1 Introduction

This application note investigates the possibility of using a TDE1708DFT switch for the physical layer transmitter realization of 3-wire IO-Link sensors.

The TDE1708DFT is an integrated power switch especially dedicated to proximity detectors. It can deliver up to 250 mA, enables high-side and low-side configurations and includes a number of protections.

According to the IO-Link Communication Specification (see Section 8: References - 3. and for the TDE1708DFT features - see Section 8: References - 1.) two basic slave transmitter configurations were tested (see Figure 1):

- p-switching (high-side) driver
- p-switching driver with an additional n-switching (low-side) driver (push-pull operation)

Figure 1. P-switching slave drive and p-switching with n-switching slave drive

In the following test arrangements the input load current (ILL_M) is fixed to 10 mA which represents the average master current sink value specified for a 3-wire system. The master (CQ_M), slave (CQ_L), and line capacitances are set together at 4.7 nF, corresponding to the maximum parasitic capacitance of the system.
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Push-pull configuration dynamic information
 (V_{CC} = 24, \text{V}; , T_J = 25, ^\circ, \text{C}; , C_L = 4.7, \text{nF})</td>
<td>15</td>
</tr>
<tr>
<td>Table 2</td>
<td>Dynamic information
 (V_{CC} = 24, \text{V}; , T_J = 25, ^\circ, \text{C}; , I_L = 10, \text{mA})</td>
<td>18</td>
</tr>
<tr>
<td>Table 3</td>
<td>Document revision history</td>
<td>24</td>
</tr>
</tbody>
</table>
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P-switching slave drive and p-switching with n-switching slave drive</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>High-side switch test configuration schematic</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>High-side switch configuration turn-on behavior</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>High-side switch configuration turn-off behavior</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>High-side switch test configuration schematic with a capacitive load</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>High-side switch configuration with a capacitive load turn-on behavior</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>High-side switch configuration with a capacitive load turn-off behavior</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>Low-side switch test configuration schematic</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>Low-side switch configuration turn-on behavior</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>Low-side switch configuration turn-off behavior</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>Low-side switch test configuration schematic with a capacitive load</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>Low-side switch configuration with a capacitive load turn-on behavior</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>Low-side switch configuration with capacitive load turn-off behavior</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>Push-pull test configuration schematic</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>Push-pull configuration with capacitive load rising edge</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>Push-pull configuration with capacitive load falling edge</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>Software timing example</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>Propagation turn-on time vs. temperature</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>Propagation turn-off time vs. temperature</td>
<td>18</td>
</tr>
<tr>
<td>20</td>
<td>Alternative driving schematics</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>Alternative driving timings</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>Delay propagation turn-on time vs. temperature (H. S. configuration)</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>Delay propagation turn-on time vs. temperature (L. S. configuration)</td>
<td>22</td>
</tr>
<tr>
<td>24</td>
<td>Propagation turn-off time vs. temperature (H. S. configuration)</td>
<td>23</td>
</tr>
<tr>
<td>25</td>
<td>Propagation turn-off time vs. temperature (L. S. configuration)</td>
<td>23</td>
</tr>
</tbody>
</table>
2 TDE1708DFT in high-side configuration

2.1 High-side configuration

Figure 2. High-side switch test configuration schematic
Figure 3. **High-side switch configuration turn-on behavior**(1)

1. CH1: input voltage, CH2: output voltage, CH4: output current (x10).

Figure 4. **High-side switch configuration turn-off behavior**(1)

1. CH1: input voltage, CH2: output voltage, CH4: output current (x10).
2.2 High-side configuration with a capacitive load

Figure 5. High-side switch test configuration schematic with a capacitive load
Figure 6. High-side switch configuration with a capacitive load turn-on behavior\(^{(1)}\)

1. CH1: input voltage, CH2: output voltage, CH4: output current (x10).

Figure 7. High-side switch configuration with a capacitive load turn-off behavior\(^{(1)}\)

1. CH1: input voltage, CH2: output voltage, CH4: output current (x10).
3 TDE1708DFT in low-side configuration

3.1 Low-side configuration

Figure 8. Low-side switch test configuration schematic
Figure 9. Low-side switch configuration turn-on behavior\(^{(1)}\)

Figure 10. Low-side switch configuration turn-off behavior\(^{(1)}\)

1. CH1: input voltage, CH2: output voltage, CH4: output current (x10).
3.2 Low-side configuration with a capacitive load

Figure 11. Low-side switch test configuration schematic with a capacitive load
Figure 12. Low-side switch configuration with a capacitive load turn-on behavior\(^{(1)}\)

1. CH1: input voltage, CH2: output voltage, CH4: output current (x10).

Figure 13. Low-side switch configuration with capacitive load turn-off behavior\(^{(1)}\)

1. CH1: input voltage, CH2: output voltage, CH4: output current (x10).
4 Push-pull configuration with TDE1708DFT

The following push-pull driver configuration was designed based on the previous single driver measurements. In this proposed schematic (see Figure 14) two additional components (R3, D3) must be added to speed up the turning off of the driver in the low-side configuration. The resistor R3 creates a weak pull-up while the diode D3 separates the low-side output from the high-side. The reason for this being that if the low-side driver is forced high in a short time after turning off then it stays turned on with all the subsequent effects.
The low-side driver helps to reduce the falling time with the capacitive load, the rest of the circuit works exactly the same way as that described in Section 2.1. Figure 17 shows a software timing example in accordance with Table 2 and a dead time between the driver outputs of 1 µs.
Table 1. Push-pull configuration dynamic information

