
March 2024 AN4221 Rev 13 1/60

1

AN4221
Application note

I2C protocol used in the STM32 bootloader

Introduction

This application note describes the I2C protocol used in the STM32 microcontroller
bootloader, detailing each supported command.

This document applies to the STM32 products embedding bootloader versions V5.x,
V6.x,V7.x, V8.x, V9.x, V10.x, V11.x, V13.x, and V14.x, as specified in the application note
AN2606 “STM32 microcontroller system memory boot mode”, available on www.st.com.
These products are listed in Table 1, and are referred to as STM32 throughout the
document.

For more information about the I2C hardware resources and requirements for your device
bootloader, refer to the already mentioned AN2606.

 .

Table 1. Applicable products

Type Part numbers or series

Microcontrollers

STM32C0 series

STM32F0 series

STM32F3 series

STM32F4 series

STM32F7 series

STM32G0 series

STM32G4 series

STM32H5 series

STM32H7 series

STM32L0 series

STM32L4 series

STM32L5 series

STM32U0 series

STM32U5 series

STM32WB series

STM32WBA series

www.st.com

http://www.st.com

Contents AN4221

2/60 AN4221 Rev 13

Contents

1 I2C bootloader code sequence . 5

2 Bootloader command set . 6

2.1 Get command . 8

2.2 Get Version command . 12

2.3 Get ID command . 13

2.4 Read Memory command . 15

2.5 Go command . 18

2.6 Write Memory command . 21

2.7 Erase Memory command . 24

2.8 Write Protect command . 27

2.9 Write Unprotect command . 30

2.10 Readout Protect command . 31

2.11 Readout Unprotect command . 33

2.12 No-Stretch Write Memory command . 35

2.13 No-Stretch Erase Memory command . 38

2.14 Special command . 41

2.15 Extended Special command . 44

2.16 No-Stretch Write Protect command . 46

2.17 No-Stretch Write Unprotect command . 49

2.18 No-Stretch Readout Protect command . 51

2.19 No-Stretch Readout Unprotect command . 53

2.20 No-Stretch GetCheckSum command . 55

3 Bootloader protocol version evolution . 57

4 Revision history . 58

AN4221 Rev 13 3/60

AN4221 List of tables

3

List of tables

Table 1. Applicable products . 1
Table 2. I2C bootloader commands . 6
Table 3. Bootloader protocol versions . 57
Table 4. Document revision history . 58

List of figures AN4221

4/60 AN4221 Rev 13

List of figures

Figure 1. Bootloader for STM32 with I2C. 5
Figure 2. Get command: host side. 9
Figure 3. Get command: device side . 9
Figure 4. Get Version: host side . 12
Figure 5. Get Version: device side. 13
Figure 6. Get ID command: host side . 14
Figure 7. Get ID command: device side. 14
Figure 8. Read Memory command: host side . 16
Figure 9. Read Memory command: device side . 17
Figure 10. Go command: host side . 19
Figure 11. Go command: device side . 20
Figure 12. Write Memory command: host side . 22
Figure 13. Write Memory command: device side. 23
Figure 14. Erase Memory command: host side . 25
Figure 15. Erase Memory command: device side . 26
Figure 16. Write Protect command: host side . 28
Figure 17. Write Protect command: device side . 29
Figure 18. Write Unprotect command: host side . 30
Figure 19. Write Unprotect command: device side . 31
Figure 20. Readout Protect command: host side. 32
Figure 21. Readout Protect command: device side . 32
Figure 22. Readout Unprotect command: host side . 33
Figure 23. Readout Unprotect command: device side. 34
Figure 24. No-Stretch Write Memory command: host side . 36
Figure 25. No-Stretch Write Memory command: device side. 37
Figure 26. No-Stretch Erase Memory command: host side . 39
Figure 27. No-Stretch Erase Memory command: device side . 40
Figure 28. Special command: host side. 41
Figure 29. Special command: device side . 42
Figure 30. Extended Special command: host side. 44
Figure 31. Extended Special command: device side . 45
Figure 32. No-Stretch Write Protect command: host side . 47
Figure 33. No-Stretch Write Protect command: device side . 48
Figure 34. No-Stretch Write Unprotect command: host side . 49
Figure 35. No-Stretch Write Unprotect command: device side . 50
Figure 36. No-Stretch Readout Protect command: host side . 51
Figure 37. No-Stretch Readout Protect command: device side. 52
Figure 38. No-Stretch Readout Unprotect command: host side . 53
Figure 39. No-Stretch Readout Unprotect command: device side. 54
Figure 40. No-Stretch GetCheckSum command: host side . 55
Figure 41. No-Stretch GetCheckSum command: device side . 56

AN4221 Rev 13 5/60

AN4221 I2C bootloader code sequence

59

1 I2C bootloader code sequence

The I2C bootloader code sequence for STM32 microcontrollers, based on Arm®(a) cores, is
sketched in Figure 1.

Figure 1. Bootloader for STM32 with I2C

Note: The I2C slave address for each product bootloader is specified in AN2606.

Once the system memory boot mode has been entered and the STM32 microcontroller has
been configured (for more details, refer to your STM32 system memory boot mode
application note), the bootloader code begins to scan the I2C_SDA line pin, waiting to detect
its own address on the bus. Once detected, the I2C bootloader firmware begins receiving
host commands.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

MSv31517V1

Address detected
(Slave address)

Wait for a
command

Get cmd
routine

Get cmd

RD cmd
routine

GO cmd
routine

JP to_address

Command
received Go cmd

WR cmd
routine

Bootloader command set AN4221

6/60 AN4221 Rev 13

2 Bootloader command set

The supported commands are listed in Table 2.

“No-Stretch” commands are supported starting from the V1.1 protocol version: they enable a
better management of commands when the Host must wait for a significant time before an
operation is completed by the bootloader. It is recommended to use these commands
instead of equivalent regular commands whenever possible.

Table 2. I2C bootloader commands

Commands(1) Command code Command description

Get(2) 0x00
Gets the version and the allowed commands supported by
the current version of the protocol.

Get Version(2) 0x01 Gets the protocol version.

Get ID(2) 0x02 Gets the chip ID.

Read Memory 0x11
Reads up to 256 bytes of memory, starting from an address
specified by the application.

Go(3) 0x21
Jumps to user application code located in the internal flash
memory.

Write Memory(3) 0x31
Writes up to 256 bytes to the memory, starting from an
address specified by the application.

No-Stretch Write Memory(3)(4) 0x32
Writes up to 256 bytes to the memory, starting from an
address specified by the application and returns busy state
while operation is ongoing.

Erase 0x44
Erases from one to all flash memory pages or sectors using
two-byte addressing mode.

No-Stretch Erase(3)(4) 0x45
Erases from one to all flash memory pages or sectors using
two-byte addressing mode and returns busy state while
operation is ongoing.

Special 0x50
Generic command to add new features depending on the
product constraints, without adding a new command for
every feature.

Extended Special 0x51
Generic command that allows the user to send more data
compared to the Special command.

Write Protect 0x63 Enables write protection for some sectors.

No-Stretch Write Protect(4) 0x64
Enables write protection for some sectors and returns busy
state while operation is ongoing.

Write Unprotect 0x73 Disables write protection for all flash memory sectors.

No-Stretch Write Unprotect(4) 0x74
Disables write protection for all flash memory sectors and
returns busy state while operation is ongoing.

Readout Protect 0x82 Enables read protection.

No-Stretch Readout Protect(4) 0x83
Enables read protection and returns busy state while
operation is ongoing.

Readout Unprotect(2) 0x92 Disables read protection.

AN4221 Rev 13 7/60

AN4221 Bootloader command set

59

No-Stretch commands

No-Stretch commands make it possible to execute Write, Erase, Write Protect, Write
Unprotect, Read Protect, and Read Unprotect operations without stretching the I2C line
while the bootloader is performing the operation. It is possible to communicate with other
devices on the bus while the bootloader performs operations that require waiting time.

The difference between these commands and the standard ones is at the end of the
command: when Host requests ACK/NACK at the end of the command, instead of
stretching the I2C line, the bootloader answers with a third state, which is Busy (0x76).
When Host receives the Busy state, it polls again on the state, and reads one byte until it
receives an ACK or an NACK response.

Communication safety

All communications from the programming host to the device are verified by checksum.
Received blocks of data bytes are XOR-ed. A byte containing the computed XOR of all
previous bytes is added to the end of each communication (checksum byte). By XOR-ing all
received bytes, data plus checksum, the result at the end of the packet must be 0x00.

For each command, the host sends a byte and its complement (XOR = 0x00).

