Introduction

This document helps customers to quickly locate information regarding touch sensing on STM32 microcontrollers. This application note lists all the existing application notes and user manuals covering touch sensing. It indicates where the key aspects of touch sensing are documented.

It also explains how to build touch sensing applications on STM32L0538-DISCO and STM32F072B-DISCO discovery boards using the STM32CubeMx graphical interface.

Table 1. Applicable products

<table>
<thead>
<tr>
<th>Type</th>
<th>Product series</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM32 microcontrollers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STM32F0 Series</td>
</tr>
<tr>
<td></td>
<td>STM32F3 Series</td>
</tr>
<tr>
<td></td>
<td>STM32L0 Series</td>
</tr>
<tr>
<td></td>
<td>STM32L1 Series</td>
</tr>
<tr>
<td></td>
<td>STM32L4 Series</td>
</tr>
<tr>
<td></td>
<td>STM32L4+ Series</td>
</tr>
<tr>
<td></td>
<td>STM32L5 Series</td>
</tr>
<tr>
<td></td>
<td>STM32U5 Series</td>
</tr>
<tr>
<td></td>
<td>STM32WB Series</td>
</tr>
</tbody>
</table>
1 General information

This document applies to Arm®-based devices.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
2 Terminology and principle

2.1 Terminology

The touch sensing most relevant acronyms are described below:

- **Acquisition mode**
 - CT: Charge-Transfer acquisition principle. This mode is used on STM32 microcontrollers.

- **Touch sensing STM32 peripheral**
 - TSC: touch sensing controller peripheral
 - Bank: set of channels acquired simultaneously
 - Channel: elementary acquisition item
 - Group: set of 1..3 channels plus 1 sampling capacitor (Cs)

- **Sensors**
 - Touchkey or TKey: single channel sensor
 - Linear sensor: multi-channels sensor with the electrodes positioned in a linear way
 - Rotary sensor: multi-channels sensor with the electrodes positioned in a circular way
 - Active shield: track running along or copper plane surrounding the sensor track and/or sensor itself. Active shield is driven similarly to the sensor. Improve noise robustness without decreasing the sensitivity.

- **STM32 software**
 - TSL: touch sensing library
 - Delta: difference between the measure and the reference
 - Measure or meas: current signal measured on a channel
 - Reference or ref: reference signal based on the average of a sample of measures
 - DTO: detection time out. Time out is defined by TSLPRM_DTO. See TSLPRM_DTO in tsl_conf.h file.
 - DXS: detection exclusion system. Exclusion system is defined by TSLPRM_USE_DXS. See TSLPRM_USE_DXS in tsl_conf.h file.
 - ECS: environment change system. See TSLPRM_ECS_DELAY in tsl_conf.h file.

- **Hardware Involved**
 - Cx: sensor capacitance (typical value is few pF)
 - Cp: parasitic capacitance (typical value few pF)
 - Ct: equivalent touch capacitance
 - Cs/Cskey/Csshield: sampling capacitor (typical value from 2.2 to 100nF)
 - Rs/Rskey/Rsshield: serial resistor, ESD protection (typical value from 100Ohms to 10K)

2.2 Principle

The STM32 touch sensing feature is based on charge transfer.

The surface charge transfer acquisition principle consists in charging a sensor capacitance (Cx) and in transferring the accumulated charge into a sampling capacitor (Cs). This sequence is repeated until the voltage across Cs reaches V_{IH}.

The number of charge transfers required to reach the threshold is a direct representation of the size of the electrode capacitance. When the sensor is touched, the sensor capacitance to the earth is increased. This means the C voltage reaches V_{IH} with less count and the measurement value decreases. When this measurement goes below a threshold, a detection is reported by the TSL. The schematic below do not take into account the parasitic capacitor.
Table 2 gives a list of documents containing information about the change transfer principle.

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN4299</td>
<td>Improve conducted noise robustness for touch sensing applications on MCUs</td>
<td>Surface charge transfer acquisition principle overview</td>
</tr>
<tr>
<td>AN4310</td>
<td>Sampling capacitor selection guide for touch sensing applications on MCUs</td>
<td>Charge transfer acquisition principle overview</td>
</tr>
<tr>
<td>AN4312</td>
<td>Design with surface sensors for touch sensing applications on MCUs</td>
<td>Capacitive sensing technology</td>
</tr>
<tr>
<td>AN4316</td>
<td>Tuning a touch sensing application on MCUs</td>
<td>Charge transfer period tuning</td>
</tr>
<tr>
<td>OLT</td>
<td>STM32L4 On Line Training</td>
<td>Touch sensing controller (TSC)</td>
</tr>
</tbody>
</table>
3 Document reference

Figure 2 shows the main documentation tree related to TSC and TSL.

Figure 2. Main documentation tree

![Diagram of the main documentation tree]

<table>
<thead>
<tr>
<th>Document name</th>
<th>Document title</th>
</tr>
</thead>
<tbody>
<tr>
<td>UM1913</td>
<td>Developing applications on STM32Cube with STMTouch touch sensing library</td>
</tr>
<tr>
<td>AN3960</td>
<td>ESD considerations for touch sensing applications on MCUs</td>
</tr>
<tr>
<td>AN4299</td>
<td>Improve conducted noise robustness for touch sensing applications on MCUs</td>
</tr>
<tr>
<td>AN4310</td>
<td>Sampling capacitor selection guide for touch sensing applications on MCUs</td>
</tr>
<tr>
<td>AN4312</td>
<td>Design with surface sensors for touch sensing applications on MCUs</td>
</tr>
<tr>
<td>AN4316</td>
<td>Tuning a touch sensing application on MCUs</td>
</tr>
</tbody>
</table>
STM32L4 touch sensing controller online presentation

An online training is available from ST website www.st.com. Insert the "STM32L4 Online Training" string in the "Search" function and press enter. To find it use the function "Search" and insert the strings "STM32L4 Online Training". The figure below shows the online page available.

