3486*10^6$ seconds, which is $2.0413*10^3$ hours, thus ~85 days.

The days to have a 1% SoC imbalance would proportionally increase with pack capacitance. Therefore, the imbalance due to a VIF port disabled can be considered totally negligible in respect to cell self-discharge performances, which are something like ~10% in a month. In fact, since cells are not perfectly matched, it is reasonable to assume that imbalance cumulated due to self-discharge mismatch is significantly higher in a 30-day timespan.

To conclude, leaving ISOH port disabled will not imbalance packs in a significant way. However, leaving ISOH port enabled and terminated as prescribed, can be helpful when dealing with small capacity packs.

1.5 VPRE


The VPRE pin is the output pin of the integrated buck regulator.

Its tank capacitor is sized with C_{PRE} = 4.7 uF, considering a minimum dielectric breakdown voltage of 100 V according to VPRE AMR value.

The buck converter inductor should have an inductance value L_{PRE} = 47 uH with saturation current up to 220 mA. An additional C_{PRE2} = 10 nF capacitor on the VPRE pin can be added if needed.

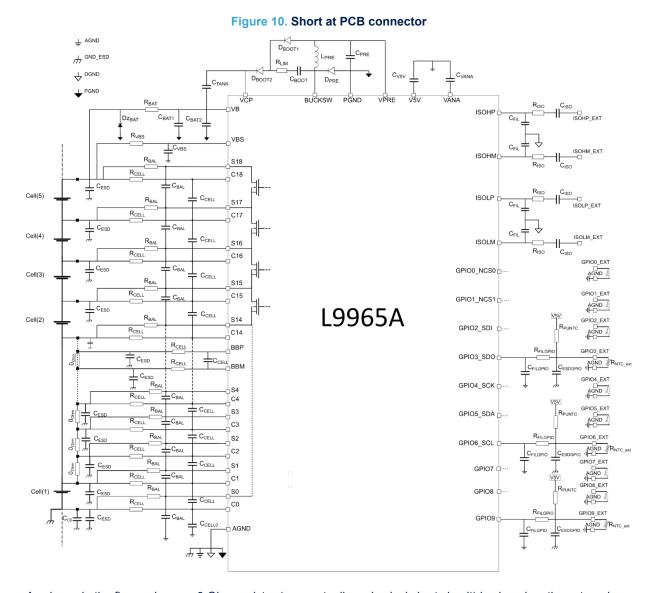
AN6387 - Rev 1 page 9/25

Figure 9. BUCK regulator

1.6 **Unused pins**

The external connector must be designed to comply with the rules:

- A cell shall always be present between pins C0 and C1
- The remaining cells shall be mounted starting from the topmost (cell 18) and moving downwards
 - In case the C0-C1 pair is used as a busbar sensing channel, then the first cell shall be connected between C1 and C2 pins. However, open load diagnostics are not fully guaranteed in this case.


There can be two approaches for adapting a design to a different number of cells:

- Hard-wired approach: it is the most efficient in terms of the BOM, but requires redesigning the PCB for adapting to different modules. Given a number of unused cells, the design shall be adapted as follows:
 - Cell pairs C(x) C(x-1), which are completely unused, should be short-circuited and connected to the negative terminal of the first mounted cell upwards
 - Unused balancing pairs S(x) S(x-1), should be short-circuited and connected to the negative terminal of the first balancing stage upwards.
 - Cell pairs C(x) C(x-1), which are used for busbar sensing, should be treated as regular cells and kept enabled. However, their balancing stage should be unused.
 - If the busbar pair BBP BBM is unused, those pins shall be short-circuited and connected to AGND.
 - Unused GPIOs shall be connected to AGND. The GPIO must be configured as a digital input via GPIOx_CONF register
 - Unused VIF ports ISOxP ISOxM shall be terminated by connecting a differential 160 Ω resistor and a common-mode 100 pF capacitor vs. AGND on each pin. Refer to Imbalance due to a VIF port disabled for further information
- Flexible approach: it is less efficient in terms of the BOM, since unused cells are still populated with analog front-end components. On the other hand, it enables quick readaptation of an existing PCB design to a different number of cells. Given a number of unused cells, the following substrategies are possible
 - The Short at PCB connector technique exploits shorts between unused connector pins. It still requires a small external rework, but it is limited to the cell connector and does not involve the PCB layout.
 - The Assembly option technique exploits design variants, replacing existing components with 0 Ω resistors to manage unused cells.
 - The Floating technique is as straightforward as it seems: just leave the corresponding PCB connectors floating whenever a cell is unused

