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Introduction

LCD technology used to be exclusive to rectangular-shape displays. Recent developments
enable the creation of non-rectangular LCD displays. These displays are becoming very
attractive for a wide variety of applications such as wearable devices.

The STM32 Chrom-GRC™ (GFXMMU) peripheral is a new addition to STM32
microcontrollers (refer to Table 1: Applicable products) aiming to efficiently support this
emerging trend towards non-rectangular displays.

GFXMMU enables to store only the visible parts of the non-rectangular displays and in the
case of round displays, this peripheral reduces by 20% the memory requirements to store
the graphic framebuffer. As a consequence, GFXMMU avoids the need to add an external
component for SRAM/SDRAM to the microcontroller.

By removing the need for external RAM and taking advantage of the low-power and high-
performance features of the internal RAM, the STM32 microcontrollers embedding
GFXMMU offer a suitable solution for wearable applications that require both low-power
management functions and a high-quality user interface.

Table 1. Applicable products

Type Part number

Microcontrollers STM32L4+ Series
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STM32 Chrom-GRC™ (GFXMMU) introduction

The GFXMMU is a graphical oriented memory management unit which aims to optimize the
memory usage depending on the display shape.

This peripheral allows the microcontroller to store only the visible parts of non-rectangular
displays in a contiguous physical memory area, reducing the framebuffer memory footprint.

By enabling the framebuffer to be stored in the internal RAM and eliminating the need for
external RAM, the GFXMMU provides a highly integrated solution for graphic applications.
This peripheral leads to better performance, lower power consumption and lower system
cost.

GFXMMU features

The main features of GFXMMU are listed below:

e Lower memory usage according to display shape
e  Fully configurable display shape

e Transparent integration

e  Works with any memory of the system

GFXMMU in a smart architecture

The GFXMMU has both a master and a slave interface. The master interface manages the
access to the different slave memories (Flash, SRAM, FMC, OCTOSPI). The slave interface
is accessed by different masters (LTDC, DMA2D, Cortex M, DMA, SDMMC).

The system masters access the graphic framebuffer through the GFXMMU. The GFXMMU
receives read or write requests on its slave interface and performs an address resolution to
determine the physical address targeted. Then it redirects the transfer request through its
master interface to the memory which holds the physical address.

The STM32L4+ Series are the first STM32 products to integrate the GFXMMU. Figure 1
shows the STM32L4+ Series system architecture embedding the GFXMMU.

3
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Figure 1. Example STM32L4+ Series system architecture with GFXMMU
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GFXMMU virtual buffers

The GFXMMU virtual buffer allows only the visible parts of non rectangular displays to be
stored in contiguous physical memory area.

Virtual buffer overview
The virtual buffer has 3072 or 4096 bytes per line and 1024 lines.

Only the visible parts of the display are mapped into the physical memory space.

Figure 2 presents an overview of the GFXMMU virtual buffer.

Figure 2. Virtual buffer overview
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Virtual buffer usage

When using the GFXMMU, the graphic framebuffer is accessed through the virtual buffer. In
this case, the LTDC and the DMA2D must have a specific configuration to take into account
the virtual buffer line width.

3
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Virtual buffer usage with LTDC

The LTDC layer pitch is the increment in bytes from the start of one line to the start of the
next line. It is configured in the LTDC_LxCFBLR register and it is expressed in bytes.

When the LTDC is using the GFXMMU virtual buffer, the LTDC layer pitch is equal to the
virtual buffer line width in bytes which is either 3072 or 4096.

Virtual buffer usage with DMA2D

The DMA2D buffer line offset is added at the end of each line to determine the starting
address of the next line. The DMA2D buffer line offset is expressed in pixels.

The DMA2D buffer line offset, when using GFXMMU virtual buffer, is given by following
formula:
Line offset = virtual buffer line width in pixels - image width in pixels

When the DMAZ2D is using the virtual buffer, the line width must have an integer number of
pixels.

In case of a 24 bpp framebuffer, having an integer number of pixels is guaranteed only when
the virtual buffer has 3072 bytes width which corresponds to 1024 pixels.

