Application overview

This application note provides a short description of how 3BEEP application software can use a Breen peripheral to take advantage of the STM8S-DISCOVERY touch sensing key, TS1.

Once the STM8S105C6T6 is powered-up through a USB cable connected to the host PC, the LED LD1 switches on, meaning that the programming has been completed successfully.

■ Each time the TS1 key is pressed, the Breen emits a beep at different frequencies, 1 KHz, 2 KHz and 4 KHz respectively.

■ The fourth time TS1 is pressed, the Breen stops emitting.

■ A Breen cycle can then be restarted by pressing TS1 again.

Alternate function remapping must be performed on the STM8S105C6T6 before the Breen peripheral can be used in this manner. This is described in UM0834.

Even though the STM8S-DISCOVERY is built around an STM8S105C6T6, it allows evaluation of the main features of all the STM8S MCUs.

Reference documents

■ STM8S-DISCOVERY evaluation board user manual (UM0817).

■ Developing and debugging STM8S-DISCOVERY application code user manual (UM0834).
Contents

1 Application description ... 5
 1.1 Hardware required .. 5
 1.2 Application schematics ... 5
 1.3 Application principle ... 6

2 Option byte configuration ... 7

3 Software description ... 8
 3.1 Touch sensing library configuration 8
 3.2 Standard STM8S firmware library configuration 9
 3.3 Application software flowcharts 10
 3.3.1 Main loop flowchart 10
 3.3.2 ExtraCode_StateMachine flowchart 11

4 Revision history ... 12
List of tables

Table 1. Beeper configuration ... 6
Table 2. Touch sensing library configuration ... 8
Table 3. Document revision history ... 12
List of figures

Figure 1. Application schematics ... 5
Figure 2. Main application loop flowchart .. 10
Figure 3. ExtraCode_StateMachine flowchart .. 11
1 Application description

1.1 Hardware required

The following STM8S-DISCOVERY on-board resources are used:
● Touch sensing key, TS1
● LED, LD1

A piezo buzzer with an operating voltage of 5 V and which supports a frequency range of 1 KHz to 4 KHz is required to make the 3BEEP application software run on the STM8S-DISCOVERY.

1.2 Application schematics

Figure 1 shows the touch sensing key implementation principle based on the RC acquisition method. For STM8S-DISCOVERY implementation details, refer to the board schematic provided in the STM8S-DISCOVERY user manual (UM0817).

For detailed information about RC acquisition principle for touch sensing applications, refer to AN2927.

Figure 1. Application schematics
1.3 Application principle

This application uses the Beeper peripheral to output a signal on the Beeper pin for sound generation.

Each time the STM8S microcontroller detects a touch event on TS1, the Beeper output frequency is reprogrammed as described in Table 1. At the fourth touch, the Beeper is disabled. You can then restart the cycle.

The LED LD1 is switched on at application start-up, this verifies visually that the STM8S Flash memory was successfully programmed.

Table 1. Beeper configuration

<table>
<thead>
<tr>
<th>TS1 state</th>
<th>Beeper frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>At start-up</td>
<td>No sound</td>
</tr>
<tr>
<td>1st TS1 touch</td>
<td>1 KHz</td>
</tr>
<tr>
<td>2nd TS1 touch</td>
<td>2 KHz</td>
</tr>
<tr>
<td>3rd TS1 touch</td>
<td>4 KHz</td>
</tr>
</tbody>
</table>
2 Option byte configuration

On the STM8S105C6T6, the Beeper output is an alternate function which is available only after remapping. As a result, the alternate function remapping bit 7 (AFR7) of the option byte OPT2 must be modified as follows:

0: Port D4 alternate function = TIM2_CH1 (default)
1: Port D4 alternate function = Beep (required)

For alternate function remapping details, refer to UM0834. For option byte details, refer to the STM8S105xx datasheet.
Software description

The application software uses both STM8S standard and touch sensing firmware libraries to control general purpose functions and touch sensing peripherals.

These functions and peripherals are:

- **Clock (CLK)**
 The clock control enables and delivers the correct clock frequency to the CPU and peripherals. It configures the HSI prescaler division factor from 8 to 1.

- **GPIOs**
 They drive the MCU I/Os to interface with external hardware. They configure ports PD0 and PD4 as output push-pull low (to drive the LED LD1 and switch it on at initialization) as well as the Beeper output pin.

- **Beeper**
 This peripheral drives the Beeper output pin with a signal in the range of 1, 2 or 4 KHz for sound generation.

- **Timer 3 (TIM3)**
 This is a 16-bit timer with an 8-bit prescaler. The touch sensing firmware library uses Timer 3 for touch sensing acquisition (TIMACQ). See Table 2 for the corresponding define statement in the STM8 touch sensing library. It also performs LSI calibration before the LSI is used as the clock source of the Beeper.

- **Timer 4 (TIM4)**
 This is a basic 8-bit timer used as a generic time base (TIMTICK). This time base is used by the touch sensing firmware library to control the charge/discharge cycles of the RC network (resistor R4 plus TS1 electrode). Timer 4 is also used by the application to control LD1 blinking speed. It is distinct from the acquisition Timer 3. See Table 2 for the corresponding define statement in the STM8 touch sensing library.