AN6387 - Rev 1 page 10/25

57

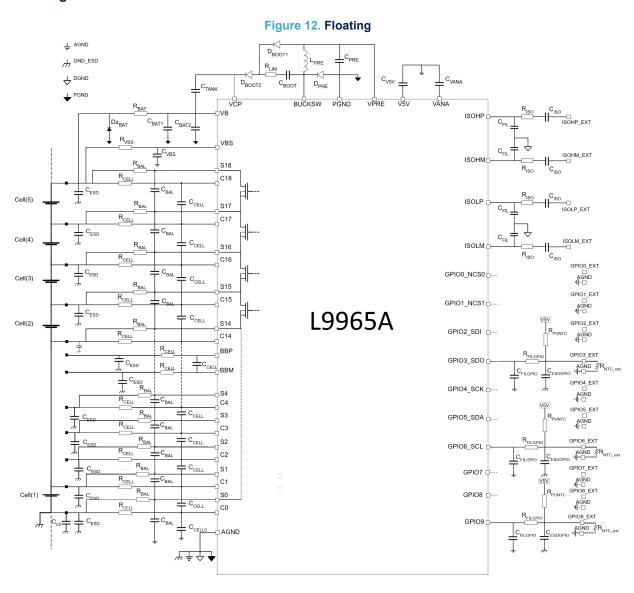
1.6.1 Short at PCB connector

As shown in the figure above, a 0 Ohm resistor (or eventually a physical short circuit) is placed on the external connector of the unused pins to connect the cell 1 positive terminal to the negative terminal of the following mounted cell. If the BB channel is brought to the connector, it can be short-circuited and connected to any potential mounted cell as well. Unused GPIO channels are shorted to AGND at the PCB connector.

AN6387 - Rev 1 page 11/25

1.6.2 **Assembly option**

Figure 11. Assembly option ⊥ AGND ₼ GND_ESD R_{LIM} \downarrow DGND VCP BUCKSW VPRE ISOHM S18 C18 ISOLP S17 R_{CELL} C17 ISOLM S16 R_{CEL} C16 GPIO0_EXT GPIO0_NCS0 Cell(3) C_{CELI} AGND S15 R_{CELI} GPIO1_EXT C15 GPIO1_NCS1 AGND CESD L9965A Cell(2) S14 GPIO2_EXT GPIO2 SDI R_{CELL} AGND C14 BBP GPIO3_EXT


AGND ≹R_{NTO} TCESD RCELL ввм C_{ESD} R_B GPIO4_EXT GPIO4 SCK AGND R_{CELL} C4 GPIO5_EXT S3 GPIO5_SDA AGND R_{CELI} C3 GPIO6_EXT S2 R_{CELL} AGND RN C2 R_{BAL} S1 AGND C1 S0 AGND CO GPIO9_EXT AGND ₹R_{NTC_ex} AGND ₩<u>+</u>↑

In the example above, unused cells and GPIOs are managed by replacing a few of their analog front-end capacitors with 0 Ohm resistors.

AN6387 - Rev 1 page 12/25

1.6.3 Floating

In the example above, unused cells and GPIOs are managed by simply leaving their PCB connectors floating. Their analog front-end BOM is totally populated with recommended components.

AN6387 - Rev 1 page 13/25

1.7 EMC considerations

To improve EMC robustness, the following actions are recommended:

Place all buck converter components near the IC as much as possible. To minimize parasitic effects, the PCB area under the buck coil should be free of metal layers and metal traces. Minimize the orange loop area in Figure 13.

Noisy net: far away from semitive ones

Particular care to this connection: capacitor and anode first connected together then the resulting net has to be routed towards GND

Figure 13. Buck converter layout rules

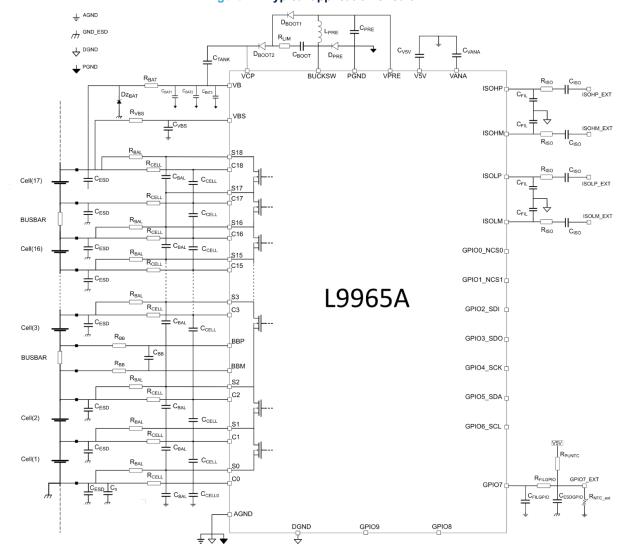
Place protection and/or HV decoupling components, TVS, ESD Cap, ISO-SPI HV Cap, near the relevant external input connector as much as possible.