Figure 3. STM32L4 online training

Figure 4. STM32L4 Touch Sensing Controller online training
5.1 Description
The following Figure 5 shows all touch sensing controller (TSC) characteristics and their correlation. The TSC main characteristics are described in the following pages.

Figure 5. TSC characteristics

5.2 Signal threshold
To tune the detection thresholds, it must determine the sensitivity of each touchkey. For each touchkey, can be used few parameters to adjust these signal thresholds.

For debug purpose, it can get touchkey parameters using printf or STMStudio tool:

```c
for (Index = 0; Index < NUMBER_OF_TOUCHKEYS; Index++)
{
    printf("K%1d [\%2d][\%4d %3d %3d %4d] %d %d %d %d %d",
        Index,
        MyTKeys[Index].p_Data->StateId,
        MyTKeys[Index].p_ChD->Ref,
        MyTKeys[Index].p_ChD->RefRest,
        MyTKeys[Index].p_ChD->Delta,
        MyTKeys[Index].p_ChD->Meas,
        MyTKeys[Index].p_Param->ProxInTh,
        MyTKeys[Index].p_Param->ProxOutTh,
        MyTKeys[Index].p_Param->DetectInTh,
        MyTKeys[Index].p_Param->DetectOutTh,
        MyTKeys[Index].p_Param->CalibTh);
}
```

Note: ProxInTh and ProxOutTh are defined for proximity detection feature only, when TSLPRM_USE_PROX = 1.
• On software side:
 – Relevant information is available in tsl_conf.h and tscl_user.c files.
 – Threshold (xx_TH) can be adjust in tsl_conf_tsc.h file.

See below an example:

```c
#define TSLPRM_TKEY_DETECT_IN_TH (64)
#define TSLPRM_TKEY_DETECT_OUT_TH (60)
#define TSLPRM_TKEY_CALIB_TH (56)
#define TSLPRM_LINROT_DETECT_IN_TH (50)
#define TSLPRM_LINROT_DETECT_OUT_TH (40)
```

• The TSL api, `tsl_user_SetThresholds`, located in `tsl_user.c` allows to adjust each channel independently. See below an example:

```c
void tsl_user_SetThresholds(void)
{
    /* USER CODE BEGIN Tsl_user_SetThresholds */
    /* Example: Decrease the Detect thresholds for the TKEY 0*/
    MyTKeys_Param[0].DetectInTh -= 10;
    MyTKeys_Param[0].DetectOutTh -= 10;
    /* USER CODE END Tsl_user_SetThresholds */
}
```

Table 4 gives a list of documents containing information about the signal threshold usage.
Table 4. Signal threshold use documentation

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>UM1913</td>
<td>Developing applications on STM32Cube with STMTouch touch sensing library</td>
<td>Debug with STM Studio</td>
</tr>
<tr>
<td>AN4316</td>
<td>Tuning a touch sensing application on MCUs</td>
<td>Monitoring STMTouch driver variables using STM-Studio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tuning the thresholds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Touchkeys thresholds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linear and rotary touch sensors thresholds</td>
</tr>
</tbody>
</table>

5.3 Charge transfer

The acquisition is based on the measurement of the sensor channel capacitance. To ensure that the C_x capacitance is correctly charged, it is necessary to monitor the pin connected to the sensor. On sensors and shield sides, it must observe a complete Charge/Discharge cycle.

Figure 7. Incomplete and complete charge transfer cycle

![Incomplete and complete charge transfer cycle](image)

In this example, to complete the charge transfer cycles, the following parameter must be modified as below:

- **INCREMENT:**
 - `htsc.Init.PulseGeneratorPrescaler`
 - `htsc.Init.CTPulseHighLength`
 - `htsc.Init.CTPulseLowLength`

- **DECREASE:**
 - `Sysclk`

Table 5 gives a list of documents containing information about the charge transfer.

Table 5. Charge transfer documentation

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN4299</td>
<td>Improve conducted noise robustness for touch sensing applications on MCUs</td>
<td>Active shield</td>
</tr>
<tr>
<td>AN4316</td>
<td>Tuning a touch sensing application on MCUs</td>
<td>Charge transfer period tuning</td>
</tr>
</tbody>
</table>
5.4 Sensitivity

Sensitivity is a key point in touch sensing applications. The sensitivity can be improved by:
- Reducing the air gap
- Reducing the panel thickness
- Choosing the dielectric with higher ε_R
- A GND plane that is not too close to the shield and sensors
- Avoiding metallic paint near shield and sensors

Table 6 gives a list of documents containing information about the sensitivity.

