
March 2016 DocID028825 Rev 1 1/16

1

AN4808
Application note

Writing to non-volatile memory without disrupting code execution
 on microcontrollers of the STM32L0 and STM32L1 Series

Introduction

Microcontrollers often receive data that need to be stored or that require an immediate
feedback, without having to stop the CPU activity, even for a few milliseconds.

However on some devices, the same memory controller is shared between code and data
non-volatile memory (NVM). This may cause the program execution to stall while the are
being written in the NVM.

Techniques to avoid this situation are described in this application note.

The X-CUBE-NVMRWW firmware package contains the project used as implementation
example.

The following documents (all available from www.st.com) are to be considered as reference:

• Reference manual RM0038: “STM32L100xx, STM32L151xx, STM32L152xx and
STM32L162xx advanced ARM®-based 32-bit MCUs”

• Reference manual RM0367: “Ultra-low-power STM32L0x3 advanced ARM®-based 32-bit
MCUs”

• Reference manual RM0376: “Ultra-low-power STM32L0x2 advanced ARM®-based 32-bit
MCUs”

• Reference manual RM0377: “Ultra-low-power STM32L0x1 advanced ARM®-based 32-bit
MCUs”

www.st.com

http://www.st.com

Contents AN4808

2/16 DocID028825 Rev 1

Contents

1 Definitions . 5

2 Memory interface summary . 6

2.1 Timing . 6

2.2 Bus stall . 7

3 Implementation . 8

3.1 Thread mode code . 8

3.2 Interrupt handlers . 8

3.3 Vector table . 8

4 Alternative solutions . 10

4.1 Using a dual bank device . 10

4.2 Using an external EEPROM .11

5 Example projects . 12

5.1 HW setup . 12

5.2 Configuration options . 12

5.3 Example operation . 12

5.3.1 Download a file to EEPROM . 13

5.3.2 Upload a file from EEPROM . 13

5.3.3 Erase the contents of data EEPROM . 13

5.3.4 Set/disable fixed EEPROM program timing . 13

6 Conclusion . 14

7 Revision history . 15

DocID028825 Rev 1 3/16

AN4808 List of tables

3

List of tables

Table 1. List of acronyms . 5
Table 2. Differences between internal and external EEPROM. 11
Table 3. Revision history . 15

List of figures AN4808

4/16 DocID028825 Rev 1

List of figures

Figure 1. Memory interface simplified overview. 6
Figure 2. Dual bank data access . 10

DocID028825 Rev 1 5/16

AN4808 Definitions

15

1 Definitions

Table 1. List of acronyms

Term Description

CPU Central Processing Unit (part of the microcontroller)

DMA Direct Memory Access

EEPROM Electrically Erasable Programmable Read Only Memory

I2C Inter-Integrated Circuit (industry standard serial bus)

IDE Integrated Development Environment

MCU Microcontroller

NVIC Nested Vector Interrupt Controller

NVM Non-Volatile Memory (EEPROM or Flash)

RM Reference Manual

TC Transmission Complete

UART Universal Asynchronous Receiver Transmitter

USART Universal Synchronous and Asynchronous Receiver Transmitter

Memory interface summary AN4808

6/16 DocID028825 Rev 1

2 Memory interface summary

The NVM in the STM32L0 and STM32L1 Series is split in several regions, the most
interesting for our case being the one featuring the Flash program memory and data
EEPROM. Even though (at first glance) they may appear to be separate and independent,
the program and data memory actually share the same memory controller (see Figure 1).

The memory interface is capable of reading both banks in parallel, or reading one bank
while writing the other, however this parallelism is not possible within a single bank.

Figure 1. Memory interface simplified overview

2.1 Timing

EEPROM programming timing is based on a write/erase cycle duration. It is important to
highlight the fact that some changes in memory only require one programming cycle, while
others need two or more, this is described in detail in the cited reference manuals.

DocID028825 Rev 1 7/16

AN4808 Memory interface summary

15

To keep the programming duration (tprog) as short as possible, it is necessary to follow some
simple rules:

• Only flip bits from reset to set, otherwise an erase cycle is automatically added before
the write cycle

• Write only to aligned addresses (unaligned access needs to access two locations)

• On microcontrollers of the STM32L1 Series, do not activate the FTDW bit in
FLASH_PECR register, on STM32L0 products the bit to stay clear is FIX in
FLASH_PECR register.

If stalling the execution for one tprog is acceptable, but more delay can cause a problem, it is
possible to erase the target NV memory before writing.

Exact value of the EEPROM data write timing is available in the product datasheet, in this
document we assume tprog to be shorter than 3.33 milliseconds.

2.2 Bus stall

When the code is executing from the Flash program memory, the instruction must be read
from it, this is not possible during a write operation on any memory block of the same bank.
In such case the program execution stalls during the EEPROM data write.

Stalling happens at the Busmatrix interconnection and blocks the data recipient until the
data is available.

