Introduction

The beacon application in the X-CUBE-BLE1 software expansion for STM32Cube is an implementation of the Google Eddystone beacon profile, built on the STM32Cube software platform.

The package comes with code examples for the X-NUCLEO-IDB05A2 when connected to a NUCLEO-L053R8, NUCLEO-L476RG or NUCLEO-F401RE development board.

The application features:

- BLE profile running on a Google Eddystone beacon platform
- Support for the UID and URL frame types
- Portability across different STM32 device families thanks to STM32Cube

Note: The beacon application is also available when connecting an STM32 Nucleo development board to the X-NUCLEO-IDB05A1 expansion board.
Acronyms and abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACI</td>
<td>Application controller interface</td>
</tr>
<tr>
<td>ATT</td>
<td>Attribute protocol</td>
</tr>
<tr>
<td>BLE</td>
<td>Bluetooth low energy</td>
</tr>
<tr>
<td>BSP</td>
<td>Board support package</td>
</tr>
<tr>
<td>BT</td>
<td>Bluetooth</td>
</tr>
<tr>
<td>GAP</td>
<td>Generic access profile</td>
</tr>
<tr>
<td>GATT</td>
<td>Generic attribute profile</td>
</tr>
<tr>
<td>HAL</td>
<td>Hardware abstraction layer</td>
</tr>
<tr>
<td>HCI</td>
<td>Host controller interface</td>
</tr>
<tr>
<td>IDE</td>
<td>Integrated development environment</td>
</tr>
<tr>
<td>MCU</td>
<td>Micro controller unit</td>
</tr>
<tr>
<td>PCI</td>
<td>Profile command interface</td>
</tr>
<tr>
<td>UUID</td>
<td>Universally unique identifier</td>
</tr>
</tbody>
</table>
2 BLE Eddystone beacon overview

The BLE Eddystone beacon uses the following hardware and software components available for download at www.st.com:

- **NUCLEO-L053R8**: STM32 Nucleo-64 development board with STM32L053R8 MCU, supports Arduino and ST morpho connectivity
- **NUCLEO-L476RG**: ultra-low-power with FPU ARM Cortex-M4 MCU 80 MHz with 1 Mbyte Flash, LCD, USB OTG
- **NUCLEO-F401RE**: STM32 dynamic efficiency MCU, ARM Cortex-M4 core with DSP and FPU, up to 512 Kbytes Flash, 84 MHz CPU, Art accelerator
- **X-NUCLEO-IDB05A2**: BLE expansion based on the BlueNRG-M0 network processor module for STM32 Nucleo
- **STM32CubeL0 HAL support package**
- **STM32CubeL4 HAL support package**
- **STM32CubeF4 HAL support package**
- **X-CUBE-BLE1 driver package, BLE software expansion for STM32Cube**
- **Custom Eddystone compliant profile supporting UID and URL frame types**

RELATED LINKS

Visit the STM32Cube ecosystem web page on www.st.com for further information
The software development kit contains a BlueNRG-MS/BlueNRG-M0 configuration example which advertises specific service data and allows another BLE device to recognize if it is in the range of the BlueNRG-MS/BlueNRG-M0 beacon device.

3.1 Initialization

To correctly configure a BlueNRG-MS/BlueNRG-M0 device to be used as an Eddystone beacon device, you have to:

- initialize the GATT (general attribute profile) server in the device (ACI_GATT_INIT);
- initialize the GAP (general access profile) in the device in peripheral mode (ACI_GAP_INIT: peripheral).

3.2 Advertising service data

The BLE Eddystone beacon application advertises the service data listed in the table below.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Data field</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>UID</td>
<td>Tx Power</td>
<td>Calibrated Tx power at 0 m</td>
<td>The best way to determine this value is to measure the beacon actual output at 1 meter and add 41 dBm (signal loss over 1 meter).</td>
</tr>
<tr>
<td></td>
<td>Namespace ID</td>
<td>10-byte ID Namespace</td>
<td>Unique self-assigned beacon namespace.</td>
</tr>
<tr>
<td></td>
<td>Beacon ID</td>
<td>6-byte ID Instance</td>
<td>Unique ID within the namespace.</td>
</tr>
<tr>
<td>URL</td>
<td>Tx power</td>
<td>Calibrated Tx power at 0 m</td>
<td>The best way to determine this value is to measure the beacon actual output at 1 meter and add 41 dBm (signal loss over 1 meter).</td>
</tr>
<tr>
<td></td>
<td>URL scheme</td>
<td>Encoded Scheme Prefix</td>
<td>Refer to the Eddystone github for details.</td>
</tr>
<tr>
<td></td>
<td>Encoded URL</td>
<td>Encoded URL (max 17 char.)</td>
<td>The URL scheme is defined by RFC-1738. It is recommended to use a URL shortening service if the desired URL is longer than 17 characters.</td>
</tr>
</tbody>
</table>

3.3 Entering non-connectable mode

To set a static MAC address, the device uses the ACI HAL to write the desired MAC address in the BlueNRG-MS_Init() function, where SERVER_BDADDR is the 6-byte MAC address.

```c
aci_hal_write_config_data(CONFIG_DATA_PUBADDR_OFFSET, CONFIG_DATA_PUBADDR_LEN, SERVER_BDADDR)
```