Each packet is accepted (ACK answer) or discarded (NACK answer):

• ACK = 0x79

• NACK = 0x1F

With No-Stretch commands, Busy state is sent instead of ACK or NACK when an operation
is ongoing:

• BUSY= 0x76

No-Stretch Readout Unprotect(2)(4) 0x93
Disables read protection and returns busy state while
operation is ongoing.

No-Stretch Get Memory
Checksum(2) 0xA1

Gets CRC checksum value for a memory portion, based on
its offset and length.

1. If a denied command is received, or if an error occurs during the command execution, the bootloader sends an NACK byte
and goes back to command checking.

2. Protection: when the protection is active, only this limited subset of commands is available. All other commands are
NACK-ed, and have no effect on the device. The protection depends upon the product family:
- for the STM32H5 series: TrustZone® (TZEN) = 0, Product state > Provisioning and Hide Protection Level (HDPL) = 3
- for all the other products listed in Table 1: Read protection set.

3. Refer to the product datasheet and to AN2606 to know the memory spaces valid for these commands.

4. No-Stretch commands are available only with I2C protocol V1.1 and above.

Table 2. I2C bootloader commands (continued)

Commands(1) Command code Command description

Bootloader command set AN4221

8/60 AN4221 Rev 13

Note: The host frame can be one of the following:

• Send Command frame: the host initiates communication as master transmitter, and
sends two bytes to the device: command code + XOR.

• Wait for ACK/NACK frame: the host initiates an I2C communication as master receiver,
and receives one byte from the device: ACK or NACK or BUSY.

• Receive Data frame: the host initiates an I2C communication as master receiver, and
receives the response from the device. The number of bytes received depends on the
command.

• Send Data frame: the host initiates an I2C communication as master transmitter, and
sends the needed bytes to the device. The number of bytes transmitted depends on
the command.

Caution: For Write, Erase. and Read Unprotect commands, the host must respect the timings (such
as page write, sector erase) specified in product datasheets. As an example, when
launching an Erase command, the host must wait (before the last ACK of the command) for
a duration equivalent to the maximum sector/page erase time specified in datasheet (or at
least the typical sector/page erase time).

Caution: For I2C communication, a timeout mechanism is implemented, it must be respected for
bootloader commands to be executed correctly. This timeout is implemented between two
I2C frames in the same command. For example, for a Write memory command, a timeout is
inserted between the command-sending frame and the address memory-sending frame.
Also, the same timeout period is inserted between two successive instances of data
reception or transmission in the same I2C frame. If the timeout period has elapsed, a
system reset is generated to avoid a bootloader crash. Refer to the section dedicated to I2C
connection timing of AN2606 to get the I2C timeout value for each STM32 product.

2.1 Get command

This command allows the user to get the version of the protocol and the supported
commands. When the bootloader receives the command, it transmits the protocol version
and the supported command codes to the host, as described in Figure 2.

AN4221 Rev 13 9/60

AN4221 Bootloader command set

59

Figure 2. Get command: host side

Figure 3. Get command: device side

MSv31518V2

Send Command frame
(0x00 + 0xFF)

Wait for ACK
or NACK frame

End of Get

Receive data frame:
- number of bytes
- protocol version
- list of supported commands

NACK

ACK

Start Get

Wait for ACK
or NACK frame

NACK

ACK

MSv31519V2

Received frame =
0x00+0xFF?

Send ACK frame

Send data frame:
- number of bytes to be sent
- protocol version
- list of supported commands

No

Yes

Start Get

End of Get

Send NACK frame

Send ACK frame

Bootloader command set AN4221

10/60 AN4221 Rev 13

The STM32 sends the bytes as follows:

• For I2C protocol V1.0:

– Byte 1: ACK

– Byte 2: N = 11 = Number of bytes to follow - 1, except current and ACKs

– Byte 3: Bootloader version 0x10 = Version 1.0

– Byte 4: 0x00 - Get command

– Byte 5: 0x01 - Get Version command

– Byte 6: 0x02 - Get ID command

– Byte 7: 0x11 - Read Memory command

– Byte 8: 0x21 - Go command

– Byte 9: 0x31 - Write Memory command

– Byte 10: 0x44 - Erase command

– Byte 11: 0x63 - Write Protect command

– Byte 12: 0x73 - Write Unprotect command

– Byte 13: 0x82 - Readout Protect command

– Byte 14: 0x92 - Readout Unprotect command

– Byte 15: ACK

• For I2C protocol V1.1:

– Byte 1: ACK

– Byte 2: N = 17 = Number of bytes to follow - 1, except current and ACKs

– Byte 3: Bootloader version 0x11 = Version 1.1

– Byte 4: 0x00 - Get command

– Byte 5: 0x01 - Get Version command

– Byte 6: 0x02 - Get ID command

– Byte 7: 0x11 - Read Memory command

– Byte 8: 0x21 - Go command

– Byte 9: 0x31 - Write Memory command

– Byte 10: 0x44 - Erase command

– Byte 11: 0x63 - Write Protect command

– Byte 12: 0x73 - Write Unprotect command

– Byte 13: 0x82 - Readout Protect command

– Byte 14: 0x92 - Readout Unprotect command

– Byte 15: 0x32 - No-Stretch Write Memory command

– Byte 16: 0x45 - No-Stretch Erase command

– Byte 17: 0x64 - No-Stretch Write Protect command

– Byte 18: 0x74 - No-Stretch Write Unprotect command

– Byte 19: 0x83 - No-Stretch Readout Protect command

– Byte 20: 0x93 - No-Stretch Readout Unprotect command

– Byte 21: ACK

• For I2C protocol V1.2:

– Byte 1: ACK

– Byte 2: N = 18 = Number of bytes to follow - 1, except current and ACKs

AN4221 Rev 13 11/60

AN4221 Bootloader command set

59

– Byte 3: Bootloader version 0x12 = Version 1.2

– Byte 4: 0x00 - Get command

– Byte 5: 0x01 - Get Version command

– Byte 6: 0x02 - Get ID command

– Byte 7: 0x11 - Read Memory command

– Byte 8: 0x21 - Go command

– Byte 9: 0x31 - Write Memory command

– Byte 10: 0x44 - Erase command

– Byte 11: 0x63 - Write Protect command

– Byte 12: 0x73 - Write Unprotect command

– Byte 13: 0x82 - Readout Protect command

– Byte 14: 0x92 - Readout Unprotect command

– Byte 15: 0x32 - No-Stretch Write Memory command

– Byte 16: 0x45 - No-Stretch Erase command

– Byte 17: 0x64 - No-Stretch Write Protect command

– Byte 18: 0x74 - No-Stretch Write Unprotect command

– Byte 19: 0x83 - No-Stretch Readout Protect command

– Byte 20: 0x93 - No-Stretch Readout Unprotect command

– Byte 21: 0xA1 - No-Stretch Get Memory Checksum command

– Byte 22: ACK

Some commands depend upon the HW features. Beginning from the SPI BL version V2.0,
the number of commands is no more fixed, and can change from product to product.

As an example, for the STM32H5 series there is no RDP HW feature. The Get command is:

• Byte 1: ACK

• Byte 2: N = 15 = the number of bytes to follow – 1, except current and ACKs

• Byte 3: protocol version (0x20 = version 2.0)

• Byte 4: 0x00 - Get command

• Byte 5: 0x01 - Get Version command)

• Byte 6: 0x02 - Get ID command

• Byte 7: 0x11 - Read Memory command

• Byte 8: 0x21 - Go command

• Byte 9: 0x31 - Write Memory command

• Byte 10: 0x44 - Erase command

• Byte 11: 0x50 - Special command

• Byte 12: 0x63 - Write Protect command

• Byte 13: 0x73 - Write Unprotect command

• Byte 14: 0x32 - No-Stretch Write Memory command

• Byte 15: 0x45 - No-Stretch Erase command

• Byte 16: 0x64 - No-Stretch Write Protect command

• Byte 17: 0x74 - No-Stretch Write Unprotect command

• Byte 18: 0xA1 - No-Stretch Get Memory Checksum command

• Byte 19: ACK

Bootloader command set AN4221

12/60 AN4221 Rev 13

2.2 Get Version command

This command is used to get the I2C protocol version. When the bootloader receives the
command, it transmits the protocol version to the host.