The L9965A/L99BM218 features 4 ground pins used as internal reference: AGND, DGND, PGND and EP (to be connected to AGND); additional GND can be present on PCB such as GND_PACK and ESD_GND.

To avoid relevant ground shifts and noise propagation on AGND, the different GNDs must be joined with a star as close as possible to the IC, and then brought to the PCB connector with a GND plane, connected to pack ground. The ADC and NTC lines should run into inner layers of PCB.

The L9965A/L99BM218 promotional board of the PCB project is available as reference.

AN6387 - Rev 1 page 14/25



2 Application information

This section lists the components to be used in typical application scenarios.

2.1 Application circuit

Figure 14. Typical application circuit

AN6387 - Rev 1 page 15/25

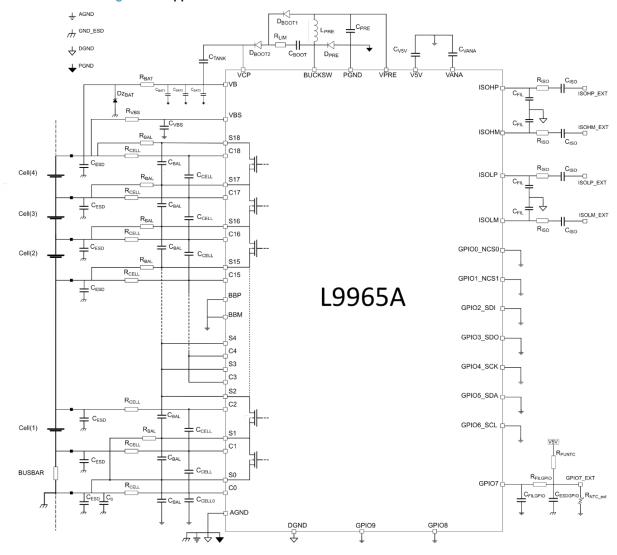


Figure 15. Application circuit with BB on the first cell and unused cells

AN6387 - Rev 1 page 16/25

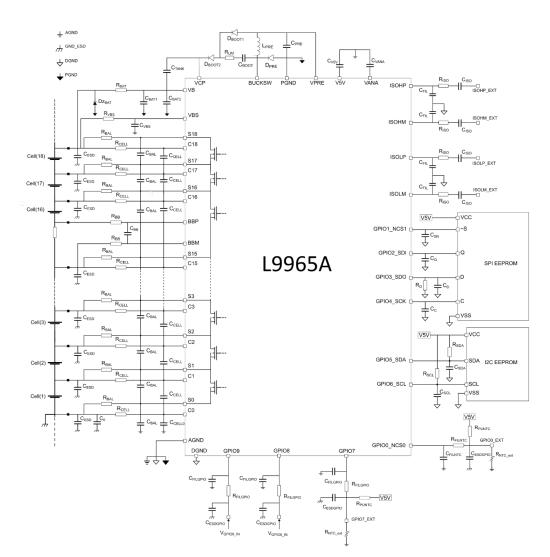


Figure 16. Application scenario with SPI master and EEPROM

AN6387 - Rev 1 page 17/25

2.2 Bill of material (BOM)

Table 1. Bill of material

Symbol	Parameter	Value	Rating	Tolerance	Note	
Battery su	pply					
R _{BAT}	Series resistor for battery supply line	10 Ω	125 mW	10%	Optional, it can be useful to limit possible hot plug spikes, according to specific customer application conditions. It shall be sized so that its voltage drop is kept < 1 V.	
D _{ZBAT}	TVS for battery supply line	SM30T100AY	NA	NA	Optional. Can be mounted to comply with surge and EFT tests.	
C _{BAT1}	Tank capacitor for battery supply line	2.2 uF to 4.7 uF	100 V	20%	Lower rating is possible according to the module maximum voltage.	
C _{BAT2}	Filtering capacitor for battery supply line	100 nF	100 V	20%	Optional, for improving EMC performances. Consider increasing voltage rating to compensate the DC bias effect.	
C _{BAT3}	Filtering capacitor for battery supply line	10 nF	100 V	20%	Optional, for improving EMC performances. Consider increasing voltage rating to compensate the DC bias effect.	
Battery ser	nsing					
R _{VBS}	Filtering resistor for battery sensing line	240 Ω	62.5 mW	5%	VBS gain conversion error due to RVBS can be computed as R _{VBS} /R _{VBS_IN} . Equalize R _{VBS} C _{VBS} filter cutoff frequency to cells.	
C _{VBS}	Filtering capacitor for battery sensing line	220 nF	100 V	10%	Consider increasing voltage rating to compensate the DC bias effect. Lower rating is possible according to the module maximum voltage.	
Cell and bu	usbar sensing		·			
R _{CELL}	Filtering resistor for cell sensing line	240 Ω	62.5 mW	5%	R _{CELL} and C _{CELL} values can be chosen to form an RC filter with ~3.3 kHz as cutoff	
C _{CELL}	Differential filtering capacitor for cell sensing line	100 nF	16 V	10%	frequency. Cell gain conversion error duto R _{CELL} can be computed as $2R_{CELL}/R_{CELL_DIFF_IN}$. Do not go below 100 Ω f hotplug robustness. Do not go above 30 Ω to avoid false cell 1 open flagging.	
C _{C0}	Grounded capacitor for improved BCI immunity on C0 connector	1 nF	16 V	10%		