Virtual buffer operating mode

To insure that the virtual buffer has an integer number of pixels per line with different
framebuffer color depths, two operating modes can be used:

e 256 block mode
In this mode the virtual buffer has 256 blocks of 16 bytes per line.
This mode corresponds to a line width of 256 x 16 = 4096 bytes.

e 192 block mode
In this mode the virtual buffer has 192 blocks of 16 bytes per line.
The Line width in this mode is 192 x 16 = 3072 bytes.

The 192 block mode is introduced to have an integer number of pixels per line when using
24 bpp buffers.

Table 2 presents the virtual buffer line width in pixels for different framebuffer color depths.

Table 2. Virtual buffer line width in pixels

- 32 bpp 24 bpp 16 bpp 8 bpp
192 block mode 768 1024 1536 3072
256 block mode 1024 1365.3(1) 2048 4096

1. The 256 block mode shall be avoided in 24 bpp framebuffers in order to have an integer number of pixels
per line.
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Display shape description

The GFXMMU allows the MCU to map only the necessary blocks to a physical memory
location depending on the display shape and size. The display shape description is stored in
a look up table (LUT).

LUT configuration

The LUT must be configured by specifying for each line:

e  The enable of the line

e  The number of the first visible block

e  The number of the last visible block

e The address offset of the line within the physical buffer

The visible blocks can be arranged in the physical buffer in a continuous way by
programming the address offset of each line.

LUT calculation example

The GFXMMU LUT entries calculation is explained in this section.

The example is based on the 390 x 390 round display of the 32L4R9OIDISCOVERY kit. In
this example, the framebuffer has a 16 bpp color format.

The first and last visible pixels of each line are provided by the display manufacturer.
Table 3 describes the first and last visible pixels of the round display. Only the first four lines
are presented in this example.

Table 3. Visible pixels description for the round display of the 32L4R9IDISCOVERY kit

Line number First visible pixel Last visible pixel
Line 0 181 208
Line 1 172 217
Line 2 164 225
Line 3 158 231

3
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Block number calculation

GFXMMU has 16 bytes granularity, which corresponds to a block.
The block number calculation is based on the pixel number and the framebuffer color depth.
The color depth is expressed in bytes per pixel (Bpp) in the following equations.

The first visible block is the block that holds the first byte of the first pixel.
First visible block = (first visible pixel x Bpp) / block size

The last visible block is the block that holds the last byte of the last pixel:

Last visible block = (last visible pixel x Bpp + Bpp - 1) / block size
Using the Table 3 as an example, the visible pixels of line 0 are comprised between pixels
181 and 208, so:

First visible block of line 0 = (181 x 2)/ 16 = 22

Last visible block of line 0= (208 x 2 + 1)/ 16 = 26

Line offset calculation

The line offset defines the offset of the first visible block of a line in the physical buffer. It

allows the visible blocks to be arranged in the physical buffer in a continuous way.

The line offset is coded on 22 bits and can have negative values, it is calculated as follows:
Line offset = (number of visible blocks already used - first visible block) x block size

where:

e number of visible blocks already used includes the visible blocks of all the previous
lines

e first visible block refers to the current line

e block size = 16 bytes
Line 0 offset = (0-22) x 16 = -352 = Ox3F.FEAQ
Line 1offset = (5-21) x 16 = -252 = Ox3F:FF00

After calculating the first and last visible blocks and the line offset for each line, the LUT
entries are programmed as follows:

e LUT entry x low
—  LUTxL[23:16] is programmed with the last visible block value
—  LUTxL[15:8] is programmed with the first visible block value
—  LUTXL[O] is set when the line is enabled
Line O LUT entry Low: LUTO_L=0x001A1601

e LUT entry x high
—  LUTxHI[21:4] is programmed with line offset of the line
Line O LUT entry high: LUTO_H=0x003FFEAOQ

3
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Table 4 summarizes steps to calculate the LUT entry content for the first four lines of the
round display of the 32L4R9IDISCOVERY kit.