\((V_{CC} = 24 \, \text{V}; \, T_J = 25 \, ^\circ\text{C}; \, C_L = 4.7 \, \text{nF})\)

<table>
<thead>
<tr>
<th>Test conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on time</td>
<td>(V_i = 0 , \text{to} , 5 , \text{V})</td>
<td>800</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Turn-off time</td>
<td>(V_i = 0 , \text{to} , 5 , \text{V})</td>
<td>2</td>
<td></td>
<td>(\mu\text{s})</td>
</tr>
</tbody>
</table>

Figure 15. Push-pull configuration with capacitive load rising edge\(^{(1)}\)

1. CH1: input voltage, CH2: (H. S.) output voltage, CH3: input voltage, CH4: (L. S.) output voltage.
Figure 16. Push-pull configuration with capacitive load falling edge\(^{(1)}\)

1. CH1: input voltage, CH2: (H. S.) output voltage, CH3: input voltage, CH4: (L. S.) output voltage.
Figure 17. Software timing example

```c
#include "Peripheral_Devices.h"

void AutoreloadTimerOverflowInterrupt(void)
{
    switch (ucState)
    {
    case 1: PADDR |= 0x04; // Output 0 -> 1; HS switch on (PA2 = 1)
            break;
    case 2: break; // Half of the output 1 period; do nothing
    case 3: PADDR |= 0x10; // Output 1 -> 0; LS switch on (PA4 = 1)
            ncp; // lus
            ncp;
            ncp;
            ncp; // lus // Delay totally 5.75us. Due to the different
            ncp; // propagation times the low side switch turns
            ncp; // on "before" the high side one is turned off.
            ncp;
            ncp; // lus
            ncp;
            ncp;
            ncp; // lus
            ncp;
            ncp;
            ncp; // lus
            ncp;
            ncp; // 500ns
            ncp; // 250ns
            PADDR ^= 0x04; // HS switch off (PA2 = 0)
            break;
    case 4: PADDR ^= 0x10; // Half of the output 0 period; LS switch off (PA4 = 0)
            ucState = 0; // and again...
            break;
    }

    ucState++;
    // Increment state machine

    &TCSR; // Clear interrupt flag

    return;
}
```
5 Performance characteristics

5.1 Dynamic information

Table 2. Dynamic information ($V_{CC} = 24\text{ V}$; $T_J = 25\text{ °C}$; $I_L = 10\text{ mA}$)

<table>
<thead>
<tr>
<th>Test conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagation turn-on time</td>
<td>$V_i = 0\text{ to } 5\text{ V}$</td>
<td>16</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Propagation turn-off time</td>
<td>$V_i = 0\text{ to } 5\text{ V}$</td>
<td>8</td>
<td></td>
<td>µs</td>
</tr>
</tbody>
</table>

5.2 Temperature characteristics

Figure 18. Propagation turn-on time vs. temperature

![Figure 18](AM00224)

Figure 19. Propagation turn-off time vs. temperature

![Figure 19](AM00225)
6 Alternative driving

The larger temperature propagation turn-on time dependence of the TDE1708DFT, described in the previous section (Section 5: Performance characteristics), has led to the development of an alternative kind of driving which would not suffer from this problem. The presented driving configuration (see Figure 20) uses both the input signal “IN” together with the open collector pin “DELAY” (originally dedicated to delay adjustment). The IN signal controls only the turning off of the switch (the output is blocked by the DELAY pin during its high state), while the DELAY signal then controls the turning on of the switch (see Figure 21). This principle results in more positive temperature characteristics (Section 6.1: Temperature characteristics).
1. The resistor R1 prevents the circuit from the cross conduction between the push-pull output of the generator and the open collector DELAY pin.
Figure 21. Alternative driving timings

1. Delay propagation turn-on time (see Figure 22 and Figure 23).
2. Propagation turn-off time (see Figure 24 and Figure 25).
3. State 1: DELAY releases the output.
4. State 3: IN goes low and turns off the switch.
5. State 4: IN goes high, the output is blocked by the DELAY signal (the monostable circuit time meanwhile runs).
6.1 Temperature characteristics

Figure 22. Delay propagation turn-on time vs. temperature (H. S. configuration)

Figure 23. Delay propagation turn-on time vs. temperature (L. S. configuration)
Figure 24. Propagation turn-off time vs. temperature (H. S. configuration)

Figure 25. Propagation turn-off time vs. temperature (L. S. configuration)
7 Conclusion

With respect to the results obtained, the TDE1708DFT may be used in the operating mode COM1 (4.8 kBaud) in p-switching (high-side) 3-wire sensors and up to operating mode COM2 (38.4 kBaud) in push-pull 3-wire sensors.

Note: In the case of push-pull configuration a precise compensation of the propagation turn-on time temperature drift (Figure 18) is necessary to avoid cross conduction of the two switches. The alternative driving configuration (Section 6: Alternative driving) partially solves this issue for the price of employing two input pins for one switch.

8 References

1. TDE1708DFT datasheet.
2. AN495 application note.

9 Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>09-Feb-2011</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>