Figure 4. Get Version: host side

1. GV = Get Version.

The STM32 sends the bytes as follows:

• Byte 1: ACK

• Byte 2: Protocol version (0 < Version ≤ 255), for example, 0x10 = Version 1.0

• Byte 3: ACK

MSv31520V2

Send command
frame (0x01+0xFE)

Wait for ACK
or NACK frame

End of GV(1)

Receive data frame:
- protocol version

NACK

ACK

Start GV(1)

Wait for ACK
or NACK frame

NACK

ACK

AN4221 Rev 13 13/60

AN4221 Bootloader command set

59

Figure 5. Get Version: device side

1. GV = Get Version

2.3 Get ID command

This command is used to get the version of the chip ID (identification). When the bootloader
receives the command, it transmits the product ID to the host.

The STM32 device sends the bytes as follows:

• Byte 1: ACK

• Byte 2: N = the number of bytes - 1 (for STM32, N = 1), except for current byte and
ACKs

• Bytes 3-4: PID (product ID)

– Byte 3 = MSB

– Byte 4 = LSB

• Byte 5: ACK

MSv31521V2

Received frame =
0x01+0xFE?

End of GV(1)

Send ACK frame

Send data frame:
- protocol version

No

Yes

Start GV(1)

Send NACK frame

Send ACK frame

Bootloader command set AN4221

14/60 AN4221 Rev 13

Figure 6. Get ID command: host side

1. GID = Get ID.

Figure 7. Get ID command: device side

1. GID = Get ID.

MSv31522V1

Send command
frame (0x02+0xFD)

Wait for ACK
or NACK frame

End of GID(1)

Receive data frame:
- number of bytes - 1
- product ID

NACK

ACK

Start GID(1)

Wait for ACK
or NACK frame

NACK

ACK

MSv31523V1

Received frame =
0x02+0xFD?

End of GID(1)

Send ACK frame

Send data frame:
- number of bytes - 1
- product ID

No

Yes

Start GID(1)

Send NACK frame

Send ACK frame

AN4221 Rev 13 15/60

AN4221 Bootloader command set

59

2.4 Read Memory command

This command is used to read data from any valid memory address.

When the bootloader receives the command, it transmits the ACK byte to the application.
The bootloader then waits for a 4-byte address (byte 1 is the address MSB, byte 4 is the
LSB) and a checksum byte, then it checks the received address. If the address is valid and
the checksum is correct, the bootloader transmits an ACK byte; otherwise, it transmits an
NACK byte and aborts the command.

If the address is valid and the checksum is correct, the bootloader waits for the number of
bytes to be transmitted (N bytes), and for its complemented byte (checksum). If the
checksum is correct, the bootloader transmits the needed data to the application, starting
from the received address. If the checksum is not correct, it sends an NACK before aborting
the command.

The host sends bytes to the STM32 as follows:

1. Bytes 1-2: 0x11 + 0xEE

2. Wait for ACK

3. Bytes 3-6: Start address (byte 3: MSB, byte 6: LSB)

4. Byte 7: Checksum: XOR (byte 3, byte 4, byte 5, byte 6)

5. Wait for ACK

6. Byte 8: The number of bytes to be read - 1 (0 < N ≤ 255)

7. Byte 9: Checksum: XOR byte 8 (complement of byte 8)

Bootloader command set AN4221

16/60 AN4221 Rev 13

Figure 8. Read Memory command: host side

1. RM = Read Memory.

MSv31524V1

Send command
frame (0x11 + 0xEE)

Wait for ACK
or NACK frame

End of RM

Send data frame: start address (4
bytes) with checksum

Receive data frame:
needed data from the BL

Send data frame: number of bytes to be
read (1 byte) and a checksum (1 byte)

NACK

ACK

Start RM(1)

Wait for ACK
or NACK frame

NACK

ACK

Wait for ACK
or NACK frame

NACK

ACK

AN4221 Rev 13 17/60

AN4221 Bootloader command set

59

Figure 9. Read Memory command: device side

1. RM = Read Memory.

No

MSv31525V2

Send ACK frame

End of RM(1)

Receive data frame: start address
(4 bytes) with checksum

Start RM(1)

Checksum OK ?
No

Yes

Address valid and
checksum OK?

Received frame
 = 0x11+0xEE

Protection
active?

No

Yes

Yes

No

Yes

Send ACK frame

Receive data frame: number of bytes to be
read (1 byte) and a checksum (1 byte)

Send ACK frame

Send data frame:
requested data to the host

Send NACK frame

Bootloader command set AN4221

18/60 AN4221 Rev 13

2.5 Go command

The Go command is used to execute the downloaded code or any other code, by branching
to an address specified by the application. When the bootloader receives the Go command,
it transmits the ACK byte to the application. The bootloader then waits for a 4-byte address
(byte 1 is the address MSB, byte 4 is the LSB) and a checksum byte, then checks the
received address. If the address is valid and the checksum is correct, the bootloader
transmits an ACK byte; otherwise, it transmits an NACK byte and aborts the command.

When the address is valid and the checksum is correct, the bootloader firmware performs
the following operations:

1. Initializes the registers of the peripherals used by the bootloader to their default reset
values

2. Initializes the user application main stack pointer

3. Jumps to the memory location programmed in the received 'address + 4' (corresponds
to the address of the application reset handler). For example, if the received address is
0x08000000, the bootloader jumps to the memory location programmed at address
0x08000004.

In general, the host sends the base address where the application to jump to is
programmed.

Note: Jumping to the application only works if the user application correctly sets the vector table to
point to the application address.

The host sends bytes to the STM32 as follows:

1. Byte 1: 0x21

2. Byte 2: 0xDE

3. Wait for ACK

4. Byte 3 to byte 6: start address

– Byte 3: MSB

– Byte 6: LSB

5. Byte 7: checksum: XOR (byte 3, byte 4, byte 5, byte 6)

6. Wait for ACK

AN4221 Rev 13 19/60

AN4221 Bootloader command set

59

Figure 10. Go command: host side

MSv31526V1

Send command
frame (0x21 + 0xDE)

Wait for ACK
or NACK frame

End of GO

Send data frame: Start Address
(4 bytes) and checksum

NACK

ACK

Start GO

Wait for ACK
or NACK frame

NACK

ACK

Bootloader command set AN4221

20/60 AN4221 Rev 13

Figure 11. Go command: device side

MSv31527V2

Received frame
 = 0x21+0xDE?

Jump to user application

Send ACK frame

Receive data frame: start address
(4 bytes) and checksum

No

Yes

Start GO

Send ACK frame

Send NACK frame

Protection active?
Yes

No

Address valid and
checksum OK?

No

End of GO
Yes

AN4221 Rev 13 21/60

AN4221 Bootloader command set

59

2.6 Write Memory command

This command is used to write data to any valid memory address (see Note: below) of RAM,
flash memory, or the option byte area.

When the bootloader receives the command, it transmits the ACK byte to the application.
The bootloader then waits for a 4-byte address (byte 1 is the address MSB, and byte 4 is the
LSB) and a checksum byte, and then checks the received address.

If the received address is valid and the checksum is correct, the bootloader transmits an
ACK byte; otherwise, it transmits an NACK byte and aborts the command. When the
address is valid and the checksum is correct, the bootloader:

1. gets a byte, N, which contains the number of data bytes to be received

2. receives the user data ((N + 1) bytes) and the checksum (XOR of N and of all data
bytes)

3. programs the user data to memory, starting from the received address.

At the end of the command, if the write operation is successful, the bootloader transmits the
ACK byte; otherwise, it transmits an NACK byte to the application and aborts the command.

If the Write Memory command is issued to the option byte area, all options are erased
before writing the new values. At the end of the command, the bootloader generates a
system reset to take the new configuration of the option byte into account.

The maximum length of the block to be written to the option bytes depends upon the STM32
product, and the address received from the host must be the start address of the option byte
area. For more information about option bytes, refer to the STM32 product reference
manual.

Note: The maximum length of the block to be written to RAM or flash memory is 256 bytes.

When writing to the RAM, take care not to overlap the first RAM used by the bootloader
firmware.

No error is returned when performing write operations to write-protected sectors.