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>UM1913</td>
<td>Developing applications on STM32Cube with STMTouch touch sensing library</td>
<td>Available touch sensing channels</td>
</tr>
</tbody>
</table>
| AN4312 | Design with surface sensors for touch sensing applications on MCUs | Air gap:
| | | • Reduce air gap |
| | | Panel material:
| | | • Reduce Panel thickness |
| | | • Choose dielectric with higher ε_R
| | | Metal chassis:
| | | • GND not too closed from Shield and Sensors |
| | | • Avoid Metallic paint near Shield and Sensors |
| | | Mechanical construction and PCB to panel bonding. Surface sensor design |
| AN4316 | Tuning a touch sensing application on MCUs | All chapters |

Dielectric example

Table 7. Dielectric constants of common materials used in a panel construction

<table>
<thead>
<tr>
<th>Material</th>
<th>ε_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1.00059</td>
</tr>
<tr>
<td>Glass</td>
<td>4 to 10</td>
</tr>
<tr>
<td>Sapphire glass</td>
<td>9 to 11</td>
</tr>
<tr>
<td>Mica</td>
<td>4 to 8</td>
</tr>
<tr>
<td>Nylon</td>
<td>3</td>
</tr>
<tr>
<td>Plexiglass</td>
<td>3.4</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>2.2</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>2.56</td>
</tr>
<tr>
<td>Polyethylene terephthalate (PET)</td>
<td>3.7</td>
</tr>
<tr>
<td>FR4 (fiberglass + epoxy)</td>
<td>4.2</td>
</tr>
<tr>
<td>PMMA (Poly methyl methacrylate)</td>
<td>2.6 to 4</td>
</tr>
<tr>
<td>Typical PSA</td>
<td>2.0 - 3.0 (approximately)</td>
</tr>
</tbody>
</table>
5.5 Sensors

- It is recommended to use the same shape for all electrodes.
- The touchkeys can be customized by the drawing on the panel. TSL compensates capacitance differences.
- Acquisition time and processing parameters can be optimized when electrodes have similar capacitance.

Sensor size example

![Sensor size example](image)

5.5.1 Key

- Key sensors are used in common application
- You can get deeper key information in following documents:

Table 8 gives a list of documents containing information about the key.

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>UM1913</td>
<td>Developing applications on STM32Cube with STMTouch touch sensing library</td>
<td>Touchkey sensor</td>
</tr>
<tr>
<td>AN4312</td>
<td>Design with surface sensors for touch sensing applications on MCUs</td>
<td>Touchkey sensor</td>
</tr>
</tbody>
</table>
5.5.2 Linear or slider

A linear is a set of contiguous capacitive electrodes. Figure 9 shows a slider used on a discovery board.

Figure 9. Interlaced linear touch sensor with 3 channels / 4 electrodes (half-ended electrodes design)

Table 9 gives a list of documents containing information about the linear touch sensor.

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>UM1913</td>
<td>Developing applications on STM32Cube with STMTouch touch sensing library</td>
<td>Linear and rotary touch sensors</td>
</tr>
<tr>
<td>AN4312</td>
<td>Design with surface sensors for touch sensing applications on MCUs</td>
<td>Linear sensor</td>
</tr>
</tbody>
</table>
5.5.3 **Rotary sensor or wheel**

A rotary is a set of contiguous capacitive electrodes.

Figure 10. Interlaced patterned rotary sensor with 3 channels / 3 electrodes

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>UM1913</td>
<td>Developing applications on STM32Cube with STMTouch touch sensing library</td>
<td>Linear and rotary touch sensors</td>
</tr>
<tr>
<td>AN4312</td>
<td>Design with surface sensors for touch sensing applications on MCUs</td>
<td>Rotary sensor</td>
</tr>
</tbody>
</table>
5.5.4 **Active shield or driven shield**

Active shield or driven shield. (this name is used in some application notes) drives the shield plane with the same signal as the electrode.

There are several advantages using Active Shield instead of a grounded shield:

- The parasitic capacitance between the electrode and the shield no longer needs to be charged.
- Protect the touch electrodes from a noise source.
- Increase system stability and performance when a moving metal part is close to the electrode.

![Active shield principle](image)

Figure 11. **Active shield principle**

Table 11 gives a list of documents containing information about the active shield.

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN4299</td>
<td>Improve conducted noise robustness for touch sensing applications on MCUs</td>
<td>Active shield</td>
</tr>
<tr>
<td>AN4312</td>
<td>Design with surface sensors for touch sensing applications on MCUs</td>
<td>Driven shield</td>
</tr>
<tr>
<td>AN4316</td>
<td>Tuning a touch sensing application on MCUs</td>
<td>Shield adjustment</td>
</tr>
<tr>
<td>OLT</td>
<td>STM32L4 Online Training</td>
<td>Touch sensing controller (TSC)</td>
</tr>
</tbody>
</table>
5.6 **Layout and PCB**

Rules to follow to improve TSC systems

5.6.1 **Led rules**

Figure 12. Led layout example

![Led layout example](image)

Figure 13. Example of cases where a LED bypass capacitor is required

![Example of cases where a LED bypass capacitor is required](image)

Table 12 gives a list of documents containing information about led rules.

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN4312</td>
<td>Design with surface sensors for touch sensing applications on MCUs</td>
<td>• LEDs and sensors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Placing of LEDs close to sensor</td>
</tr>
</tbody>
</table>
5.6.2 Electrode not located on PCB

It is possible but it is not recommended, because when the electrode isn't located on PCB, the sensitivity decreases and additional extra parasitic capacitances are added.

![Figure 14. Electrode not located on PCB example](image)

Table 13 gives a list of documents containing information about the electrode.

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN4312</td>
<td>Design with surface sensors for touch sensing applications on MCUs</td>
<td>Using electrodes separated from the PCB</td>
</tr>
</tbody>
</table>

Table 13. Electrode documentation
5.6.3 **Ground, shield and sensors**

Table 14 gives a list of documents containing information about the layout.