Table 4. LUT calculation example

visible | Visible
Line F.|rst L.ast First Last blocks blocks Line LUTxL LUTxH
number | pixel pixel block block . already | offset
per line
used
Line O 181 208 22 26 5 0 -352 0x001A1601 | 0XO03FFEAO
Line 1 172 217 21 27 7 5 -256 0x001B1501 | 0xO03FFF00
Line 2 164 225 20 28 9 12 -128 0x001C1401 | 0xO03FFF80
Line 3 158 231 19 28 10 21 32 0x001C1301 | 0x00000020
12/30 DoclD030788 Rev 1 ‘Yl
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Memory optimization with GFXMMU

The required framebuffer size with GFXMMU optimization, is calculated as follows:
GFXMMU framebuffer optimized size = number of blocks used x block size

The number of blocks used is the sum of all the blocks used for all the lines. It is known after

calculating the LUT.

The framebuffer size without GFXMMU optimization is calculated with the following formula:
Square size = frame width in pixels x Bpp x frame height

Then the gain is calculated with below formula:
Gain in size = (square size - GFXMMU optimized size) / square size

Example of memory gain calculation
For the 390 x 390 round display of the 32L4R9IDISCOVERY kit, the number of used blocks
when using a 16 bpp framebuffer is 15248 blocks.
GFXMMU framebuffer optimized size = 15248 x 16 / 1024 = 238.25 Kbytes
Square size = 390 x 2 x 390/ 1024 = 297.07 Kbytes
Gain in size = (297.07 - 238.25) / 297.07 = 0.198

The memory gain is then 19.8%. The gain in size on the graphical framebuffer depends on
the number of bits per pixel. For round displays the gain is generally of about 20%.

Table 5 presents the memory gain for the 390 x 390 round display of the
32L4R9IDISCOVERY kit for different color depths.

Table 5. Memory optimization for 390 x 390 display

Square size GFXMMU
Mode 9 optimized size Size reduction (%)
(Kbytes) (Kbytes)
16 bpp 297.1 238.3 19.8
24 bpp 445.6 355.4 20.2
32 bpp 594 1 471.0 20.7

Figure 3 shows the output of the LTDC when used with the round display of the
32L4R9IDISCOVERY Kkit.

The black area represents the pixels that are not mapped into the physical memory. It is the
actual memory gain saved by GFXMMU. When LTDC is fetching these pixels which are not
mapped into physical memory, GFXMMU returns a default value programmed in the
GFXMMU_DVR register (0x00 in this case).

The blue area represents the pixels that are mapped into the physical memory and visible
on the display screen.
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Figure 3. Memory optimization example for a round display

Block granularity overhead

The grey area in Figure 3 corresponds to the pixels that are mapped into the physical
memory but not visible on the display screen. This is what is called the block granularity
overhead. The GFXMMU has a 16-byte block granularity, so one block can hold more than
one pixel.

For blocks on the edges (first and last blocks), some pixels may not be visible on the screen.
For example, if the visible pixels of a line are between pixel 181 and 208, with a 16 bpp
framebuffer, the first block that must be enabled is block 22. Block 22 holds pixels 176 to
183. All these pixels are mapped and physically allocated in memory, but only pixels 181 to
183 are visible in the display screen (see Figure 4).

Figure 4. Block granularity overhead

176 177 178 179 180 gEKA kYA NER] PIE] 209 210 211 212 213 214 215

Non mapped block I:l Mapped block Non visible mapped pixel Visible mapped pixel
MSv17061V1

Despite the overhead of the pixels that are mapped but not visible on the display, the
GFXMMU allows an economy of about 20% of the framebuffer memory footprint.

3
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GFXMMU system level operation

When a master tries to access the framebuffer, it uses the GFXMMU virtual framebuffer
address. This address maps the transaction to the GFXMMU slave interface.

The GFXMMU resolves the address mapping and redirects the request to the
corresponding physical address via its master port.

Some typical usage scenarios are described here after.

Read from a non-mapped block

When a master (LTDC for example) tries to read an address from the virtual buffer which is
not mapped into a physical address, the GFXMMU responds with a default value to the read
request (see Figure 5).