The host sends the bytes to the STM32 as follows:

1. Byte 1: 0x31

2. Byte 2: 0xCE

3. Wait for ACK

4. Byte 3 to byte 6: Start address

– Byte 3: MSB

– Byte 6: LSB

5. Byte 7: Checksum: XOR (byte 3, byte 4, byte 5, byte 6)

6. Wait for ACK

7. Byte 8: Number of bytes to be received (0 < N ≤ 255)

8. N +1 data bytes: (max 256 bytes)

9. Checksum byte: XOR (N, N+1 data bytes)

10. Wait for ACK

Bootloader command set AN4221

22/60 AN4221 Rev 13

Figure 12. Write Memory command: host side

1. WM = Write Memory.

MSv31528V1

Send command frame
(0x31 + 0xCE)

Wait for ACK
or NACK frame

End of WM

Send data frame:
- number of bytes to be writen
- data to be written
- checksum

NACK

ACK

Start WM(1)

Wait for ACK
or NACK frame

NACK

Wait for ACK
or NACK frame

NACK

ACK

Send data frame: start address
(4 bytes) with checksum

ACK

AN4221 Rev 13 23/60

AN4221 Bootloader command set

59

Figure 13. Write Memory command: device side

1. WM = Write Memory.

2. System reset is called only for some STM32 BL (STM32F0/F4/F7) and some STM32L4
(STM32L412xx/422xx, STM32L43xxx/44xxx, STM32L45xxx/46xxx) products.

No

End of WM(1)

Receive data frame: start address
(4 bytes) with checksum

Start WM(1)

Checksum OK?
No

Yes

Address valid and
checksum OK?

Received frame
0x31+0xCE?

Protection active?

No

Yes

Yes

No

Yes

Send ACK frame

Receive data frame:
- number of bytes to be written
- data to be written
- checksum

Send NACK frame

Write the received data to
memory from the start address

Send ACK frame

Generate system reset(2)

Data written in
Option bytes ?

No

Yes

MSv31613V3

Send ACK frame

Bootloader command set AN4221

24/60 AN4221 Rev 13

2.7 Erase Memory command

This command allows the host to erase flash memory pages or sectors using a two-byte
addressing mode.

When the bootloader receives the command, it transmits the ACK byte to the host. The
bootloader then receives two bytes (number of pages or sectors to be erased), the flash
memory page or sector codes (each one coded on two bytes, MSB first), and a checksum
byte (XOR of the sent bytes). If the checksum is correct, the bootloader erases the memory
and sends an ACK byte to the host; otherwise, it sends an NACK byte to the host, and the
command is aborted.

Erase Memory command specifications

The bootloader receives one half-word (two bytes) that contains the number of pages or
sectors to be erased diminished by 1. If 0xFFFY is received (where Y is from 0 to F), a
special erase is performed (0xFFFF for global mass erase, 0xFFFE and 0xFFFD,
respectively, for bank1 and bank2 mass erase).

The bootloader receives:

• in the case of a special erase, one byte: the checksum of the previous bytes (for
example, 0x00 for 0xFFFF)

• if N pages or sectors are erased, 2 x N bytes, each half-word of which contains a page
or sector number coded on two bytes, with the MSB first. Then, all previous byte
checksums are received in one byte.

Note: Some products do not support the mass erase feature, in this case use the Erase command
to erase all pages or sectors.
The maximum number of pages or sectors is product-related, and must be respected. The
maximum number of pages or sectors that can be erased in the same command is 512.
Codes from 0xFFFC to 0xFFF0 are reserved.
No error is returned when performing erase operations on write-protected sectors.

The host sends bytes to the STM32 as follows:

1. Byte 1: 0x44

2. Byte 2: 0xBB

3. Wait for ACK

4. Bytes 3-4: Special erase (0xFFFx) for Special erase, or Number of pages or sectors to
be erased - 1 for Page erase

5. Byte 5: Checksum of bytes 3-4

6. Wait for ACK

7. (2 x N) bytes (page numbers or sectors coded on two bytes, MSB first) and then the
checksum for these bytes

8. Wait for ACK

• Example of I2C frame:

– erase page 1:

0x44 0xBB Wait ACK 0x00 0x00 0x00 Wait ACK 0x00 0x01 0x01 Wait ACK

– erase page 1 and page 2:

0x44 0xBB Wait ACK 0x00 0x01 0x01 Wait ACK 0x00 0x01 0x00 0x02 0x03 Wait
ACK

AN4221 Rev 13 25/60

AN4221 Bootloader command set

59

Figure 14. Erase Memory command: host side

1. ER = Erase Memory.

Note: Some products do not support the Special erase feature. For these products, this command
is NACK-ed.

ACK

NACK

NACKWait for ACK
or NACK frame

Yes No

ACK

NACK

ACK

MS39908V2

Send command frame
(0x44+0xBB)

Wait for ACK
or NACK frame

End of ER(1)

Start ER(1)

Wait for ACK
or NACK frame

Special
erase?

Send data frame:
0xFFFx for Special erase

(0xFFF0 to 0xFFFC are reserved)
+ checksum of the two bytes

Send data frame: number of
pages to be erased N (on two
bytes, MSB first) + checksum

of the two bytes

Send data frame: page
numbers (each on two bytes,

MSB first) + checksum

Bootloader command set AN4221

26/60 AN4221 Rev 13

Figure 15. Erase Memory command: device side

1. ER = Erase Memory.

2. Requested Special erase command is NACK-ed if not supported by the used STM32 product.

No

No

Yes

MS39909V2

Send ACK frame

End of ER(1)

Receive number of pages to erase
N (2 bytes) MSB first + checksum

Start ER(1)

Checksum OK? No

Special Erase
command received?

Received frame
0x44+0xBB?

Protection active?
Yes

Receive data frame: page codes (on
2 bytes each, MSB first) + checksum

Send ACK frame Send
NACK frame

Erase the corresponding pages

Checksum OK?

Yes

Send
NACK frame Perform Special erase

0xFFFx
received?(2)

Yes

Checksum OK?

No

No

No

No

Yes

Yes

Yes

AN4221 Rev 13 27/60

AN4221 Bootloader command set

59

2.8 Write Protect command

This command is used to enable the write protection for some or all flash memory sectors.
When the bootloader receives the command, it transmits the ACK byte to the host. The
bootloader then waits for the number of bytes to be received (sectors to be protected), and
then receives the flash memory sector codes from the application.

At the end of the Write Protect command, the bootloader transmits the ACK byte and
generates a system reset to take the new configuration of the option byte into account.

The Write Protect command sequence is as follows:

• The bootloader receives one byte that contains N, the number of sectors to be
write-protected - 1 (0 ≤ N ≤ 255).

• The bootloader receives (N + 1) bytes, each of them containing a sector code.

Note: The total number of sectors and the number of the sector to be protected are not checked.
This means that no error is returned when a command is passed with a wrong number of
sectors to be protected, or with a wrong sector number.

If a second Write Protect command is executed, the flash memory sectors protected by the
first command become unprotected, and only the sectors passed with the second Write
Protect command become protected.

Bootloader command set AN4221

28/60 AN4221 Rev 13

Figure 16. Write Protect command: host side

1. WP = Write Protect.

ACK

MSv31532V1

Send command
frame (0x63+0x9C)

Wait for ACK
or NACK frame

End of WP(1)

Send data frame: number of sectors
to be protected (1 byte) + checksum

Send data frame: sector
codes + checksum

NACK

ACK

Start WP(1)

Wait for ACK
or NACK frame

NACK

Wait for ACK
or NACK frame

NACK

AN4221 Rev 13 29/60

AN4221 Bootloader command set

59

Figure 17. Write Protect command: device side

1. WP = Write Protect.

2. System reset is called only for some STM32 BL (STM32F0/F4/F7) and some STM32L4
(STM32L412xx/422xx, STM32L43xxx/44xxx, STM32L45xxx/46xxx) products.

Yes

MSv31533V3

Send ACK frame

End of WP(1)

Receive data frame:
number of sectors to be protected

(1 byte) + checksum

Start WP(1)

Checksum OK?
No

Yes

Received frame =
0x63+0x9C?

Protection active?

No

Yes

No

Receive data frame:
sector codes + checksum

Send ACK frame

Generate system reset(2)

Send NACK frame

Write-protect the requested
sectors

Checksum OK?

No

Send ACK frame

Yes

Bootloader command set AN4221

30/60 AN4221 Rev 13

2.9 Write Unprotect command

This command is used to disable the write protection of all flash memory sectors. When the
bootloader receives the command, it transmits the ACK byte to the host, then disables the
write protection of all flash memory sectors, and transmits the ACK byte.

A system reset is generated to take the new configuration of the option byte into account.

Figure 18. Write Unprotect command: host side

1. WPUN = Write Unprotect.

MSv31534V1

Send command
frame (0x73+0x8C)

Wait for ACK
or NACK frame

End of WPUN (1)

NACK

ACK

Start WPUN (1)

Wait for ACK
or NACK frame

NACK

ACK

AN4221 Rev 13 31/60

AN4221 Bootloader command set

59

Figure 19. Write Unprotect command: device side

1. WPUN = Write Unprotect.

2. System reset is called only for some STM32 BL (STM32F0/F4/F7) and some STM32L4
(STM32L412xx/422xx, STM32L43xxx/44xxx, STM32L45xxx/46xxx) products.