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
</table>
| AN4312 | Design with surface sensors for touch sensing applications on MCUs | • PCB and Layout
| | | • Ground considerations |
| | | • Rotary and linear sensor recommendations |

Figure 15 shows the ground plane and the signal tracks.

Figure 15. Hatched ground and signal tracks

![Hatched ground and signal tracks](image)

Figure 16. Ground plane example

![Ground plane example](image)
Figure 17. Track routing

Ground plane or ground track

Figure 18. Track routing recommendation

Touchkey bank 1

Touchkey bank 2

At least 2 mm (4 - 5 mm is recommended)

At least twice the track width

As thin as PCB technology allows

Any application track (LED, power, Com.)

At least twice the panel thickness

At least twice the panel thickness
Figure 19. Shield

- **Top layer**
 - Ground plane
 - Track width (W)
 - ~ 0.21
 - 3-4 mm

- **Bottom layer**
 - Sense plate
 - Active shield
 - Track width (W)
 - ~ 0.21
 - 3-4 mm

- At least twice the panel thickness
- As thin as PCB technology allows
- At least twice the track width

AN5105 - Rev 2

Layout and PCB
5.6.4 FAQ

System keys points:
• Direct connection between earth and board ground is required to avoid conducted noise issues.
• Conductive painting on the front panel must be avoid.
• Robust mechanical assembly is required.

Layout keys points:
• GND plane is mandatory under MCU, sampling capacitors and up to serial resistors
• Hatched GND plane recommended for sensor traces from both sides of the PCB:
 – minimize parasitic capacitance
 – mesh plane possible with 25% to 40% copper
• Route the sensors and ground on the same layer while the components and other tracks are routed on the other layers

Driven shield, or Active shield, is recommended.
• If there are LEDs close to sensors, to indicate a touch event, they must be bypassed by a capacitor whose typical value is 10 nF.
• External LDO regulator should be used to power the MCU only to provide a stable power supply voltage without any ripple, especially all the switching components like transistors, LEDs, in the application mustn't be powered from the same voltage. This regulator should not be placed close to the sensors and their tracks, but close to MCU.
• It is strongly recommended to dedicate pins to be used as touch sensors and do not share them with other features

R_S and C_S keys points:
• PPS or NPO sampling capacitors are recommended. Possible X5R or X7R.
• Never use tantalium sampling capacitors.
• Serial ESD 10 K (down to 1 K) resistors are recommended to be placed as close as possible to the MCU
• No track crossing or via between these resistors and the MCU
• The value of sampling capacitor of active shield should be different than the value of the sampling capacitors used for acquisition.
• The capacitance of active shield is higher (larger area) than C_X of a single touch sensing channel. In order to achieve the same waveform on active shield and active touch sensing channel, the ratios C_S/C_X of active shield and active touch sensing channel (touchkey). therefore, the C_S of the active shield should also have higher value ($k \times C_S$ of touch sensing channel).

Sensor key points:
• Other traces must not cross the touch sensing traces or the whole touch sensing area
• The touch sensing traces should be as thin as technology allows and as short as possible.
 – No longer than 10 cm
• The space between traces and GND plane should be ideally 5 mm
• TC pins are more robust against external interference than FT:
 – Consider modification of PCB layout to allow connection of external VDD clamping diode to touch sensing electrode traces.
 – Use low-capacitance diode like BAR18, BAS70 with $C_{max} = 2 \text{ pF}$.
 – In case it is later needed, add pads and connection to the PCB without assembling components.
• Floating panes must never be placed close to the sensors.
5.7Noise
Noise is a key point for touch sensing applications. Noise can come from power supply.

5.7.1Power supply
Main rules to follow:
• Place Buzzer and LED before LDO.
• Place LDO close to MCU.

Figure 20. Typical power supply schematic

Table 15 gives a list of documents containing information about the power supply.

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN4312</td>
<td>Design with surface sensors for touch sensing applications on MCUs</td>
<td>Power supply</td>
</tr>
</tbody>
</table>

5.7.2False detection
To avoid false detection TSL embed ECS, DXS and DTO algorithms.

Table 16 gives a list of documents containing information about the false detection.

Table 16. False detection documentation

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
</table>
| UM1913 | Developing applications on STM32Cube with STMTouch touch sensing library | Environment change system (ECS)
• Power supply voltage, temperature and air humidity
• Detection exclusion system (DXS)
• Detection time out (DTO) |
5.7.3 **Noise immunity**

Noise filtering can be done on hardware and software (TSL) sides. Table 17 gives a list of documents containing information about the noise immunity.

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>UM1913</td>
<td>Developing applications on STM32Cube with STMTouch touch sensing library</td>
<td>Noise filters</td>
</tr>
<tr>
<td>AN4299</td>
<td>Improve conducted noise robustness for touch sensing applications on MCUs</td>
<td>How to improve noise immunity</td>
</tr>
<tr>
<td>OLT</td>
<td>STM32L4 Online Training</td>
<td>Touch sensing controller (TSC)</td>
</tr>
</tbody>
</table>

5.7.4 **Conducted noise**

- Touch sensing systems require the conducted noise immunity.
- A key point is the signal to noise ratio (SNR).
- The test condition to be followed by the user is described in the standard IEC61000-4-6.

Table 18 gives a list of documents containing information about the conducted noise.