The default value is programmed in the graphic MMU default value register
(GFXMMU_DVR).

Figure 5. Read from a non-mapped block

DMA2D LTDC SR
master port
2
SRAM2
4 [ ] 4
® ® SRAM3
® [ | | GFXMMU
1 slave port
Bus matrix
1 LTDC fetching non-mapped block in the virtual buffer 2 GFXMMU slave port returns default value MSv17062V1

Read from a mapped block

When a master (LTDC for example) tries to read an address from the virtual buffer which is
mapped to a physical address, the GFXMMU receives the request on its slave port and
determines the corresponding physical address.

Then GFXMMU sends a read request via its master port to the corresponding memory
holding the physical address.

The slave memory responds with the requested data to GFXMMU which redirects it to the
LTDC. (See Figure 6).
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Figure 6. Read from a mapped block
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16/30

Write to a non-mapped block

The GFXMMU receives write requests on its slave port from system masters (DMA2D for
example). When the virtual address requested corresponds to a non-mapped block, the

write operation is ignored. (See Figure 7).

Figure 7. Write to a non-mapped block

DMA2D LTDC P LAL
master port
SRAM2
L 4 L 4
® ® SRAM3
. d GFXMMU
| slave port
Bus matrix
@—> DMA2D writing to a non-mapped block of the virtual buffer @ GFXMMU ignores the wirte request

MSv17064V1

DocID030788 Rev 1

3




ANS5051

GFXMMU system level operation

3

Write to a mapped block

When the write request corresponds to a virtual address that is mapped to a visible block,
the GFXMMU translates the virtual address to corresponding physical address. Then it
sends the write request via its master port to the memory that holds the targeted physical
address (See Figure 8).

Figure 8. Write to a mapped block
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® ~ CFXMMU
| @ gl slave port
Bus matrix
@—> DMAZ2D writing to a mapped block of the virtual buffer @—»GFXMMU redirects request to the corresponding physical memory
MSv17065V1

DocID030788 Rev 1 17/30




Basic configuration AN5051

6

6.1

6.1.1

6.1.2

6.1.3

18/30

Basic configuration

This section presents the basic GFXMMU configuration together with specific LTDC and
DMAZ2D configurations when used in conjunction with GFXMMU.

GFXMMU configuration

This section presents the basic parameters to use the GFXMMU.

GFXMMU virtual buffer base address
The GFXMMU allows up to four virtual buffers to be set.

Each virtual buffer has its own base address in the STM32 physical memory map.

The virtual buffer address is used by masters to access the framebuffer.

GFXMMU block mode

The user has to configure the GFXMMU block mode (GFXMMU_CR.192BM) by selecting
any of the block modes (except for 24 bpp framebuffers where the 192 block mode must be
used to have an integer number of pixels per line).

For other framebuffer color depths, the 256 block mode enables the support of larger
display line width.

GFXMMU physical framebuffer

The physical framebuffer memory address can be configured separately for each virtual
buffer in the GFXMMU buffer configuration register GFXMMU_BxCR.

For the physical framebuffer address selection, the user must consider its alignment, its size
and avoid buffer overflow.

Alignment

The physical framebuffer address must be 16 bytes aligned since the GFXMMU has a 16-
bytes block granularity and the four LSB bits of the physical address are considered as O.

Size

After programming the LUT, the size of the physical framebuffer may be calculated using
following formula:

Physical buffer size (Kbytes) = total blocks used x block size / 1024

Buffer overflow

The physical buffer cannot overflow the 8 Mbytes boundary of the zone defined by its base
address. So the physical buffer address programmed in GFXMMU_BxCR must guarantee
that the first and last mapped blocks of the buffer are in the same 8 Mbytes region of the
physical memory to avoid buffer overflow errors.

3
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GFXMMU default value

The GFXMMU default value (GFXMMU_DVR) is returned by GFXMMU when the virtual
address read does not belong to a physically mapped block.

GFXMMU LUT

The GFXMMU LUT must be programmed depending on the display shape. Refer to
Section 3.2 for an example on the calculation of LUT entries.