2.10 Readout Protect command

This command is used to enable the flash memory read protection. When the bootloader
receives the command, it transmits the ACK byte to the host, and enables the read
protection for the memory.

At the end of the Readout Protect command, the bootloader transmits the ACK byte and
generates a system reset to take the new configuration of the option byte into account.

MSv31535V3

Send ACK frame

End of WPUN (1)

Remove the protection for the
whole flash memory

Start WPUN (1)

Received frame =
0x73+0x8C?

Protection
active?

No

Yes

Yes

No

Send ACK frame

Generate system reset (2)

Send NACK frame

Bootloader command set AN4221

32/60 AN4221 Rev 13

Figure 20. Readout Protect command: host side

1. RDP_PRM = Readout Protect.

Figure 21. Readout Protect command: device side

1. RDP_PRM = Readout Protect.

2. System reset is called only for some STM32 BL (STM32F0/F4/F7) and some STM32L4
(STM32L412xx/422xx, STM32L43xxx/44xxx, STM32L45xxx/46xxx) products.

MSv31536V1

Send command
frame (0x82+0x7D)

Wait for ACK
or NACK frame

End of RDP_PRM (1)

NACK

ACK

Start RDP_PRM (1)

Wait for ACK
or NACK frame

NACK

ACK

MSv31537V2

Send ACK frame

End of RDP_PRM (1)

Activate Read protection for Flash memory

Start RDP_PRM (1)

Received frame =
0x82+0x7D?

ROP active

No

Yes

Yes

No

Send ACK frame

Generate system reset (2)

Send NACK frame

AN4221 Rev 13 33/60

AN4221 Bootloader command set

59

2.11 Readout Unprotect command

This command is used to disable flash memory read protection. When the bootloader
receives the command, it transmits the ACK byte to the host, then disables the read
protection for the whole flash memory, which results in a total erasure. If the operation is not
successful, the bootloader transmits an NACK, and the read protection remains active.

Note: This operation takes the same time to erase all pages or sectors (or to perform a mass
erase if supported by the product), so the host must wait until the end of the operation. For
the flash memory erase timings refer to the product datasheet.

At the end of the Readout Unprotect command, the bootloader transmits an ACK and
generates a system reset to take the new configuration of the option byte into account.

Figure 22. Readout Unprotect command: host side

1. RDU_PRM = Readout Unprotect.

MSv31538V1

Send command
frame (0x92+0x6D)

Wait for ACK
or NACK frame

End of RDU_PRM (1)

NACK

ACK

Start RDU_PRM (1)

Wait for ACK
or NACK frame

NACK

ACK

Bootloader command set AN4221

34/60 AN4221 Rev 13

Figure 23. Readout Unprotect command: device side

1. RDU_PRM = Readout Unprotect.

2. System reset is called only for some STM32 BL (STM32F0/F4/F7) and some STM32L4
(STM32L412xx/422xx, STM32L43xxx/44xxx, STM32L45xxx/46xxx) products.

MSv31539V2

Send ACK frame

End of RDU_PRM (1)

Disable ROP

Start RDU_PRM (1)

Received frame =
0x92+0x6D?

No

Send ACK frame

Generate system reset (2)

Send NACK frame

Clear all RAM

AN4221 Rev 13 35/60

AN4221 Bootloader command set

59

2.12 No-Stretch Write Memory command

The No-Stretch Write Memory command is used to write data to any valid memory area.

When the bootloader receives the No-Stretch Write Memory command, it transmits the ACK
byte to the application. The bootloader then waits for a 4-byte address (byte 1 is the address
MSB, and byte 4 is the LSB) and a checksum byte, and then checks the received address.

If the received address is valid and the checksum is correct, the bootloader transmits an
ACK byte; otherwise, it transmits an NACK byte and aborts the command. When the
address is valid and the checksum is correct, the bootloader:

1. Gets a byte, N, which contains the number of data bytes to be received

2. Receives the user data ((N + 1) bytes) and the checksum (XOR of N and of all data
bytes)

3. Programs the user data to memory, starting from the received address

4. Returns a Busy state (0x76) while operation is ongoing

At the end of the command, if the write operation is successful, the bootloader transmits the
ACK byte; otherwise, it transmits an NACK byte to the application and aborts the command.

Note: If the No-Stretch Write Memory command is issued to the option byte area, the bootloader
generates a system reset to take the new configuration of the option byte into account.

The maximum length of the block to be written to memory is 256 bytes except for the option
bytes the maximum length depends on the STM32 product, and the address received from
the host must be the start address of the option byte area. For more information, refer to the
STM32 product reference manual.

No error is returned when performing write operations to write-protected sectors.

The host sends the bytes to the STM32 as follows:

1. Byte 1: 0x32

2. Byte 2: 0xCD

3. Wait for ACK

4. Byte 3 to byte 6: Start address

– Byte 3: MSB

– Byte 6: LSB

5. Byte 7: Checksum: XOR (byte 3, byte 4, byte 5, byte 6)

6. Wait for ACK

7. Byte 8: Number of bytes to be received (0 < N ≤ 255)

8. N +1 data bytes: (Max 256 bytes)

9. Checksum byte: XOR (N, N+1 data bytes)

10. Wait for ACK (if Busy, keep polling on ACK/NACK)

Bootloader command set AN4221

36/60 AN4221 Rev 13

Figure 24. No-Stretch Write Memory command: host side

1. WM = Write Memory.

Send command frame
(0x32 + 0xCD)

Wait for ACK
or NACK frame

End of No-Stretch WM(1)

Send data frame:
- number of bytes to be writen
- data to be written
- checksum

NACK

ACK

Start No-Stretch WM(1)

Received
response

NACK

Wait for ACK
or NACK frame

NACK

ACK

Send data frame: start address
(4 bytes) with checksum

ACK

Response Frame

BUSY

MS35260V1

AN4221 Rev 13 37/60

AN4221 Bootloader command set

59

Figure 25. No-Stretch Write Memory command: device side

1. WM = Write Memory.

2. System reset is called only for some STM32 BL (STM32F4/F7) and some STM32L4
(STM32L412xx/422xx, STM32L43xxx/44xxx, STM32L45xxx/46xxx) products.

Send ACK frame

End of No-Stretch WM(1)

Receive data frame: start address
(4 bytes) with checksum

Start No-Stretch WM(1)

Checksum OK?
No

Address valid and
checksum OK?

No

Received frame
 0x32+0xCD?

Protection active?

No

Yes

Yes

No

Yes

Send ACK frame

Receive data frame:
- number of bytes to be written
- data to be written
- checksum

Send
NACK
frame

Write the received data to
Flash memory from the start

address

Yes

Yes

Send ACK frame

Generate system reset(2)

Operation
complete?

Send Busy
frame (0x76)

No

MS35261V4

Bootloader command set AN4221

38/60 AN4221 Rev 13

2.13 No-Stretch Erase Memory command

This command allows the host to erase flash memory pages or sectors using a two-byte
addressing mode.

When the bootloader receives the command, it transmits the ACK byte to the host. The
bootloader then receives two bytes (number of pages or sectors to be erased), the flash
memory page or sector codes (each one coded on two bytes, MSB first) and a checksum
byte (XOR of the sent bytes). If the checksum is correct, the bootloader erases the memory
(returns Busy state (0x76) while operation is ongoing), then sends an ACK byte to the host;
otherwise, it sends an NACK byte to the host, and the command is aborted.

No-Stretch Erase Memory command specifications

The bootloader receives one half-word (two bytes) that contains the number of pages or
sectors to be erased diminished by 1. If 0xFFFY is received (where Y is from 0 to F), a
special erase is performed (0xFFFF for global mass erase, 0xFFFE and 0xFFFD,
respectively, for bank1 and bank2 mass erase).

The bootloader receives:

• In the case of a special erase, one byte: the checksum of the previous bytes (for
example, 0x00 for 0xFFFF)

• If N pages or sectors are erased, 2 x N bytes, each half-word of which contains a page
or sector number that is coded on two bytes, with the MSB first. Then all previous byte
checksums are received in one byte.

Note: Some products do not support the mass erase feature, in this case use the erase command
to erase all pages or sectors instead.
The maximum number of pages or sectors is relative to the product, and must be respected.
The maximum number of pages or sectors that can be erased in the same command is 512.
Codes from 0xFFFC to 0xFFF0 are reserved.
No error is returned when performing erase operations on write-protected sectors.