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN4299</td>
<td>Improve conducted noise robustness for touch sensing applications on MCUs</td>
<td>All chapters</td>
</tr>
</tbody>
</table>
6 Tuning

For tuning purpose dedicated application note are available.

Sensors
Table 19 gives a list of documents containing information about the sensor.

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN4312</td>
<td>Design with surface sensors for touch sensing applications on MCUs</td>
<td>All chapters</td>
</tr>
</tbody>
</table>

ESD
Table 20 gives a list of documents containing information about the ESD

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN3960</td>
<td>ESD considerations for touch sensing applications on MCUs</td>
<td>All chapters</td>
</tr>
</tbody>
</table>

CN
Table 21 gives a list of documents containing information about the conducted noise.

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN4299</td>
<td>Improve conducted noise robustness for touch sensing applications on MCUs</td>
<td>All chapters</td>
</tr>
</tbody>
</table>

CS
Table 22 gives a list of documents containing information about the sampling capacitor.

<table>
<thead>
<tr>
<th>Id</th>
<th>Title</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN4310</td>
<td>Sampling capacitor selection guide for touch sensing applications on MCUs</td>
<td>All chapters</td>
</tr>
</tbody>
</table>
7 Getting started TSC with STM32CubeMX

7.1 Uses cases

How to set up an TSC application based on TSL is explained in the following two examples. These examples describe the way to set up TLS on STM32F072B-DISCO and STM32L0538-DISCO discovery boards. This description can be used as example to set up other TSC series such us L4, F3, L0, L1 and L4+.

A STM32CubeMX new feature is available from version 4.24.0. This new feature can help to speed up TSL, TouchSensingLib, installation.

![Figure 21. Main project panel](image)
7.2 Discovery board: STM32F072B-DISCO

The STM32F072 Discovery kit helps the user to discover the STM32F072, which has the full set of features available in the STM32F0 Series, and to develop his applications easily. It includes everything required for beginners and experienced users to get started quickly.

Based on the STM32F072RBT6, it includes an ST-LINK/V2 embedded debug tool interface, an ST MEMS gyroscope, LEDs, push-buttons, linear touch sensor, RF EEPROM connector and a USB mini-B connector.

This discovery board provide a three channels linear (or slider) sensor. The main characteristics of these sensor are:

- On-board ST-LINK/V2
- Supply through ST-Link USB
- External Supply: 3V and 5V
- JP2 (Idd) for current measurement
- Full-Speed USB with mini-B Connector
- Motion sensor, 3-axis digital output gyroscope (L3GD20)
- One Linear Touch Sensor or four Touch Keys
- Two Push-buttons: User and Reset
- Six LEDs: USB COM, 3.3 V Power, User (Orange/Green/Red/Blue)
- Extension header: (2 x 33) with 2.54 mm Pitch
- Discovery Board Formfactor

7.2.1 STM32F072B-DISCO board selection

Start to select STM32F072B-DISCO board.

Figure 22. STM32F072B-DISCO board selection
To start Linear Touch Sensor channel acquisition at the same time, three groups are used. (See Figure 23).

Figure 23. STM32F072B-DISCO board schematics
7.2.2 STM32F072B-DISCO TSC group and sensor activation

To activate the TSC group, sampling capacitors and sensor channels follows the below steps:

- activate TSC according schematics information.
- desactivate unrelevant peripheral like USB, SPI, NCF(L0), EPaper(L0), MFX(L0)

SWD peripheral must be set according to Figure 24.

Figure 24. STM32F072B-DISCO pinout SWD

TSC peripheral must be set according to Figure 25.

Figure 25. STM32F072B-DISCO pinout TSC

Figure 26 shows the results obtained.

Figure 26. STM32F072B-DISCO pinout overview

![STM32F072B-DISCO pinout overview](image)

7.2.3 STM32F072B-DISCO clock tree

It uses the default clock tree setting.

Figure 27. STM32F072B-DISCO clock configuration

![STM32F072B-DISCO clock configuration](image)
7.2.4 STM32F072B-DISCO touchsensing library
To activate the TLS usage, switch on TOUCHSENSING box configuration.

Figure 28. TOUCHSENSING box configuration

Select three channels Linear slider and assign dedicated Gx_IOy.
- For training purpose, the user can use three channels Linear slider as three keys sensors
- Select three keys and assign dedicated Gx_IOy

Figure 29 to Figure 33 show these steps.

Figure 29. STM32F072B-DISCO sensor selection
Figure 30. STM32F072B-DISCO sensor selection step 2

Figure 31. STM32F072B-DISCO sensor selection step 3
Figure 32. STM32F072B-DISCO sensor selection step4

Figure 33. STM32F072B-DISCO sensor selection step5
7.2.5 **STM32F072B-DISCO software project generation**

It is possible to generate the complete software project based on TSC HAL and TSL. Figure 34 to Figure 37 show all these steps.

Figure 34. STM32F072B-DISCO software generation step1

Figure 35. STM32F072B-DISCO software generation step2
Figure 36. STM32F072B-DISCO software generation step3

Figure 37. STM32F072B-DISCO IDE workspace
7.2.6 STM32F072B-DISCO software basic algorithm

The user needs to write the main application loop.

Example to show keys usage instead of slider usage.