The stall does not disrupt the sequence of operation. What happens is that the CPU core
keeps waiting for the instruction fetch. Also, the stall only affects the CPU core. Processes
independent from the core, such as DMA or peripherals may continue to work as long as
they avoid accessing the NVM bank.

Implementation AN4808

8/16 DocID028825 Rev 1

3 Implementation

When designing an application that utilizes the EEPROM data memory on single bank
device, it is necessary to clearly identify the timing constraints and requirements.

There are basically two options:

1. Have the code necessary for any action that may occur during the write operation in the
volatile memory (RAM)

2. Postpone the writing to a quieter moment, when no immediate action is necessary.

In this application note we assume that the second option is not applicable, hence the first
one must be implemented.

It is necessary to initiate the data EEPROM writing from the RAM as well. When the
execution is stalled due to fetch attempt from the busy NVM, neither events or interrupts are
processed until the BSY flag is released. Having the interrupt code in RAM is not enough to
wake the MCU.

3.1 Thread mode code

To prevent stalling the execution, thread mode code must be executed from the system
RAM. The piece of code in RAM may be a function that initiates the writing and then loops
while the BSY bit of the memory interface is set and takes care of the actions that must not
wait until the write is completed.

3.2 Interrupt handlers

The interrupt handler code must be placed in RAM, at least in case of interrupt requests that
must not wait until the EEPROM operation ceases.

The way to tell the linker to put the code in RAM differs according to each development
environment, the user should refer to the IDE documentation.

Several practices must be avoided in the code in RAM:

• Do not call functions placed in program Flash memory from the system RAM code.
Take extra care to avoid problems with the library functions and functions hidden in
macros.

• Abstain from using constants that are placed in program Flash memory.

• Obviously, the data EEPROM cannot be read while being written.

When testing the code in RAM it is possible to gate the clock to the NVM and disable it (this
is the simplest way to ensure that the critical code is indeed self-sustained in RAM).

3.3 Vector table

To maintain capability to process interrupts during the writing period, the vector table must
be relocated to system RAM. By default the linker places the vector table at the beginning of
the program memory. Its size (up to 192 bytes for the STM32L0 Series, up to 292 bytes for
STM32L1 devices, for the exact size on any given product check the reference manual)
must be allocated in the system RAM and table copied there from its original location.

DocID028825 Rev 1 9/16

AN4808 Implementation

15

The new interrupt vector table address must then be written in the System Control Block
(SCB) register VTOR (Vector Table Offset Register). System control block is part of
Cortex®- M0+ and Cortex®-M3 cores used, respectively, in the L0 and the L1 Series.

The vector table placement is limited to addresses aligned to number of vectors, extended
to powers of two (each vector is 4 bytes). For L1, where there are 73 interrupt vectors,
nearest power of 2 is 128, thus the size to align to is 128 x 4 bytes = 512 bytes. When
attempting to write unaligned offset, the unaligned part of the address will be ignored,
leading to (later) failure in execution.

It is also advised to check the vectors in the table and verify if those needed during data
EEPROM write access period are pointing to RAM.

Alternative solutions AN4808

10/16 DocID028825 Rev 1

4 Alternative solutions

4.1 Using a dual bank device

Products with nonvolatile memory split in two semi-independent banks have a great
advantage in this case, as one bank can be written while the code is executed from the
other bank.

In case of the STM32L1 Series the code executed from the NV program memory typically
runs 30% faster compared with it running from RAM (refer to AN 4777 “Implications of
memory interface configurations on STM32L1 and STM32L0 Series microcontrollers”). This
value, of course, depends significantly upon the memory configuration and the nature of the
executed code. The SRAM execution performance with physical remap selected in
SYSCFG memory remap register is better, while NVM interface speed depends on latency
and prefetch.

In case of STM32L0 Series the differences tend to be smaller.

Figure 2. Dual bank data access

Figure 2 shows the ideal situation in which the code in bank 1 uses data EEPROM from
bank 2 and code from bank 2 uses data EEPROM from bank 1 (a similar scenario is
registered when program memory to be written is the one of the other bank).

Code and data placement must be designed with this optimal solution in mind, especially if
code or data size exceeds the physical bank capacity.

Only Cat.5 devices from STM32L0 Series and Cat.4, Cat.5 and Cat.6 devices from the
STM32L1 Series are equipped with two semi-independent banks of memory.

This solution has only one disadvantage, device selection is reduced to those having higher
cost and/or larger packages.

DocID028825 Rev 1 11/16

AN4808 Alternative solutions

15

4.2 Using an external EEPROM

External EEPROM connected by typically an I2C interface may also serve the purpose.

However this solution has several disadvantages – more PCB space, extra cost, extra
power consumption, communication overhead. Moreover, the write delay is not completely
avoided, it’s only delegated.

A look at Table 2 may give the impression that the use of an external EEPROM is bringing
more problems compared with those it solves, the positive aspect is that the I2C bus can be
shared by several masters, and it also may store larger amounts of data.

Table 2. Differences between internal and external EEPROM

Feature
External EEPROM

(e.g. M24C64 I2C serial EEPROM)
On-chip EEPROM

Write time (word) 20 ms < 8 ms

Write method
CPU-independent, completely
externalized once the data is sent.