3.1 Touch sensing library configuration

The STM8_TSL_RC_Configuration.h file configures the touch sensing library. Table 2 describes the main define statements required to configure the library for the STM8S-DISCOVERY to control the TS1 touch sensing key. The other define statements should keep their default values. Refer to the STM8 touch sensing library online help for details concerning these define statements.

<table>
<thead>
<tr>
<th>Function</th>
<th>#define statement</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCU selection</td>
<td>STM8S</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Acquisition timer</td>
<td>TIMACQ</td>
<td>TIM3</td>
<td>TIM3 base address</td>
</tr>
<tr>
<td></td>
<td>TIMACQ_CNTR_ADD</td>
<td>0x5328</td>
<td></td>
</tr>
<tr>
<td>Time-base timer</td>
<td>TIMTICK</td>
<td>TIM4</td>
<td>-</td>
</tr>
<tr>
<td>Load I/O</td>
<td>LOADREF_PORT_ADDR</td>
<td>GPIOC_BaseAddress</td>
<td>Port PC4 selected</td>
</tr>
<tr>
<td></td>
<td>LOADREF_BIT</td>
<td>0x04</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Touch sensing library configuration
3.2 Standard STM8S firmware library configuration

The *stm8s_conf.h* file of the STM8S standard firmware library configures the library by enabling the peripherals used by the application.

The following define statements must be present:
-
 #define _CLK 1 enables the clock control CLK
-
 #define _GPIO 1 enables the GPIOs
-
 #define _BEEP 1 enables the Beeper
-
 #define _TIM3 1 enables the Timer 3

<table>
<thead>
<tr>
<th>Function</th>
<th>#define statement</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single channel key</td>
<td>SCKEY_P1_KEY_COUNT</td>
<td>1</td>
<td>Number of keys = 1</td>
</tr>
<tr>
<td></td>
<td>SCKEY_P1_PORT_ADDR</td>
<td>GPIOC_BaseAddress</td>
<td>Port PC selected</td>
</tr>
<tr>
<td></td>
<td>SCKEY_P1_A</td>
<td>0x02</td>
<td>Pin 1 selected as acquisition input</td>
</tr>
<tr>
<td></td>
<td>SCKEY_P1_DRIVEN_SHIELD_MASK</td>
<td>0x08</td>
<td>Pin 3 for active shield</td>
</tr>
<tr>
<td></td>
<td>SCKEY_P2_COUNT</td>
<td>0</td>
<td>Key port P2 not used</td>
</tr>
<tr>
<td></td>
<td>SCKEY_P3_COUNT</td>
<td>0</td>
<td>Key port P3 not used</td>
</tr>
<tr>
<td>Multichannel key</td>
<td>NUMBER_OF_MULTI_CHANNEL.Keys</td>
<td>0</td>
<td>Multichannel key feature disabled</td>
</tr>
<tr>
<td>Electrode mask</td>
<td>GPIOA_ELECTRODES_MASK</td>
<td>0x00</td>
<td>Defines the electrode mask for each GPIO used.</td>
</tr>
<tr>
<td></td>
<td>GPIOB_ELECTRODES_MASK</td>
<td>0x00</td>
<td>Mask must be set to 0x00 for unused GPIOs.</td>
</tr>
<tr>
<td></td>
<td>GPIOC_ELECTRODES_MASK</td>
<td>0x0A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPIOD_ELECTRODES_MASK</td>
<td>0x00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPIO_ELECTRODES_MASK</td>
<td>0x00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPIOP_ELECTRODES_MASK</td>
<td>0x00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPIOG_ELECTRODES_MASK</td>
<td>0x00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPIOH_ELECTRODES_MASK</td>
<td>0x00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPIOI_ELECTRODES_MASK</td>
<td>0x00</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Touch sensing library configuration (continued)

[This table continues with more definitions and values that configure the touch sensing library.]
3.3 Application software flowcharts

This section gives an overview of the application software main loop, and of the function that controls sound frequency generation.

Detailed information can be found in the STM8S-DISCOVERY software user manual (UM0834).

3.3.1 Main loop flowchart

Figure 2 shows the flowchart of the application software main loop. Functions `TSL_init()` and `TSL_Action()` in the API of the touch sensing library initialize the library and control the state machine that sequences the touch sensing management.

Figure 2. Main application loop flowchart
3.3.2 ExtraCode_StateMachine flowchart

Figure 3 shows the detailed flowchart of the ExtraCode_StateMachine() function. This function implements the algorithm that controls the Beeper sound frequency according to the number of times the TS1 key is pressed.

When a TS1 touch event is detected, the Beeper frequency configuration is changed by the main routine (see Figure 3) resulting in a change to the generated Beeper sound (refer to Table 1).

Figure 3. ExtraCode_StateMachine flowchart

START

TSL_State = TSL_IDLE_STATE ?

Yes

TS1 pressed ?

Yes

iCount = 0 ?

No

Case 0

Beeper disable

iCount = 1 ?

No

Case 1

Beeper = 1 KHz

iCount = 1

Case 2

Beeper = 2 KHz

iCount = 2

Case 3

Beeper = 4 KHz

iCount = 3

Default

TSL_State = TSL_IDLE_STATE ?

Yes

No

iCount = 0

No

iCount = 1

No

iCount = 2

No

iCount = 3

No

START

END
4 Revision history

Table 3. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-Oct-2010</td>
<td>1</td>
<td>Initial release. UM0845 has been converted into this Application note. This document replaces UM0845.</td>
</tr>
</tbody>
</table>