- Open the IDE and in main.c file add the following lines:

```c
/* USER CODE BEGIN 3 */
extern TSL_LinRot_T MyLinRots[];
static uint32_t cnt = 0;
status = tsl_user_status_t status = TSL_USER_STATUS_BUSY;
status = tsl_user_Execute();
if(TSL_USER_STATUS_BUSY == status)
{
    // Nothing to do
    if(cnt++ % 50 == 0)
    {
        HAL_GPIO_TogglePin(LD3_GPIO_Port, LD3_Pin);
    }
    HAL_Delay(1);
}
else
{
    if(MyLinRots[0].p_Data->StateId == TSL_STATEID_DETECT)
    {
        //TSLPRM_LINROT_RESOLUTION
        if(MyLinRots[0].p_Data->Position >= 5 && MyLinRots[0].p_Data->Position < 50)
        {
            HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_SET);
            HAL_GPIO_WritePin(LD6_GPIO_Port, LD6_Pin, GPIO_PIN_RESET);
            HAL_GPIO_WritePin(LD5_GPIO_Port, LD5_Pin, GPIO_PIN_RESET);
        }
        if(MyLinRots[0].p_Data->Position >= 50 && MyLinRots[0].p_Data->Position < 80)
        {
            HAL_GPIO_WritePin(LD6_GPIO_Port, LD6_Pin, GPIO_PIN_SET);
            HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET);
            HAL_GPIO_WritePin(LD5_GPIO_Port, LD5_Pin, GPIO_PIN_RESET);
        }
        if(MyLinRots[0].p_Data->Position >= 80 && MyLinRots[0].p_Data->Position < 120)
        {
            HAL_GPIO_WritePin(LD5_GPIO_Port, LD5_Pin, GPIO_PIN_SET);
            HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET);
            HAL_GPIO_WritePin(LD6_GPIO_Port, LD6_Pin, GPIO_PIN_RESET);
        }
    } else if(MyLinRots[0].p_Data->StateId == TSL_STATEID_RELEASE)
    {
        HAL_GPIO_WritePin(LD4_GPIO_Port, LD4_Pin, GPIO_PIN_RESET);
        HAL_GPIO_WritePin(LD5_GPIO_Port, LD5_Pin, GPIO_PIN_RESET);
        HAL_GPIO_WritePin(LD6_GPIO_Port, LD6_Pin, GPIO_PIN_RESET);
    }
}
/* USER CODE END 3 */
```
To take care of ST-Link setup, see Figure 38.

Figure 38. STM32F072B-DISCO setup

The system is functional and ready to be used. The led blinks according to finger position on the slider.
7.3 Discovery board: STM32L0538-DISCO

The STM32L053 discovery kit helps you to discover the ultra-low-power microcontrollers of the STM32L0 series. It offers everything required for beginners and experienced users to get started quickly and develop applications easily.

Based on an STM32L053C8T6, it includes an ST-LINK/V2-1 embedded debug tool interface, linear touch sensor, IDD current measurement, 2.04" E-paper display, NFC connector for PLUG-CR95HF-B board, LEDs, pushbuttons and a USB Mini-B connector.

This discovery board provide a three channels linear (or slider) sensor. Their main characteristics are:

- On-board ST-LINK/V2-1
- Supply through ST-Link USB
- External Supply : 3V and 5V
- JP4 (Idd) for current measurement
- Full-Speed USB with mini-B Connector
- E-paper 2.04" display (172 x 72)
- One Linear Touch Sensor or four Touch Keys
- Two Push-buttons: User and Reset
- Four LEDs: USB COM, 3.3 V Power, user (Green/Red)
- Extension header: (2 x 25) with 2.54 mm Pitch
- Discovery Board Formfactor

7.3.1 STM32L0538-DISCO board selection

Start to select STM32L0538-DISCO board.

![STM32L0538-DISCO board selection](image)

To start linear touch sensor channel acquisition at the same time, three groups are used.
Figure 40. STM32L0538-DISCO board schematics

Operating Voltage: 3.3V
NFC kit reference: CR994F-B
NFC

Linear Touch Sensor made of 3 electrodes

Interlaced slider with three elements (up to 60 mm long)
7.3.2 STM32L0538-DISCO TSC group and sensor activation

To activate the TSC group, sampling capacitors and sensor channels follows the below steps:

- Activate TSC according schematics information.
- You can deactivate irrelevant peripheral like USB, SPI, NCF(L0), EPaper(L0), MFX(L0)

SWD peripheral must be set according to Figure 41.

Figure 41. Pinout SWD

![Figure 41: Pinout SWD](image)

TSC peripheral must be set according to Figure 42.

Figure 42. Pinout TSC

![Figure 42: Pinout TSC](image)
Figure 43 shows the results obtained.

Figure 43. Pinout overview

7.3.3 STM32L0538-DISCO clock tree
It uses the default clock tree setting.

Figure 44. Clock configuration
7.3.4 STM32L0538-DISCO touchsensing library

To activate the TLS usage, switch on TOUCHSENSING box configuration.

Figure 45. TOUCHSENSING box configuration

Select three channels Linear slider and assign dedicated Gx_IOy.
- For training purpose, the user can use three channels linear slider as three keys sensors
- Select three keys and assign dedicated Gx_IOy

Follow Figure 46 to Figure 50 to set sensors.

Figure 46. STM32L0538-DISCO sensor selection step1
7.3.5 STM32L0538-DISCO software project generation

It is possible to generate the complete software project based on TSC HAL and TSL. See details in Figure 51 to Figure 55.

Figure 51. STM32L0538-DISCO software generation step1

Figure 52. STM32L0538-DISCO software generation step2
Figure 53. STM32L0538-DISCO complete project overview

Figure 54. STM32L0538-DISCO IDE workspace

Figure 55. SWD settings
7.3.6 STM32L0538-DISCO software basic algorithm

Below is showed an example to show keys usage instead of slider usage.