The BLE beacon device uses the GAP ACI command to enter non-connectable, undirected mode.

```c
aci_gap_set_discoverable(ADV_NONCONN_IND, /* Advertise as non-connectable, undirected. */ AdvertisingInterval, AdvertisingInterval, /* Set the advertising interval min and max (0.625 us increment). */ PUBLIC_ADDR, /* Use the public address. */ NO_WHITE_LISTUSE, /* Do not set any connection white list. */ 0, NULL, /* Do not use a local name. */ 0, NULL, /* Do not include the service UUID list. */ 0, 0); /* Do not set a slave connection interval. */
```
To advertise the specific selected service data, the BLE beacon application uses the GAP ACIs in `EddystoneUID_Init()` or `EddystoneURL_Init()` functions.

```c
/* Remove TX power level field from the advertising data: it may be necessary to have enough space for the beacon service data */
ret = aci_gap_delete_ad_type(AD_TYPE_TX_POWER_LEVEL); /* Define the beacon service payload for UID data */
uint8_t service_data[] =
{
  23, /*< Length. */
  AD_TYPE_SERVICE_DATA, /*< Service data type value. */
  0xAA, 0xFE, /*< 16-bit Eddystone UUID. */
  0x00, /*< UID frame type. */
  EddystoneUID_Init->CalibratedTxPower, /*< Ranging data. */
  EddystoneUID_Init->NamespaceID[0], /*< 10-byte ID Namespace. */
  EddystoneUID_Init->NamespaceID[1],
  EddystoneUID_Init->NamespaceID[2],
  EddystoneUID_Init->NamespaceID[3],
  EddystoneUID_Init->NamespaceID[4],
  EddystoneUID_Init->NamespaceID[5],
  EddystoneUID_Init->NamespaceID[6],
  EddystoneUID_Init->NamespaceID[7],
  EddystoneUID_Init->NamespaceID[8],
  EddystoneUID_Init->NamespaceID[9],
  EddystoneUID_Init->BeaconID[0], /*< 6-byte ID Instance. */
  EddystoneUID_Init->BeaconID[1],
  EddystoneUID_Init->BeaconID[2],
  EddystoneUID_Init->BeaconID[3],
  EddystoneUID_Init->BeaconID[4],
  EddystoneUID_Init->BeaconID[5],
  0x00, /*< Reserved. */
  0x00 /*< Reserved. */
};
/* Set the beacon service data on the advertising packet */
ret = aci_gap_update_adv_data(sizeof(service_data), service_data);
/* Define the beacon service uuid list */
uint8_t service_uuid_list[] =
{
  3, /*< Length. */
  AD_TYPE_16_BIT_SERV_UUID_CMPLT_LIST, /*< Complete list of 16-bit Service UUIDs data type value. */
  0xAA, 0xFE /*< 16-bit Eddystone UUID. */
};
/* Set the beacon service data on the advertising packet */
ret = aci_gap_update_adv_data(sizeof(service_uuid_list), service_uuid_list);
```

3.4 Modifying eddystone_beacon.h

Beacon configuration can be performed easily by modifying the relevant fields within `eddystone_beacon.h`.

```c
#define MAC_ADDRESS 0x12, 0x34, 0x00, 0xE1, 0x80, 0x03
#define EDDYSTONE_UID_BEACON_TYPE (0x01u)
#define EDDYSTONE_URL_BEACON_TYPE (0x02u)
#define ADVERTISING_INTERVAL_IN_MS (10000)
#define CALIBRATED_TX_POWER_AT_0_M ((uint8_t) (-22))
#define NAMESPACE_ID 'w', 'w', 'w', '.', 's', 't', '.', 'c', 'o', 'm'
#define BEACON_ID 0, 0, 0, 0, 0, 1
#define URL_PREFIX HTTP
#define PHYSICAL_WEB_URL "goo.gl/viVrdi"
```

The `MAC_ADDRESS` field must be modified with the desired MAC address, in MAC-48 format. The ordering is in LSB.

`ADVERTISING_INTERVAL_IN_MS` is a common field for all beacon types and must be specified.

`CALIBRATED_TX_POWER_AT_0_M` can be determined by measuring the transmission power (in dBm) at 1 m and adding 41 dBm, which is the standard loss over 1 m. This field is required for UID and URL beacons.
NAMESPACE_ID and BEACON_ID are specific to the Eddystone UID beacon (refer to Table 2. BlueNRG-MS/BlueNRG-M0 Eddystone beacon advertising service data for details).

URL_PREFIX specifies the prefix of the desired URL:

- HTTP, if the address begins with "http://"
- HTTPS, if the address begins with "https://"
- HTTP_WWW, if the address begins with "http://www."
- HTTPS_WWW, if the address begins with "https://www."

PHYSICAL_WEB_URL is the remainder of the URL after the prefix.

Note: There is a 17-character limit to this URL.
Currently, multi-beacons are not supported: only a single Eddystone beacon frame type can be exposed at any given point in time.
Eddystone advertising interval must be less than 40959 milliseconds.
5 References

1. Google beacons
2. UM1873: Getting started with the X-CUBE-BLE1 Bluetooth Low Energy software expansion for STM32Cube
3. AN4642: Overview of the BLE Profiles application for X-CUBE-BLE1
Revision history

Table 3. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-Dec-2016</td>
<td>1</td>
<td>Initial release.</td>
</tr>
<tr>
<td>28-Apr-2020</td>
<td>2</td>
<td>Added BlueNRG-M0 module and X-NUCLEO-IDB05A2 expansion board compatibility information. Minor text changes.</td>
</tr>
</tbody>
</table>
Contents

1 Acronyms and abbreviations ..2
2 BLE Eddystone beacon overview ..3
3 Eddystone beacon demonstration application4
 3.1 Initialization ...4
 3.2 Advertising service data ...4
 3.3 Entering non-connectable mode ..4
 3.4 Modifying eddystone_beacon.h ...5
4 Limitations and known issues ...7
5 References ..8
Revision history ...9
List of tables

Table 1. List of acronyms 2
Table 2. BlueNRG-MS/BlueNRG-M0 Eddystone beacon advertising service data .. 4
Table 3. Document revision history 9