The display shape description must be stored in a non volatile memory (internal Flash for
example), then it is used to program the GFXMMU LUT entries.

LTDC configuration

This section describes the LTDC configuration specific to the use of LTDC in conjunction
with GFXMMU.

LTDC framebuffer

When accessing the framebuffer, the LTDC must use one of the four GFXMMU virtual
framebuffers.

The LTDC layerx color framebuffer address register (LTDC_LxCFBAR) must be
programmed with the address of the GFXMMU virtual buffer.

LTDC layer pitch

The LTDC layer color framebuffer pitch (LTDC_LxCFBLR.CFBP) must be carefully set when
the LTDC is used in conjunction with GFXMMU.

The LTDC layer pitch is expressed in bytes. It depends on the GFXMMU block mode
(GFXMMU_CR.192BM):

e GFXMMU_CR.192BM =1 --> LTDC_LxCFBLR.CFBP = 3072 bytes
¢ GFXMMU_CR.192BM =0 --> LTDC_LxCFBLR.CFBP = 4096 bytes

DMAZ2D configuration

Specific DMA2D configuration must be followed when either DMA2D source or destination
is using the virtual buffer.

DMAZ2D framebuffer
The DMA2D framebuffer must be programmed to one of the four GFXMMU virtual buffers.

The DMA2D framebuffer registers to be programmed are:
e  DMAZ2D output memory address (DMA2D_OMAR) if the destination is a virtual buffer.

e  DMAZ2D foreground or background memory address register (DMA2D_FGMAR or
DMA2D BGMAR) if the source is a virtual buffer.
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DMA2D line offset

The DMAZ2D line offset must be calculated based on the virtual buffer width in pixels (see
Table 2: Virtual buffer line width in pixels).

The DMAZ2D line offset registers to be programmed are:
e  DMAZ2D output line offset (DMA2D_OOR.LO) if the destination address is a virtual
framebuffer.

e DMAZ2D layer line offset (DMA2D_FGOR.LO and DMA2D_BGOR.LO) if the source
address is a virtual framebuffer.

3

DoclD030788 Rev 1




ANS5051

Software example

7

71

711

3

Software example

This section presents software example to configure the GFXMMU.

Examples for LTDC and DMA2D are also presented in this section.

GFXMMU configuration example

This sections presents the GFXMMU configuration with STM32CubeMX and the
corresponding initialization code.

GFXMMU configuration with STM32CubeMX

In the GFXMMU parameter settings, the user selects the block mode and the virtual buffer
to be used. The user may also change the default value returned by GFXMMU when a
master tries to access an unmapped block.

In the LUT configuration interface (see Figure 9), the user has to enter the first and last
visible pixels for each line and must select the framebuffer color depth. STM32CubeMX
automatically generates the first and last block and the block offset. The memory footprint
required for the physical framebuffer is also calculated.

Figure 9. GFXMMU LUT configuration in STM32CubeMX

® GFXMMU Configuration &2 ]
- ——
| & Parameter Setﬁngs. LUT Configuration 1 o/ User Constants | /7 NVIC Settings |
oo S
Line number :-First Pix i Enable I First Block Last Block Block offset =
1 181 1 122 26 |4193952 .
2 172 1 | 27 14194048 =
3 164 1 J20 28 4194176 =
4 158 1 LEC) 8 32 I
5 153 1 |'19 2 152
6 149 1 18 30 384
7 145 1 8 30 592
B 142 1 117 30 816
9 138 1 17 31 |1040
10 135 1 §16 31 [1296
11 132 1 16 32 [1552
12 130 1 I 32 |1824
13 127 1 115 32 [2112
14 124 1 115 33 2400
15 121 1 g 15 33 |2704 N
35 7T W —— 1 L 7 N—— U —
JResii—— First and last visible blocks
| @ 16bpp | and block offset are generated
| @zatpp | rdenih by STM32CubeMX
| o
FootPrint Physical FB size and
[
Memary Size : 243968&%&5-‘ memory gain calculated by
|Gam: 58 KBytes 1 STM32CubeMX
(o) (o) (o)

STM32CubeMX automatically generates the LUT configuration in the “gfxmmu_lut.h”
header file.
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GFXMMU initialization code
e  Physical buffer: the physical framebuffer must be 16 bytes aligned.