- Open the IDE and in `main.c` file add the following lines:

```c
/* USER CODE BEGIN 3 */
extern TSL_TouchKey_T MyTKeys[];
static uint32_t cnt=0;
tsl_user_status_t status = TSL_USER_STATUS_BUSY;

status = tsl_user_Exec();
if(TSL_USER_STATUS_BUSY == status)
{
    // Nothing to do
    if(cnt++%50==0){
    }
    HAL_Delay(1);
}
else
{
    HAL_GPIO_WritePin(LD_R_GPIO_Port, LD_R_Pin, GPIO_PIN_RESET);    //00
    HAL_GPIO_WritePin(LD_G_GPIO_Port, LD_G_Pin, GPIO_PIN_RESET);
    if(MyTKeys[0].p_Data->StateId == TSL_STATEID_DETECT)
    {
        HAL_GPIO_WritePin(LD_R_GPIO_Port, LD_R_Pin, GPIO_PIN_SET); //11
        HAL_GPIO_WritePin(LD_G_GPIO_Port, LD_G_Pin, GPIO_PIN_SET);
    }
    if(MyTKeys[1].p_Data->StateId == TSL_STATEID_DETECT)
    {
        HAL_GPIO_WritePin(LD_R_GPIO_Port, LD_R_Pin, GPIO_PIN_SET); //01
        HAL_GPIO_WritePin(LD_G_GPIO_Port, LD_G_Pin, GPIO_PIN_RESET);
    }
    if(MyTKeys[2].p_Data->StateId == TSL_STATEID_DETECT)
    {
        HAL_GPIO_WritePin(LD_R_GPIO_Port, LD_R_Pin, GPIO_PIN_RESET);//01
        HAL_GPIO_WritePin(LD_G_GPIO_Port, LD_G_Pin, GPIO_PIN_RESET);
    }
}
/* USER CODE BEGIN 3 */
```

The system is functional and ready to be used.
The Led is blink according to the position of the on slider.
Revision history

Table 23. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-Sep-2018</td>
<td>1</td>
<td>Initial release.</td>
</tr>
<tr>
<td>23-Jul-2021</td>
<td>2</td>
<td>Added:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• STM32L4+, STM32L5, STM32U5 and STM32WB Series</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Table 1. Applicable products</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section Introduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Table 2. Change transfer principle documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Table 3. Reference documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Table 4. Signal threshold use documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Table 5. Charge transfer documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Table 6. Sensitivity documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Table 8. Key documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Table 9. Linear touch sensor documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Table 10. Rotary sensor documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Table 11. Active shield documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Table 12. Led rules documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Table 13. Electrode documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Table 14. Layout documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Table 15. Power supply documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Table 17. Noise immunity documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Table 18. Conducted noise documentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section 6. Tuning</td>
</tr>
</tbody>
</table>
Contents

1 General information ... 2
2 Terminology and principle ... 3
 2.1 Terminology ... 3
 2.2 Principle .. 3
3 Document reference ... 5
4 STM32L4 touch sensing controller online presentation 6
5 Main TSC characteristics .. 7
 5.1 Description .. 7
 5.2 Signal threshold .. 7
 5.3 Charge transfer .. 9
 5.4 Sensitivity .. 10
 5.5 Sensor .. 11
 5.5.1 Key .. 11
 5.5.2 Linear or slider ... 12
 5.5.3 Rotary sensor or wheel ... 13
 5.5.4 Active shield or driven shield 14
 5.6 Layout and PCB .. 15
 5.6.1 Led rules .. 15
 5.6.2 Electrode not located on PCB 16
 5.6.3 Ground, shield and sensors 17
 5.6.4 FAQ ... 20
 5.7 Noise .. 21
 5.7.1 Power supply .. 21
 5.7.2 False detection ... 21
 5.7.3 Noise immunity .. 22
 5.7.4 Conducted noise .. 22
6 Tuning .. 23
7 Getting started TSC with STM32CubeMX .. 24
 7.1 Uses cases .. 24
 7.2 Discovery board: STM32F072B-DISCO 25
7.2.1 STM32F072B-DISCO board selection ... 25
7.2.2 STM32F072B-DISCO TSC group and sensor activation 27
7.2.3 STM32F072B-DISCO clock tree ... 28
7.2.4 STM32F072B-DISCO touchsensing library 29
7.2.5 STM32F072B-DISCO software project generation 32
7.2.6 STM32F072B-DISCO software basic algorithm 34

7.3 Discovery board: STM32L0538-DISCO ... 36
7.3.1 STM32L0538-DISCO board selection ... 36
7.3.2 STM32L0538-DISCO TSC group and sensor activation 38
7.3.3 STM32L0538-DISCO clock tree ... 39
7.3.4 STM32L0538-DISCO touchsensing library 40
7.3.5 STM32L0538-DISCO software project generation 43
7.3.6 STM32L0538-DISCO software basic algorithm 45