C _{Cell0}	Consist of 3 grounded capacitors for improved BCI immunity on C0	100 nF1nF, 100 pF	16 V	10%		
R _{BB}	Filtering resistor for busbar sensing line	240 Ω	62.5 mW	5%	Equalize R _{BB} C _{BB} filter cutoff frequency to	
C _{BB}	Filtering capacitor for busbar sensing line	100 nF	16 V	10%	cells.	
Cell balanc	cing	1	-	1		
R _{BAL}	Balancing resistor for cell sensing line	12 Ω	500 mW	5%	Sized to have a 180 mA max. balancing current when cell voltage is 4.3 V.	

AN6387 - Rev 1 page 18/25

Symbol	Parameter	Value	Rating	Tolerance	Note
C _{BAL}	Filtering capacitor for cell balancing line	22 nF to 68 nF	16 V	20%	The maximum R _{BAL} C _{BAL} cutoff frequency of 100 kHz is recommended for BCI robustness
ESD					
C _{ESD}	ESD capacitor for pack connectors	22 nF to 47 nF	100 V	20%	Optional, according to specific customer application requirements. Smaller values are possible if ESD-Safe MLCCs are used. Going below 6.8 nF is not recommended as it may jeopardize BCI performances
LDOs					
C _{V5V}	5 V LDO tank capacitor	1 uF	10 V	10%	Consider increasing voltage rating to compensate the DC bias effect.
C _{VANA}	3.3 V LDO tank capacitor	470 nF	10 V	10%	Consider increasing voltage rating to compensate the DC bias effect.
VIF	<u>'</u>				
CMC	Common mode choke for VIF H/L ports	ACT1210R-101-2P			Optional. Can be mounted to improve EMC performances
EMIF	Compact analog front- end for for VIF ports H/L	EMIF04-0410M8			Optional. Can be used in place of R _{ISO} and C _{FIL} components
R _{ISO}	Series resistor for ISO pins	35 Ω to 41 Ω 39 Ω typical	100 mW	1%	Optional. Can be used in place of the EMIF component. Filters common mode and differential noise. Keep tolerance low to maximize differential line balancing.
C _{ISO}	Isolation capacitor for VIF ports H/L	2.2 nF to 6.8 nF	100 V/1 kV	2%	Optional. Can be used in place of XFMR component. Voltage rating shall be sized according to the maximum isolation voltage to be guaranteed in the application. Keep tolerance low to maximize differential line balancing.
XFMR	Isolation transformer for VIF ports H/L	ESMIT-4180/C			Optional. Can be used in place of C_{ISO} component. Key parameters are: • Inductance \geq 120 μ H @-40°C • Winding resistance \leq 0.5 Ω Note: EMC trials performed with recommended P/N.
C _{FIL}	Filtering capacitor for ISO termination	100 pF	25 V	2%	Optional. Can be used in place of the EMIF component. Filters common mode and differential noise. Keep tolerance low to maximize differential line balancing.
R _{TERM}	Termination resistor for unused port	200 Ω	0.5 W	10%	Optional. To be used only on unused VIF port.
GPIOs					
R _{PUNTC}	Pullup biasing for NTC measurement	10 kΩ	125 mW	10%	Pullup resistor for NTC lines. Rating is to be increased to 0.5 W to protect and withstand short to battery.
R _{FILGPIO}	Series resistor for GPIO pins	3.3 kΩ	125 mW	10%	Filters noise on the GPIO pin. Rating is to be increased to 0.5 W to protect and withstand short to battery.
C _{FILGPIO}	Filtering capacitor for GPIO pins	100 nF	16 V	20%	Filters noise on the GPIO pin. Rating is to be increased to 100 V to withstand short to battery.