The example on Figure 10 shows how to align the physical framebuffer to 16 bytes with
three different compilers (IAR, GNU and Arm® compilers).

Figure 10. GFXMMU physical framebuffer declaration

/* Physical frame buffer for actiwve layer */
#1f defined ( _ ICCARRM ) /% IAR Compiler */

fpragma data alignment = 1&

nt8 t GFXMMU PHY BUF 0 [GFXMMI FB_SIZE]:

#21if defined ( _ CC_ARM ) /% ARM Compiler */

__align(16) uint8_t GFXMMU PHY BUF 0 [GFXMMU FB_SIZE]:
#21if defined (_ GNUC_ ) /* GNU Compiler */

uint8_t GFXMMU PHY BUF_O[GFXMMU FB_SIZE] _ attribute _ ((aligned (16)));

The physical framebuffer size is calculated by STM32CubeMX based on the LUT
configuration.

e  GFXMMU initialization: see Figure 11 for an example.

Figure 11. GFXMMU initialization

/* GFXMMU init function */
static void MX GFXMMU Init (void)
{

hgfxmmu.Instance = GFXMMU;

hgfxmmu.Init.BlocksPerLine = GFXMMU_192BLOCKS; /*Block mode selection: 132 or 256 blocks per line*/
hgfxmmu.Init.DefaultValus = 0;

hgfxzmmu.Init.Buffers.Buf0Address = (uint32_t) GFXMMU PHY BUF 0; /#GFXMMU Physical Buffer Address#/
hgfxmmu.Init.Buffers.BuflAddress = 0;

hgfxmmu.Init.Buffers.Buf2Address = 0;

hgfxmmu.Init.Buffers.Buf3Address = 0;

hgfxmmu.Init.Interrupts.Activation = ENABLE:

if (HAL GFXMMU Init(&éhgfxzmmu) != HAL CK)

{
_Error_Handler(_ FILE , _ LINE_):

/#* Copy LUT from flash to GFXMMU look up RAM */
if (HAL GFXMMU ConfigLut (shgfxmmu, GFXMMU LUT FIRST, GFXMMU LUT SIZE, (uint32 t)gfxmmu lut config) != HAL CK)
{

_Error_Handler(_ FILE , _ LINE_):

The gfxmmu_lut_config is automatically generated by STM32CubeMX in the
“gfxmmu_lut.h” header file based on the display shape’s description entered by the user in
the “LUT Configuration” window. It is used to initialize the LUT.

LTDC configuration example

When using GFXMMU, the LTDC fetches data from the GFXMMU virtual buffer, hence a
specific LTDC configuration must be set.

LTDC configuration with STM32CubeMX

The LTDC layer framebuffer address is programmed with the GFXMMU virtual buffer.

STM32CubeMX automatically calculates the LTDC layer pitch in pixels based on the virtual
buffer line width.

See Figure 12 for an example of LTDC layer settings in STM32CubeMX.

3
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Figure 12. LTDC layer settings in STM32CubeMX

% LTDC Configuration (= ‘

[ st} ¥ v i | s o[ s

Configure the below parameters :

Search :| Search (Crti+F ¥ &

;E Number of Layers

Number of Layers 1 layer
|2 Windows Position
[ Layer 0 - Window Horizontal Start 0
Layer 0 - Window Horizontal Stop 390
Layer 0 - Window Vertical Start 0
Layer 0 - Window Vertical Stop 390
iE\ Pixel Parameters
Layer O - Pixel Format RGBS&S
:I'—J Blending
Layer 0 - Alpha constant for blending [1}
Layer 0 - Default Alpha value 1]
Layer 0 - Blending Factor1 Alpha constant
Layer 0 - Blending Factor2 Alpha constant Selection of
|5 Frame Buffer

e e e e e e e e e e N I A o

— o ———
I Layer 0 - Color Frame Buffer Start Adress GFXMMU_VIRTUAL _BUFFERQ_BASE I be used
“Toyer 0 - Color Frame Buffer Line Length (image wigth) — .~ 30— — T & = ==