Revision history .. 46
List of tables

Table 1. Applicable products ... 1
Table 2. Change transfer principle documentation ... 4
Table 3. Reference documentation ... 5
Table 4. Signal threshold use documentation .. 9
Table 5. Charge transfer documentation .. 9
Table 6. Sensitivity documentation .. 10
Table 7. Dielectric constants of common materials used in a panel construction .. 10
Table 8. Key documentation ... 11
Table 9. Linear touch sensor documentation ... 12
Table 10. Rotary sensor documentation .. 13
Table 11. Active shield documentation .. 14
Table 12. Led rules documentation ... 15
Table 13. Electrode documentation .. 16
Table 14. Layout documentation ... 17
Table 15. Power supply documentation .. 21
Table 16. False detection documentation .. 21
Table 17. Noise immunity documentation .. 22
Table 18. Conducted noise documentation ... 22
Table 19. Sensors documentation ... 23
Table 20. ESD documentation .. 23
Table 21. Conducted noise documentation .. 23
Table 22. Sampling capacitor documentation ... 23
Table 23. Document revision history .. 46
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Change transfer principle</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Main documentation tree</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>STM32L4 online training</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>STM32L4 Touch Sensing Controller online training</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>TSC characteristics</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>STMStudio outputs</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Incomplete and complete charge transfer cycle</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>Sensor size</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>Interlaced linear touch sensor with 3 channels / 4 electrodes (half-ended electrodes design)</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>Interlaced patterned rotary sensor with 3 channels / 3 electrodes</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>Active shield principle</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>Led layout example</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>Example of cases where a LED bypass capacitor is required</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>Electrode not located on PCB example</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>Hatched ground and signal tracks</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>Ground plane example</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>Track routing</td>
<td>18</td>
</tr>
<tr>
<td>18</td>
<td>Track routing recommendation</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>Shield</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>Typical power supply schematic</td>
<td>21</td>
</tr>
<tr>
<td>21</td>
<td>Main project panel</td>
<td>24</td>
</tr>
<tr>
<td>22</td>
<td>STM32F072B-DISCO board selection</td>
<td>25</td>
</tr>
<tr>
<td>23</td>
<td>STM32F072B-DISCO board schematics</td>
<td>26</td>
</tr>
<tr>
<td>24</td>
<td>STM32F072B-DISCO pinout SWD</td>
<td>27</td>
</tr>
<tr>
<td>25</td>
<td>STM32F072B-DISCO pinout TSC</td>
<td>27</td>
</tr>
<tr>
<td>26</td>
<td>STM32F072B-DISCO pinout overview</td>
<td>28</td>
</tr>
<tr>
<td>27</td>
<td>STM32F072B-DISCO clock configuration</td>
<td>28</td>
</tr>
<tr>
<td>28</td>
<td>TOUCHSENSING box configuration</td>
<td>29</td>
</tr>
<tr>
<td>29</td>
<td>STM32F072B-DISCO sensor selection</td>
<td>29</td>
</tr>
<tr>
<td>30</td>
<td>STM32F072B-DISCO sensor selection step2</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>STM32F072B-DISCO sensor selection step3</td>
<td>30</td>
</tr>
<tr>
<td>32</td>
<td>STM32F072B-DISCO sensor selection step4</td>
<td>31</td>
</tr>
<tr>
<td>33</td>
<td>STM32F072B-DISCO sensor selection step5</td>
<td>31</td>
</tr>
<tr>
<td>34</td>
<td>STM32F072B-DISCO software generation step1</td>
<td>32</td>
</tr>
<tr>
<td>35</td>
<td>STM32F072B-DISCO software generation step2</td>
<td>32</td>
</tr>
<tr>
<td>36</td>
<td>STM32F072B-DISCO software generation step3</td>
<td>33</td>
</tr>
<tr>
<td>37</td>
<td>STM32F072B-DISCO IDE workspace</td>
<td>33</td>
</tr>
<tr>
<td>38</td>
<td>STM32F072B-DISCO setup</td>
<td>35</td>
</tr>
<tr>
<td>39</td>
<td>STM32L0538-DISCO board selection</td>
<td>36</td>
</tr>
<tr>
<td>40</td>
<td>STM32L0538-DISCO board schematics</td>
<td>37</td>
</tr>
<tr>
<td>41</td>
<td>Pinout SWD</td>
<td>38</td>
</tr>
<tr>
<td>42</td>
<td>Pinout TSC</td>
<td>38</td>
</tr>
<tr>
<td>43</td>
<td>Pinout overview</td>
<td>39</td>
</tr>
<tr>
<td>44</td>
<td>Clock configuration</td>
<td>39</td>
</tr>
<tr>
<td>45</td>
<td>TOUCHSENSING box configuration</td>
<td>40</td>
</tr>
<tr>
<td>46</td>
<td>STM32L0538-DISCO sensor selection step1</td>
<td>40</td>
</tr>
<tr>
<td>47</td>
<td>STM32L0538-DISCO sensor selection step2</td>
<td>41</td>
</tr>
<tr>
<td>48</td>
<td>STM32L0538-DISCO sensor selection step3</td>
<td>41</td>
</tr>
<tr>
<td>49</td>
<td>STM32L0538-DISCO sensor selection step4</td>
<td>42</td>
</tr>
<tr>
<td>50</td>
<td>STM32L0538-DISCO sensor selection step5</td>
<td>42</td>
</tr>
<tr>
<td>51</td>
<td>STM32L0538-DISCO software generation step1</td>
<td>43</td>
</tr>
<tr>
<td>52</td>
<td>STM32L0538-DISCO software generation step2</td>
<td>43</td>
</tr>
</tbody>
</table>
Figure 53. STM32L0538-DISCO complete project overview .. 44
Figure 54. STM32L0538-DISCO IDE workspace ... 44
Figure 55. SWD settings .. 44