AN6387 - Rev 1 page 19/25

Symbol	Parameter	Value	Rating	Tolerance	Note				
C _{ESDGPIO}	ESD capacitor for GPIO pins connected to external lines	6.8 nF	16 V	20%	Optional, according to specific customer application requirements. Rating is to be increased to 100 V to withstand short to battery.				
Charge pump									
D _{BOOT1} , D _{BOOT2}	Charge pump bootstrap diodes	BAV99-QVL	100 V	NA	Bootstrap diodes rated to withstand maximum operating battery voltage.				
C _{TANK}	Charge pump tank capacitor	47 nF	100 V	10%	Rated to withstand maximum operating battery voltage.				
C _{BOOT}	Charge pump flying bootstrap	10 nF	100 V	10%	Rated to withstand maximum operating battery voltage.				
R _{LIM}	Bootstrap peak current limiter	1 Ω	100 mW	10%	Needed to limit the current peak at the startup, when the C _{TANK} is discharged.				
Buck prere	gulator		<u>'</u>	·					
C _{PRE}	Buck tank capacitor	4.7 uF	16 V	10%	Rating is to be increased to 100 V to withstand short to battery.				
L _{PRE}	Buck inductor	47 μH	ISAT >> 220 mA	20%	Inductance value shall be constant up to 220 mA.				
D _{PRE}	Freewheeling diode	BAS19LT1G	120 V		Key parameters are: $ V_R \ge 110 \text{ V} $ • $I_F \ge 100 \text{ mA}_{DC}$ • $T_J \ge 150^{\circ}\text{C}$ • $P_D \ge 100 \text{ mW}$ • $V_F \le 0.75 \text{ V @ }10 \text{ mA @ }25^{\circ}\text{C}$ • $C_J \le 10 \text{ pF@ }0 \text{ V}$				

AN6387 - Rev 1 page 20/25

Revision history

Table 2. Document revision history

Date	Version	Changes
04-Nov-2025	1	Initial release.

AN6387 - Rev 1 page 21/25

Contents

1	L990	65A/L99	9BM218 hardware design guide	
	1.1		oltage measurement and cell passive balancing	
		1.1.1	Cell voltage measurement	3
		1.1.2	Cell balance	3
		1.1.3	Battery sensing	
	1.2	GPIO		4
		1.2.1	NTC temperature measurement	
		1.2.2	GPIO generic analog input	
	1.3	Batter	ry supply	6
	1.4	VIF .		6
		1.4.1	VIF signal integrity assessment	8
		1.4.2	Imbalance due to a VIF port disabled	8
	1.5	VPRE	=	
	1.6	Unuse	ed pins	10
		1.6.1	Short at PCB connector	11
		1.6.2	Assembly option	12
		1.6.3	Floating	13
	1.7	EMC	considerations	14
2	Арр	lication	n information	
	2.1	Applic	cation circuit	15
	2.2		material (BOM)	
Re	vision		y	
		_		
	L OI IIL	141 C3		

List of tables

7/

Table 1.	Bill of material	18
	Document revision history	

AN6387 - Rev 1 page 23/25

List of figures

Figure 1.	Typical system configuration (dual ring)	. 1
Figure 2.	Cell monitor and balancing circuit	. 2
Figure 3.	GPIO used as NTC	. 4
Figure 4.	GPIO used as analog absolute input	. 5
Figure 5.	Battery supply	. 6
Figure 6.	Isolated Vertical Interface (VIF) with capacitive isolation	. 7
Figure 7.	Isolated Vertical Interface (VIF) with inductive isolation	. 7
Figure 8.	VIF differential waveform evaluation criteria	. 8
Figure 9.	BUCK regulator	10
Figure 10.	Short at PCB connector	
Figure 11.	Assembly option	12
Figure 12.	Floating	
Figure 13.	Buck converter layout rules	14
Figure 14.	Typical application circuit	15
Figure 15.	Application circuit with BB on the first cell and unused cells	16
Figure 16.	Application scenario with SPI master and EEPROM	17

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics - All rights reserved

AN6387 - Rev 1 page 25/25