The host sends bytes to the STM32 as follows:

1. Byte 1: 0x45

2. Byte 2: 0xBA

3. Wait for ACK

4. Bytes 3-4: Special erase (0xFFFx) for Special erase, Number of pages or sectors to be
erased - 1 for Page erase

5. Byte 5: Checksum of bytes 3-4

6. Wait for ACK (if Busy, keep polling on ACK/NACK)

7. (2 x N) bytes (page numbers or sectors coded on two bytes MSB first), and then the
checksum for these bytes

8. Wait for ACK (if Busy, keep polling on ACK/NACK)

• Example of I2C frame:

– erase page 1:

0x45 0xBA Wait ACK 0x00 0x00 0x00 Wait ACK 0x00 0x01 0x01 Wait ACK

– erase page 1 and page 2:

0x45 0xBA Wait ACK 0x00 0x01 0x01 Wait ACK 0x00 0x01 0x00 0x02 0x03 Wait
ACK

AN4221 Rev 13 39/60

AN4221 Bootloader command set

59

Figure 26. No-Stretch Erase Memory command: host side

1. ER = Erase Memory.

Note: Some products do not support the Special erase feature. For these products, this command
is NACK-ed.

Bootloader command set AN4221

40/60 AN4221 Rev 13

Figure 27. No-Stretch Erase Memory command: device side

1. ER = Erase Memory.

2. Requested Special erase command is NACK-ed if not supported by the used STM32 product.

No

Yes

Yes

Yes

No

No

Yes

Send ACK frame

End of No-Stretch ER(1)

Receive number of Pages to be erased
N (2 bytes) MSB first+ checksum

Start No-Stretch ER(1)

Checksum OK?

Special Erase
command received?

Received frame
0x45+0xBA?

Protection active?

No

Yes

Yes

Receive data frame: page codes (on
2 bytes each, MSB first) + checksum

Send
NACK frame

Erase the corresponding pages

Checksum OK?
No

Yes

Send
NACK frame Perform Special erase

0xFFFx
received?(2)

No
Checksum OK?

No

Send ACK frame

Operation
complete?

Send Busy
frame (0x76)

Yes

No

MS35263V4

AN4221 Rev 13 41/60

AN4221 Bootloader command set

59

2.14 Special command

New bootloader commands are needed to support new STM32 features and to fulfill
customers needs. To avoid specific commands for a single project, the Special command
has been created, to be as generic as possible.

Figure 28. Special command: host side

Start Special command Send command (0x50 + 0xAF)

Wait for ACK or NACK

Send sub-command code
(2 bytes) with checksum

Number of bytes N = 0?Get status packet (N bytes)

Receive ACK

End Special command

ACK

Yes

NACK

No

MS55467

Wait for ACK or NACK

Yes

NACK

Get number of bytes to receive
(2 bytes, MSB first)

ACK

Get number of bytes to receive
(2 bytes, MSB first)

Number of bytes N = 0?Get data packet (N bytes)
No

Send number of bytes
(2 bytes, MSB first), packet data
(up to 128 bytes) with checksum

Wait for ACK or NACK
NACK

ACK

Bootloader command set AN4221

42/60 AN4221 Rev 13

Figure 29. Special command: device side

1. The internal processing depends on the project needs.

When the bootloader receives the Special command, it transmits the ACK byte to the host.
Once the ACK is transmitted, the bootloader waits for a subcommand opcode (two bytes,
MSB first) and a checksum byte. If the subcommand is supported by the STM32 bootloader
and its checksum is correct, the bootloader transmits an ACK byte, otherwise it transmits an
NACK byte and aborts the command.

To keep the command generic the data packet received by the bootloader can have different
sizes depending on the subcommand needs.

Start Special command Received byte = 0x50+0xAF?

Send ACK byte

Receive sub-command opcode
(2 bytes, MSB first)

Command valid
and checksum OK?

Send ACK byte

Receive number of data (2 bytes,
MSB first), data + checksum

Number of data > 128
and checksum OK?

Send ACK byte

Internal processing (1)

Receive number of data N
(2 bytes, MSB first)

Number of data N = 0?Send data (N bytes)

Send number of status data N
(2 bytes, MSB first)

Number of status data N = 0?Send status data (N bytes)

Send ACK byte Send NACK byte

End Special command

Yes

No

Yes

Yes

Yes

Yes

No

No

No

No

MS55461V1

AN4221 Rev 13 43/60

AN4221 Bootloader command set

59

Therefore, the packet is split in two parts:

• Size of the data (2 bytes, MSB first)

• N bytes of data

– If N = 0, no data are transmitted

– N must be lower than 128.

If all conditions are satisfied (N ≤ 128 and the checksum is correct), the bootloader transmits
an ACK. Otherwise, it transmits an NACK byte and aborts the command.

Once the subcommand is executed using the received data, the bootloader sends a
response consisting of two consecutive packets:

• Data packet

– Size of the data (2 bytes, MSB first)

– N bytes of data

– If N = 0, no data are transmitted

• Status packet

– Size of the status data (2 bytes, MSB first)

– N bytes of data

– If N = 0, no status data are transmitted

An ACK byte closes the Special command interaction between the bootloader and the host.

Bootloader command set AN4221

44/60 AN4221 Rev 13

2.15 Extended Special command

This command is slightly different the Special command. It allows the user to send more
data with the addition of a new buffer of 1024 bytes and as response it only returns the
commands status.

Figure 30. Extended Special command: host side

Start Extended Special command Send command (0x51 + 0xAF)

Wait for ACK or NACK

Send sub-command code
(2 bytes) with checksum

Number of bytes N = 0?Get status packet (N bytes)

Receive ACK

End Extended Special command

ACK

Yes

NACK

No

MS5546

Wait for ACK or NACK

ACK

NACK

Send the number of bytes
(2 bytes, MSB first), packet data

(up to 1024 bytes) with checksum

Wait for ACK or NACK

ACK

NACK

Get number of bytes to receive
(2 bytes, MSB first)

ACK

Send the number of bytes
(2 bytes, MSB first), address packet

(up to 128 bytes) with checksum

Wait for ACK or NACK
NACK

AN4221 Rev 13 45/60

AN4221 Bootloader command set

59

Figure 31. Extended Special command: device side

1. The internal processing depends on the project needs.

When the bootloader receives the extended special command, it transmits the ACK byte to
the host. Once the ACK is transmitted, the bootloader waits for a subcommand opcode (two
bytes, MSB first) and a checksum byte. If the subcommand is supported by the STM32

Start Extended Special command Received byte = 0x51+0xA?

Send ACK byte

Receive sub-command opcode
(2 bytes, MSB first)

Command valid
and checksum OK?

Send ACK byte

Receive address packet:
number of data (2 bytes,

MSB first), data + checksum

Number of data > 128
and checksum OK?

Send ACK byte

Internal processing (1)

Send number of data N
(2 bytes, MSB first)

Number of data N = 0?Send data (N bytes)

Send number of status data N
(2 bytes, MSB first)

Number of status data N = 0?Send status data (N bytes)

Send ACK byte Send NACK byte

End Extended Special command

Yes

No

Yes

Yes

Yes

Yes

No

No

No

No

MS55466V1

Receive data packet:
number of data (2 bytes,

MSB first), data + checksum

Number of data > 1024
and checksum OK?

No

Yes

Bootloader command set AN4221

46/60 AN4221 Rev 13

bootloader and its checksum is correct, the bootloader transmits an ACK byte, otherwise it
transmits an NACK byte and aborts the command.

The two packets then can be received depending on the subcommand needs:

• Packet1: Data1 packet, where the number of bytes is limited to 128 bytes.

• Packet2: Data2 packet, where the number of bytes is limited to 1024 bytes.

If all conditions are satisfied (Packet1: N ≤ 128 and checksum is correct, Packet2: N ≤ 1024
and checksum is correct), the bootloader transmits an ACK, otherwise it transmits an NACK
byte and aborts the command.

Once the subcommand is executed using the received data, the bootloader sends a
response consisting of one packet:

• Size of the data (2 bytes, MSB first)

• N bytes of data

– If N = 0, no data are transmitted

An ACK byte closes the Extended Special command interaction between bootloader and
the host.

2.16 No-Stretch Write Protect command

This command is used to enable the write protection for some or all flash memory sectors.

When the bootloader receives the command, it transmits the ACK byte to the host. The
bootloader then waits for the number of bytes to be received (sectors to be protected), then
receives the flash memory sector codes from the application and returns Busy state (0x76)
while operation is ongoing.