Layer 0 ColorFrame Byffer lumber of s (madeHeoh), . L. o o . m wm LINEPICH

Layer 0 - Color Frame Line Pitch 1536 | calculated by
:l:wBadEound_Cobr___________________ STM32CubeMX

Layer 0 - Blue 0

Layer 0 - Green 0

Layer 0 - Red 0

) o) (o2
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7.2.2
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LTDC initialization code

See an example of LTDC initialization code in Figure 13.

Figure 13. LTDC initialization code

/* LIDC t function */
gratic void MX_LTDC Init(void
i

LTDC_LayerCigTypeDef pLlayerCfg;

hltdc.Instance = LTDC:

hltdc.Init.HS5Polarity = LTDC_HSPOLARITY AL;
hlvde.Init.V5Polaricy = LTDC VSPOLARITY AL;
hltdec.Init.DEPolarity = LTDC DEPOLARITY AL:
hltdc.Init.PCPolarity = LTDC_PCPOLARITY IPC;
hltdc.Init.HorizontalSync = 0;
hltdec.Init.VerticalSync = 0
hltdc.Init.AccumulatedHBP
hltdc.Init.AccumulatedVBP = 1;
hltde.Init.AccumulatedActivel
hltde.Init.AccumulatedfActived = 3
hltdc.Init.TotalWidtl
hltdc.Init.TotalHeigh
hltdec.Init.Backcolor.Blue
hltdc.Init.Backcolor.Green
hltdc.Init.Backcolor.Red
if (HRL LIDC_Init (&hltdc)
{

9

L

_Error_Handler(_ FILE_, _ LINE )

playerCfg.WindowX0 =
playerCfg.WindowXl =
playerCfg.Window¥0 =
playerCfg.Window¥l =
playerCfg.PixelFormat = LTDC_PIXEL FORMAT RGBS65;
plLayerCfg.Alpha = 0:
pLayerCfg.Alphald = 0;

pLlayerCfg.BlendingFactorl = LTDC_BLENDING FACTOR1_CA:
playerCfg.BlendingFactor2 = LTDC_BLENDING FACTCRZ_CR:
playerCfg.FEStarthAdress = GFXMMU VIRTUAL BUFFERO BARSE:
playerCfg. ImageWidth =
playerCfg.ImageHeight = 3
pLayverCfg.Backcolor.Blue
pLayerCfg.Backcolor.Green
playerCfg.Backcolor.Red =
if (HRL_LIDC_ ConfigLaver (ghltdc, &plaverCfg, 0) != HAL OK
i

H

etches data from the GFXMMU virtual buffer*/

_Error_Handler(_ FILE_, _ LIKRE_ }:

/*5et LIDC layer pitch in pixels: Pit
if (HAL LTDC SetPitch(ghltde, 1536, 0) !
{

_Error_Handler(_ FILE_ , _ LINE_ ):

width in bytesa / FB color depth =

3
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7.3 DMA2D configuration example

In this example the DMA2D is used to copy an image from Flash memory to framebuffer.

The access to the framebuffer is done through the GFXMMU, so the destination address of
the DMA2D is the GFXMMU virtual buffer.

The output offset must take into account the virtual buffer line width in pixels.

7.3.1 DMAZ2D initialization

An example of DMAZ2D initialization code is presented in Figure 14.