May stall the program execution
unless precautions are taken.

Read access (word) 92 µs
Immediate (one clock cycle latency
may apply at high frequencies)

Example projects AN4808

12/16 DocID028825 Rev 1

5 Example projects

An example code is supplied with this application note, demonstrating the effects of different
settings mentioned in this document and principles of execution from RAM.

This example configures a two word size circle buffer fed from the USART through a DMA
channel. Such arrangement, along with portion of code available in RAM, ensures the
stall-free execution. One word in the buffer can be received even during the time when the
other word is being written in the EEPROM.

While it is possible to access the EEPROM by smaller data units (up to single byte), the tprog
remains constant, effectively reducing maximum possible communication speed (this is the
reason why the example uses word access).

Use of DMA is particularly recommended in such cases, because even if (despite all the
efforts) the program is stalled, DMA between RAM and the peripheral will continue
transferring data. It effectively reduces risk of lost bytes and results in the lowest possible
workload for the CPU.

The biggest difference between the two EVAL boards supported by the example software is
in handling the situation where the data come at rates faster than those associated with the
writing in the NVM. While the USART on STM32L0 microcontrollers is tolerant to overrun
errors (they are ignored); on STM32L1 MCUs any such error will end the reception attempt.

5.1 HW setup

Connect USART2 port to a PC COM port and power the EVAL board. Use a terminal
application that supports YMODEM protocol (Tera Term is offering a solid, cost free
alternative to Windows® HyperTerminal).

5.2 Configuration options

In main.c two communication speeds are defined, namely COM_SPEED_SAFE and
COM_SPEED_FAST.

The safe, slower speed of 4800 Bd should work regardless of the EEPROM state and timing
settings. In this pace the time to transmit one word is approximately 6.66 ms, which is longer
duration than two typical EEPROM write cycles. If single write cycle can be guaranteed it is
possible to select COM_SPEED_FAST, which correspond to 9600 Bd. For the fast paced
programming to succeed, the EEPROM must be cleared prior to file download and the fixed
program timing must be disabled.

5.3 Example operation

With user interface provided by the terminal SW the operation is easy.

The example firmware first displays a header and a menu. Pressing numbers on PC
keyboard selects one of the available choices.

DocID028825 Rev 1 13/16

AN4808 Example projects

15

5.3.1 Download a file to EEPROM

First menu choice initiates download of a file into the data EEPROM. The file size limit is
constrained by the memory size. Select the file to download, it will be written during the
communication process.

5.3.2 Upload a file from EEPROM

The second menu item is needed to get the data back from the data EEPROM and to
compare them with the original to assess the communication success. As the file name and
size is not stored, all the data EEPROM content is sent, resulting in a simple approach with
a complete feedback.

5.3.3 Erase the contents of data EEPROM

For successful download of file at the fast data speed it is necessary to limit the writing time
to single cycle. That requires erased data memory.

Select this option to erase the data EEPROM prior to programming during 9600 Bd
communication.

5.3.4 Set/disable fixed EEPROM program timing

This setting toggles the eighth bit in FLASH_PECR register that fixes the programming
timing. In case of the STM32L0 Series it is called FIX, on STM32L1 Series the name is
FTDW. In both cases, when the flag is set, each programming is automatically preceded by
an erase, regardless of the previous memory contents. This leads to more deterministic
execution, but at the cost of efficiency and also memory durability. The bit is reset by default.

Conclusion AN4808

14/16 DocID028825 Rev 1

6 Conclusion

With careful design of the firmware it is possible to avoid necessity of using a dual-bank
device or even an external EEPROM component to store non-volatile application data, while
still keeping the ability to react to events in real-time applications.

There is also significant advantage in comparison with the solution where data are kept in
RAM buffer and written only when communication ends. Data written directly to EEPROM
are kept safe in case of power loss.

DocID028825 Rev 1 15/16

AN4808 Revision history

15

7 Revision history

Table 3. Revision history

Date Revision Description of changes

24-Mar-2016 1 Initial release.

AN4808

16/16 DocID028825 Rev 1

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

	1 Definitions
	Table 1. List of acronyms

	2 Memory interface summary
	Figure 1. Memory interface simplified overview
	2.1 Timing
	2.2 Bus stall

	3 Implementation
	3.1 Thread mode code
	3.2 Interrupt handlers
	3.3 Vector table

	4 Alternative solutions
	4.1 Using a dual bank device
	Figure 2. Dual bank data access

	4.2 Using an external EEPROM
	Table 2. Differences between internal and external EEPROM

	5 Example projects
	5.1 HW setup
	5.2 Configuration options
	5.3 Example operation
	5.3.1 Download a file to EEPROM
	5.3.2 Upload a file from EEPROM
	5.3.3 Erase the contents of data EEPROM
	5.3.4 Set/disable fixed EEPROM program timing

	6 Conclusion
	7 Revision history
	Table 3. Revision history