At the end of the No-Stretch Write Protect command, the bootloader transmits the ACK byte
and generates a system reset to take the new configuration of the option byte into account.

The Write Protect command sequence is as follows:

• The bootloader receives one byte that contains N, the number of sectors to be write-
protected - 1 (0 ≤ N ≤ 255).

• The bootloader receives (N + 1) bytes, each byte of which contains a sector code.

Note: The total number of sectors and the sector number to be protected are not checked. This
means that no error is returned when a command is passed with either a wrong number of
sectors to be protected, or a wrong sector number.

If a second Write Protect command is executed, the flash memory sectors that had been
protected by the first command become unprotected, and only the sectors passed within the
second Write Protect command become protected.

AN4221 Rev 13 47/60

AN4221 Bootloader command set

59

Figure 32. No-Stretch Write Protect command: host side

1. WP = Write Protect.

Send command
frame (0x64+0x9B)

End of No-Stretch WP(1)

Send data frame: number of sectors
to be protected (1 byte) + checksum

Send data frame: sector
codes + checksum

NACK

ACK

Start No-Stretch WP(1)

Wait for ACK
or NACK frame

NACK

Received
response?

NACK

ACK

Response frame

BUSY

MS35264V2

Wait for ACK
or NACK frame

ACK

Bootloader command set AN4221

48/60 AN4221 Rev 13

Figure 33. No-Stretch Write Protect command: device side

1. WP = Write Protect.

2. System reset is called only for some STM32 BL (STM32F4/F7) and some STM32L4
(STM32L412xx/422xx, STM32L43xxx/44xxx, STM32L45xxx/46xxx) products.

Send ACK frame

Operation
complete

Send Busy
frame (0x76)

Yes

Send ACK frame

End of No-Stretch WP(1)

Receive data frame: number
of sectors to be protected (1 byte) +

checksum

Start No-Stretch WP(1)

Checksum OK?
No

Yes

Received frame =
0x64+0x9B?

Protection active?

No

Yes

No

Receive data frame:
sector codes + checksum

Generate system reset(2)

Send NACK frame

Enable Write protection of
selected sectors

Checksum OK?

No

Send ACK frame

Yes

No

Yes

MS35265V3

AN4221 Rev 13 49/60

AN4221 Bootloader command set

59

2.17 No-Stretch Write Unprotect command

This command is used to disable the write protection of all flash memory sectors.

When the bootloader receives the command, it transmits the ACK byte to the host, then
disables the write protection of all flash memory sectors, and returns Busy state (0x76) while
the operation is ongoing. At the end, it transmits the ACK byte.

A system reset is generated to take the new configuration of the option byte into account.

Figure 34. No-Stretch Write Unprotect command: host side

1. WPUN = Write Unprotect.

Send command
frame (0x74+0x8B)

Wait for ACK
or NACK frame

End of No-Stretch WPUN(1)

NACK

Start No-Stretch WPUN(1)

Received
response

NACK

ACK

Response Frame

BUSY

MS35266V1

Bootloader command set AN4221

50/60 AN4221 Rev 13

Figure 35. No-Stretch Write Unprotect command: device side

1. WPUN = Write Unprotect.

2. System reset is called only for some STM32 BL (STM32F4/F7) and some STM32L4
(STM32L412xx/422xx, STM32L43xxx/44xxx, STM32L45xxx/46xxx) products.

Send ACK frame

Operation
complete

Send Busy
frame (0x76)

Yes

Send ACK frame

End of No-Stretch WPUN(1)

Start No-Stretch WPUN(1)

Received frame =
0x74 + 0x8B?

Protection active?

No

Yes

No

Generate system reset(2)

Send NACK frame

Disable Write-protection of all sectors

No

Yes

MS35267V3

AN4221 Rev 13 51/60

AN4221 Bootloader command set

59

2.18 No-Stretch Readout Protect command

This command is used to enable the flash memory read protection.

When the bootloader receives the command, it transmits the ACK byte to the host, enables
the read protection for the flash memory, and returns Busy state (0x76) while the operation
is ongoing.

At the end of the No-Stretch Readout Protect command, the bootloader transmits the ACK
byte, and generates a system reset to take the new configuration of the option byte into
account.

Figure 36. No-Stretch Readout Protect command: host side

1. RDP_PRM = Readout Protect.

Send command
frame (0x83+0x7C)

Wait for ACK
or NACK frame

End of No-Stretch RDP_PRM(1)

NACK

Start No-Stretch RDP_PRM(1)

Received
response

NACK

ACK

Response Frame

BUSY

MS35268V1

Bootloader command set AN4221

52/60 AN4221 Rev 13

Figure 37. No-Stretch Readout Protect command: device side

1. RDP_PRM = Readout Protect.

2. System reset is called only for some STM32 BL (STM32F4/F7) and some STM32L4
(STM32L412xx/422xx, STM32L43xxx/44xxx, STM32L45xxx/46xxx) products.

Send ACK frame

Operation
complete?

Send Busy
frame (0x76)

Yes

Send ACK frame

End of No-Stretch RDP_PRM(1)

Start No-Stretch RDP_PRM(1)

Received frame =
0x83 + 0x7C?

ROP active?

No

Yes

No

Generate system reset(2)

Send NACK frame

Activate Read protection
for all sectors

No

Yes

MS35269V2

AN4221 Rev 13 53/60

AN4221 Bootloader command set

59

2.19 No-Stretch Readout Unprotect command

This command is used to disable flash memory read protection. When the bootloader
receives the command, it transmits the ACK byte to the host.

The bootloader then disables the read protection for the entire flash memory, which results
in an erasure of the entire flash memory, and returns Busy state (0x76) while the operation
is ongoing. If the operation is unsuccessful, the bootloader transmits an NACK, and the read
protection remains active.

At the end of the No-Stretch Readout Unprotect command, the bootloader transmits an ACK
and generates a system reset to take the new configuration of the option byte into account.

Figure 38. No-Stretch Readout Unprotect command: host side

1. RDU_PRM = Readout Unprotect.

Send command
frame (0x93+0x6C)

Wait for ACK
or NACK frame

End of No-Stretch RDU_PRM(1)

NACK

Start No-Stretch RDU_PRM(1)

Received
response

NACK

ACK

Response Frame

BUSY

MS35270V1

Bootloader command set AN4221

54/60 AN4221 Rev 13

Figure 39. No-Stretch Readout Unprotect command: device side

1. RDU_PRM = Readout Unprotect.

2. System reset is called only for some STM32 BL (STM32F4/F7) and some STM32L4
(STM32L412xx/422xx, STM32L43xxx/44xxx, STM32L45xxx/46xxx) products.

Send ACK frame

Operation
complete

Send Busy
frame (0x76)

Yes

Send ACK frame

End of No-Stretch RDU_PRM(1)

Start No-Stretch RDU_PRM(1)

Received frame
 = 0x93+0x6C?

No

Generate system reset(2)

Send NACK frame

Disable ROP

No

Yes

Clear All RAM

MS35271V2

AN4221 Rev 13 55/60

AN4221 Bootloader command set

59

2.20 No-Stretch GetCheckSum command

This command is used to compute the CRC value (based on the CRC IP) of a given flash
memory range, defined by the memory offset and size.

When the bootloader receives the command, it transmits the ACK byte to the application.
The bootloader then waits for a 4-byte address ((byte 1 is the address MSB, byte 4 is the
LSB) and a checksum byte, then it checks the received address. If the address is valid,
within the flash memory, and the checksum is correct, the bootloader transmits an ACK
byte; otherwise, it transmits an NACK byte and aborts the command.

If the address is valid, within the flash memory, and the checksum is correct, the bootloader
waits for the size of the memory range (4 bytes, byte1 is the MSB, byte4 is the LSB) for the
checksum calculations, and for a checksum byte. If the size is different from 0, a multiple of
four, resulting in an address in the flash when added to the address, and checksum is
correct, the bootloader transmits an ACK to the application; otherwise, it transmits an NACK
byte and the aborts the command.

If the address and the size are valid, the application waits for the CRC computation. A Busy
state (0x76) is sent while the operation is ongoing.

At the end of the command, if the GetCheckSum operation is successful, the bootloader
transmits the checksum result (4-byte, MSB first) and its checksum.

Figure 40. No-Stretch GetCheckSum command: host side

Yes

BUSY

No

ACK

MS55909V1

Start Get CheckSum
command

Send address (4 bytes,
MSB first) and its XOR

Send memory size to check
(4 bytes, MSB first) and its XOR

Get calculated checksum
(4 bytes, MSB first) and its XOR

NACK

Data received? End Get CheckSum command

Wait for ACK / NACK

Send command (0xA1 +0x5E)

ACK

NACK
Wait for ACK / NACK

ACK

NACK
Wait for ACK / NACK

Bootloader command set AN4221

56/60 AN4221 Rev 13

Figure 41. No-Stretch GetCheckSum command: device side

No

Yes

Send ACK byte

Received byte =
0xA1 + 0x5E?