Figure 14. DMAZ2D initialization code

# DMAZD init function */
static void MX DMA2D Init(void)
1

hdmazd.Instance = DMAZD;

hdmaZd.Init.Mode = DMAZD M2M:

hdma2d.Init.ColorMode = DMA2ZD OUTPUT RGB565:

hdma2d.Init.QutputOffset = 1216; /* (Virtual Buffer line width - Image width) in pixels = 1536 - 320 */
hdma2d.LayexCfg[l] . InputOffset = 0;

hdmazd.LayerCfg[1] . InputColorMode = DMA2D INPUT RGBSES5;

hdma2d.LayerCfg[1].AlphaMode = DMA2ZD NO MODIF ALPHA;

hdmazd.LayerCfg[l].InputRlpha = 0;

hdmaZd.LayerCfg[l] .Alphalnverted = DMA2D REGULAR ALPHA:
hdma2d.LayerCfg[l] .RedBlueSwap = DMA2D RE REGULAR;

if (HAL DMA2D Init(chdma2d) != HAL CK)

{
Error Handler();

if (HRL DMRZD ConfigLayer (éhdma2d, 1) != HRL OK)
{
Error_Handler();

7.3.2 DMAZ2D copy image from Flash to the framebuffer

Refer to Figure 15 for the code for DMA2D to copy an image from Flash to framebuffer.

Figure 15. DMA2D copy image from Flash to the framebuffer

/* Copy image 320%240 *16bpp from internal flash to the frame buffer through the GFXMMU */
HAL DMA2ZD Start(éhdma2d, (uint32 t) life augmented rgb565, (uint32 t)GFXMMU VIRTUAL BUFFERO BASE , 320, 240);

3
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Application example

A typical application example of GFXMMU is illustrated in Figure 16.

In this example the graphic framebuffer is located into the internal SRAM and the graphic
primitives are stored in the Octal-SPI NOR Flash memory.

DMAZ2D fetches graphic primitives from an external Octal-SPI NOR Flash through the
OCTOSPI interface.

When creating the graphic framebuffer content, DMA2D sends read or write requests to the
GFXMMU which redirects the request to the physical SRAM memory (blue path in
Figure 16).

During the graphic framebuffer display, LTDC fetches the framebuffer content from the
SRAM through the GFXMMU (pink path in Figure 16).

The DSI Host serializes the LTDC output allowing the STM32 to be interfaced with a MIPI®
DSI display with only four pins.

Figure 16. GFXMMU application example

1.2 inches 390 x 390
Amoled display
MIPI DSI 1 data lane

f 4 pins interface
L B B B B B B B 5 N B 8 & B
DSIHost

o -

I ] AN I

I I \‘ I
2 Mbytes GFXMMU 640 Kbytes

OCTOSPI slave SRAM
---------------

6 DMA2D sends read or write requests to the GFXMMU which redirects the request to the physical SRAM memory

Octal-SPI Flash

# LTDC fetches the framebuffer content from the SRAM through GFXMMU MSv17085V1
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Note:

3

Special recommendations

GFXMMU adds extra wait state (1 WS) when accessing the framebuffer for address
resolution. Even with this extra latency, using GFXMMU with internal framebuffer provides
much better performance than using a framebuffer located in external memory (which would
require tens of cycles). So, the use of GFXMMU is very useful when it allows the device to
reduce the graphic framebuffer size so it can fit into internal RAM.

There are cases where the GFXMMU should not be used to avoid extra latency when
accessing the framebuffer:

e If the internal RAM is already enough to store the graphic framebuffer.
In this case it is better to use the internal RAM directly to benefit from the 0 WS
execution.

User can still use GFXMMU if further memory optimization is preferred over extra latency.

e If the framebuffer is located in an external memory.
When the graphic framebuffer does not fit into the internal RAM even with GFXMMU
optimization, it is then placed in the external memory. The external memory should be
big enough to hold the graphic framebuffers without the need for optimization. So the
GFXMMU must not be used to avoid adding extra latency when accessing the external
memory.
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10 Conclusion

The GFXMMU offers an optimized solution to drive non-rectangular displays by reducing the
framebuffer size; providing a fully integrated solution without the need for external RAM.

This application note presented the GFXMMU features and functional behavior and
described the system level operation in conjunction with other graphic peripherals.

The GFXMMU LUT programming has been presented based on the round display of the
32L4R9IDISCOVERY Kkit.

Finally this document provided GFXMMU basic configuration and code examples to ease
the applications development.
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IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics — All rights reserved
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