No

No

Send NACK byte

MS55908V1

Start Get CheckSum
command

Receive address (4 bytes,
MSB first) and its XOR

Send ACK byte

Receive memory size to check
(4 bytes, MSB first) and its XOR

Send ACK byte

Calculate checksum

Yes

Operation completed?

Send ACK byte

Send calculated memory checksum
(4 bytes, MSB first) + XOR byte End Get CheckSum command

Protection active?

Send BUSY byte (0x76)

NoAddress valid, within the
memory, and XOR OK?

Yes

Yes

No

Yes

XOR OK,

(Address + Size) valid ?

AN4221 Rev 13 57/60

AN4221 Bootloader protocol version evolution

59

3 Bootloader protocol version evolution

Table 3 lists the bootloader versions.

Table 3. Bootloader protocol versions

Version Description

V1.0 Initial protocol version.

V1.1

This version implements new I2C commands:

– No-Stretch Write Memory

– No-Stretch Erase Memory

– No-Stretch Write Protect

– No-Stretch Write Unprotect

– No-Stretch ReadOut Protect

– No-Stretch ReadOut Unprotect

V1.2 This version implements the new I2C command No-Stretch Get Memory CheckSum.

V2.0
The number of commands can vary on STM32 devices with the same protocol version
v2.0. To know the supported commands, use Get command.

Revision history AN4221

58/60 AN4221 Rev 13

4 Revision history

Table 4. Document revision history

Date Revision Changes

18-Jan-2013 1 Initial release.

02-May-2014 2

Updated list of Applicable products in Table 1.

Updated set of commands in Table 2.

Updated Section 2: Bootloader command set.

Added Section 2.12, Section 2.13, Section 2.16, Section 2.17,
Section 2.18 and Section 2.19.

Added new Protocol version in Table 3.

08-Oct-2015 3

Updated Introduction, Section 2: Bootloader command set, Section 2.7:
Erase Memory command and Section 2.13: No-Stretch Erase Memory
command.

Updated Table 1: Applicable products and Table 2: I2C bootloader
commands.

Updated Figure 14: Erase Memory command: host side, Figure 15: Erase
Memory command: device side, Figure 26: No-Stretch Erase Memory
command: host side and Figure 27: No-Stretch Erase Memory command:
device side.

19-Oct-2016 4 Updated Introduction and Table 1: Applicable products.

15-Mar-2017 5 Updated Table 1: Applicable products.

15-Jan-2019 6

Updated Table 1: Applicable products.

Updated Section 1: I2C bootloader code sequence.

Minor text edits across the whole document.

05-Apr-2019 7 Updated Table 1: Applicable products.

23-Sep-2019 8 Updated Table 1: Applicable products.

27-Nov-2019 9

Updated Table 1: Applicable products.

Updated Figure 25: No-Stretch Write Memory command: device side,
Figure 27: No-Stretch Erase Memory command: device side and
Figure 32: No-Stretch Write Protect command: host side.

11-Jun-2021 10

Updated Table 2: I2C bootloader commands.

Added Section 2.14: Special command and Section 2.15: Extended
Special command.

Updated Figure 13: Write Memory command: device side, Figure 17:
Write Protect command: device side, Figure 19: Write Unprotect
command: device side, Figure 21: Readout Protect command: device
side,, Figure 23: Readout Unprotect command: device side, Figure 25:
No-Stretch Write Memory command: device side, Figure 33: No-Stretch
Write Protect command: device side Figure 35: No-Stretch Write
Unprotect command: device side, Figure 37: No-Stretch Readout Protect
command: device side and Figure 39: No-Stretch Readout Unprotect
command: device side and their footnotes.

Minor text edits across the whole document.

AN4221 Rev 13 59/60

AN4221 Revision history

59

09-Feb-2022 11

Updated Table 1: Applicable products, Table 2: I2C bootloader
commands and Table 3: Bootloader protocol versions.

Updated Section 2.1: Get command.

Added Section 2.20: No-Stretch GetCheckSum command.

Minor text edits across the whole document.

14-Feb-2023 12

Updated Introduction, Section 2.1: Get command, and Section 2.2: Get
Version command.

Updated Table 1: Applicable products, Table 2: I2C bootloader
commands and its footnotes, and Table 3: Bootloader protocol versions.

Updated Figure 2: Get command: host side, Figure 3: Get command:
device side, Figure 4: Get Version: host side, Figure 5: Get Version:
device side, Figure 9: Read Memory command: device side, Figure 11:
Go command: device side, Figure 13: Write Memory command: device
side, Figure 14: Erase Memory command: host side, Figure 15: Erase
Memory command: device side, Figure 17: Write Protect command:
device side, Figure 19: Write Unprotect command: device side, Figure 25:
No-Stretch Write Memory command: device side, Figure 27: No-Stretch
Erase Memory command: device side, Figure 33: No-Stretch Write
Protect command: device side, and Figure 35: No-Stretch Write
Unprotect command: device side.

Minor text edits across the whole document.

06-Mar-2024 13

Added STM32U0 and STM32WBA series, hence updated Table 1:
Applicable products.

Updated footnote 2 of Table 2: I2C bootloader commands.

Minor text edits across the whole document.

Table 4. Document revision history (continued)

Date Revision Changes

AN4221

60/60 AN4221 Rev 13

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product
or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

	Table 1. Applicable products
	1 I2C bootloader code sequence
	Figure 1. Bootloader for STM32 with I2C

	2 Bootloader command set
	Table 2. I2C bootloader commands
	2.1 Get command
	Figure 2. Get command: host side
	Figure 3. Get command: device side

	2.2 Get Version command
	Figure 4. Get Version: host side
	Figure 5. Get Version: device side

	2.3 Get ID command
	Figure 6. Get ID command: host side
	Figure 7. Get ID command: device side

	2.4 Read Memory command
	Figure 8. Read Memory command: host side
	Figure 9. Read Memory command: device side

	2.5 Go command
	Figure 10. Go command: host side
	Figure 11. Go command: device side

	2.6 Write Memory command
	Figure 12. Write Memory command: host side
	Figure 13. Write Memory command: device side

	2.7 Erase Memory command
	Figure 14. Erase Memory command: host side
	Figure 15. Erase Memory command: device side

	2.8 Write Protect command
	Figure 16. Write Protect command: host side
	Figure 17. Write Protect command: device side

	2.9 Write Unprotect command
	Figure 18. Write Unprotect command: host side
	Figure 19. Write Unprotect command: device side

	2.10 Readout Protect command
	Figure 20. Readout Protect command: host side
	Figure 21. Readout Protect command: device side

	2.11 Readout Unprotect command
	Figure 22. Readout Unprotect command: host side
	Figure 23. Readout Unprotect command: device side

	2.12 No-Stretch Write Memory command
	Figure 24. No-Stretch Write Memory command: host side
	Figure 25. No-Stretch Write Memory command: device side

	2.13 No-Stretch Erase Memory command
	Figure 26. No-Stretch Erase Memory command: host side
	Figure 27. No-Stretch Erase Memory command: device side

	2.14 Special command
	Figure 28. Special command: host side
	Figure 29. Special command: device side

	2.15 Extended Special command
	Figure 30. Extended Special command: host side
	Figure 31. Extended Special command: device side

	2.16 No-Stretch Write Protect command
	Figure 32. No-Stretch Write Protect command: host side
	Figure 33. No-Stretch Write Protect command: device side

	2.17 No-Stretch Write Unprotect command
	Figure 34. No-Stretch Write Unprotect command: host side
	Figure 35. No-Stretch Write Unprotect command: device side

	2.18 No-Stretch Readout Protect command
	Figure 36. No-Stretch Readout Protect command: host side
	Figure 37. No-Stretch Readout Protect command: device side

	2.19 No-Stretch Readout Unprotect command
	Figure 38. No-Stretch Readout Unprotect command: host side
	Figure 39. No-Stretch Readout Unprotect command: device side

	2.20 No-Stretch GetCheckSum command
	Figure 40. No-Stretch GetCheckSum command: host side
	Figure 41. No-Stretch GetCheckSum command: device side

	3 Bootloader protocol version evolution
	Table 3. Bootloader protocol versions

	4 Revision history
	Table 4. Document revision history

